Handheld In Situ Methods for Soil Organic Carbon Assessment
Abstract
:1. Introduction
- Explore the methods used for in situ SOC estimation, particularly focusing on the sensor technologies employed by portable and handheld devices for assessing SOC content in field settings.
- Examine the strengths, limitations, and practical applications of in situ approaches to offer insights into SOC assessment across diverse environments.
- Enhance the understanding of researchers, land managers, and policymakers regarding the factors influencing the accuracy of SOC estimation using handheld devices and offer practical strategies to mitigate challenges associated with their utilization.
- Highlight the role of in situ SOC estimation using handheld devices in the context of C farming.
2. Methodology
3. In Situ SOC Methods
3.1. Spectroscopic Methods
3.2. Remote Sensing and GIS
4. Reference Laboratory Methods
4.1. Wet Oxidation
4.2. Dry Combustion
4.2.1. Loss on Ignition
4.2.2. Elemental Analysis
5. Optimizing In Situ SOC Estimation
6. Discussion
6.1. Handheld Devices for SOC Estimation
6.1.1. Field-Portable Spectrometers
6.1.2. Soil C Analyzers
6.1.3. Handheld Soil Probes
6.2. Improving Prediction Accuracy of SOC Content
6.3. Comparing Portable Device Methodologies
6.4. Error Sources and Improvement Strategies
6.5. Case Study: Using Portable Hyperspectral Imaging for SOC and Nitrogen Estimation
6.6. Role of Handheld Devices in C Farming
7. Recent Advances
7.1. Wireless Sensing Technologies
7.2. Commercial Devices
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Carbon Impacts on Functionality and Environmental Sustainability. In Carbon Management, Technologies, and Trends in Mediterranean Ecosystems; Ersahin, S., Kapur, S., Akca, E., Namli, A., Erdogan, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 2014, 65, 10–21. [Google Scholar] [CrossRef]
- Beillouin, D.; Cardinael, R.; Berre, D.; Boyer, A.; Corbeels, M.; Fallot, A.; Feder, F.; Demenois, J. A Global Overview of Studies about Land Management, Land-use Change, and Climate Change Effects on Soil Organic Carbon. Glob. Change Biol. 2022, 28, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, M.; Ohta, H. Soil Management Practices for Sustainable Agro-Ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Managing Soil Carbon Stocks to Enhance the Resilience of Urban Ecosystems. Carbon Manag. 2015, 6, 35–50. [Google Scholar] [CrossRef]
- Lal, R. Carbon Cycling in Global Drylands. Curr. Clim. Change Rep. 2019, 5, 221–232. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils—A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The Role of Soil Carbon in Natural Climate Solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put More Carbon in Soils to Meet Paris Climate Pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, E.E.; Eagle, A.J.; Rubin, R.L.; Rudek, J.; Sanderman, J.; Gordon, D.R. Crediting Agricultural Soil Carbon Sequestration. Science 2022, 375, 1222–1225. [Google Scholar] [CrossRef]
- Liu, X.; Kwon, H.; Northrup, D.; Wang, M. Shifting Agricultural Practices to Produce Sustainable, Low Carbon Intensity Feedstocks for Biofuel Production. Environ. Res. Lett. 2020, 15, 084014. [Google Scholar] [CrossRef]
- Antle, J.M.; Stoorvogel, J.J. Payments for Ecosystem Services, Poverty and Sustainability: The Case of Agricultural Soil Carbon Sequestration. In Payment for Environmental Services in Agricultural Landscapes; Springer: New York, NY, USA, 2009; pp. 133–161. [Google Scholar] [CrossRef]
- Smith, P.; Adams, J.; Beerling, D.J.; Beringer, T.; Calvin, K.V.; Fuss, S.; Griscom, B.; Hagemann, N.; Kammann, C.; Kraxner, F.; et al. Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. 2019, 44, 255–286. [Google Scholar] [CrossRef]
- United Nations (UN). The United Nations Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 20 June 2024).
- O’ Rourke, S.M.; Holden, N.M. Optical Sensing and Chemometric Analysis of Soil Organic Carbon—A Cost Effective Alternative to Conventional Laboratory Methods? Soil Use Manag. 2011, 27, 143–155. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Van Oost, K.; van Wesemael, B. Soil Organic Carbon Assessment at High Vertical Resolution Using Closed-Tube Sampling and Vis-NIR Spectroscopy. Soil Sci. Soc. Am. J. 2013, 77, 1430–1435. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M.H. Evaluation of Different Soil Carbon Determination Methods. CRC Crit. Rev. Plant Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Gholami, M.; Sharifi, Z.; Karami, Z.; Haghighi, S.; Minouei, S.F.; Zema, D.A.; Lucas-Borja, M.E. The Potential Impacts of Soil Sampling on Erosion. Int. J. Environ. Sci. Technol. 2020, 17, 4909–4916. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, D.; Shi, X.; Wang, N.; Zhang, G. Priority Selection Rating of Sampling Density and Interpolation Method for Detecting the Spatial Variability of Soil Organic Carbon in China. Environ. Earth Sci. 2015, 73, 2287–2297. [Google Scholar] [CrossRef]
- Filep, T.; Zacháry, D.; Balog, K. Assessment of Soil Quality of Arable Soils in Hungary Using DRIFT Spectroscopy and Chemometrics. Vib. Spectrosc. 2016, 84, 16–23. [Google Scholar] [CrossRef]
- Li, T.; Xia, A.; McLaren, T.I.; Pandey, R.; Xu, Z.; Liu, H.; Manning, S.; Madgett, O.; Duncan, S.; Rasmussen, P.; et al. Preliminary Results in Innovative Solutions for Soil Carbon Estimation: Integrating Remote Sensing, Machine Learning, and Proximal Sensing Spectroscopy. Remote Sens. 2023, 15, 5571. [Google Scholar] [CrossRef]
- Hutengs, C.; Seidel, M.; Oertel, F.; Ludwig, B.; Vohland, M. In Situ and Laboratory Soil Spectroscopy with Portable Visible-to-near-Infrared and Mid-Infrared Instruments for the Assessment of Organic Carbon in Soils. Geoderma 2019, 355, 113900. [Google Scholar] [CrossRef]
- Ewing, P.M.; TerAvest, D.; Tu, X.; Snapp, S.S. Accessible, Affordable, Fine-scale Estimates of Soil Carbon for Sustainable Management in Sub-Saharan Africa. Soil Sci. Soc. Am. J. 2021, 85, 1814–1826. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Somenahally, A.C.; Paul, A.; Muthukumar, S.; Prasad, S. Characterization of an In-Situ Soil Organic Carbon (SOC) via a Smart-Electrochemical Sensing Approach. Sensors 2024, 24, 1153. [Google Scholar] [CrossRef]
- Zhou, T.; Jia, C.; Zhang, K.; Yang, L.; Zhang, D.; Cui, T.; He, X. A Rapid Detection Method for Soil Organic Matter Using a Carbon Dioxide Sensor in Situ. Measurement 2023, 208, 112471. [Google Scholar] [CrossRef]
- Martínez-España, R.; Bueno-Crespo, A.; Soto, J.; Janik, L.J.; Soriano-Disla, J.M. Developing an Intelligent System for the Prediction of Soil Properties with a Portable Mid-Infrared Instrument. Biosyst. Eng. 2019, 177, 101–108. [Google Scholar] [CrossRef]
- Sharififar, A.; Singh, K.; Jones, E.; Ginting, F.I.; Minasny, B. Evaluating a Low-cost Portable NIR Spectrometer for the Prediction of Soil Organic and Total Carbon Using Different Calibration Models. Soil Use Manag. 2019, 35, 607–616. [Google Scholar] [CrossRef]
- Acharya, U.; Lal, R.; Chandra, R. Data Driven Approach on In-Situ Soil Carbon Measurement. Carbon Manag. 2022, 13, 401–419. [Google Scholar] [CrossRef]
- Archana, A.; Sankari, V.S.S.; Nair, S.K.S. An Economically Mobile Device for the On-Site Testing of Soil Nutrients by Studying the Spectrum. Mater. Today Proc. 2023, 80, 1826–1829. [Google Scholar] [CrossRef]
- Swetha, R.K.; Chakraborty, S. Combination of Soil Texture with Nix Color Sensor Can Improve Soil Organic Carbon Prediction. Geoderma 2021, 382, 114775. [Google Scholar] [CrossRef]
- Nocita, M.; Kooistra, L.; Bachmann, M.; Müller, A.; Powell, M.; Weel, S. Predictions of Soil Surface and Topsoil Organic Carbon Content through the Use of Laboratory and Field Spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma 2011, 167–168, 295–302. [Google Scholar] [CrossRef]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil Organic Carbon Prediction by Hyperspectral Remote Sensing and Field Vis-NIR Spectroscopy: An Australian Case Study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Kravchenko, A. Soil Carbon Mapping Using On-the-Go near Infrared Spectroscopy, Topography and Aerial Photographs. Geoderma 2011, 166, 102–110. [Google Scholar] [CrossRef]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B. Measuring Soil Organic Carbon in Croplands at Regional Scale Using Airborne Imaging Spectroscopy. Geoderma 2010, 158, 32–45. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- El Masri, B.; Stinchcomb, G.E.; Cetin, H.; Ferguson, B.; Kim, S.L.; Xiao, J.; Fisher, J.B. Linking Remotely Sensed Carbon and Water Use Efficiencies with In Situ Soil Properties. Remote Sens. 2021, 13, 2593. [Google Scholar] [CrossRef]
- Goodwin, D.J.; Kane, D.A.; Dhakal, K.; Covey, K.R.; Bettigole, C.; Hanle, J.; Ortega-S., J.A.; Perotto-Baldivieso, H.L.; Fox, W.E.; Tolleson, D.R. Can Low-Cost, Handheld Spectroscopy Tools Coupled with Remote Sensing Accurately Estimate Soil Organic Carbon in Semi-Arid Grazing Lands? Soil Syst. 2022, 6, 38. [Google Scholar] [CrossRef]
- Milne, E. Modelling Soil Carbon. In Soil Carbon: Science, Management and Policy for Multiple Benefits; CABI: Wallingford, UK, 2015; Volume 71, p. 202. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Shah, N.; Smith, P. In Situ Measurement of Soil Chemical Composition by Near-Infrared Spectroscopy: A Tool Toward Sustainable Vineyard Management. Commun. Soil Sci. Plant Anal. 2013, 44, 1610–1619. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Sirven, J.B.; Bousquet, B.; Canioni, L.; Sarger, L. Laser-Induced Breakdown Spectroscopy of Composite Samples: Comparison of Advanced Chemometrics Methods. Anal. Chem. 2006, 78, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chandra, R. Towards Low Cost Soil Sensing Using Wi-Fi. In Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019; ACM: New York, NY, USA, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Liu, X.; Gao, H.; Pan, Y. Stabilization of Micaceous Residual Soil with Industrial and Agricultural Byproducts: Perspectives from Hydrophobicity, Water Stability, and Durability Enhancement. Constr. Build. Mater. 2024, 430, 136450. [Google Scholar] [CrossRef]
- Tripathi, G.D.; Javed, Z.; Gattupalli, M.; Dashora, K. Impact of Nanomaterials Accumulation on the Organic Carbon Associated Enzymatic Activities in Soil. Soil Sediment Contam. Int. J. 2023, 32, 538–556. [Google Scholar] [CrossRef]
- de Sousa Mendes, W.; Sommer, M.; Koszinski, S.; Wehrhan, M. The Power of Integrating Proximal and High-Resolution Remote Sensing for Mapping SOC Stocks in Agricultural Peatlands. Plant Soil 2023, 492, 501–517. [Google Scholar] [CrossRef]
- Badgery, W.; Murphy, B.; Cowie, A.; Orgill, S.; Rawson, A.; Simmons, A.; Crean, J. Soil Carbon Market-Based Instrument Pilot—The Sequestration of Soil Organic Carbon for the Purpose of Obtaining Carbon Credits. Soil Res. 2021, 59, 12. [Google Scholar] [CrossRef]
- Morgan, J.A.; Follett, R.F.; Allen, L.H.; Del Grosso, S.; Derner, J.D.; Dijkstra, F.; Franzluebbers, A.; Fry, R.; Paustian, K.; Schoeneberger, M.M. Carbon Sequestration in Agricultural Lands of the United States. J. Soil Water Conserv. 2010, 65, 6A–13A. [Google Scholar] [CrossRef]
- Murad, M.O.F.; Ackerson, J.; Tolles, C.; Meissner, K.; Morgan, C.L.S.; Ge, Y. Estimating Soil Organic Carbon Content at Variable Moisture Contents Using a Low-Cost Spectrometer. Geoderma 2023, 440, 116723. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Sahoo, S.; Govind, A. Prediction of Soil Nutrients through PLSR and SVMR Models by VIs-NIR Reflectance Spectroscopy. Egypt. J. Remote Sens. Space Sci. 2023, 26, 901–918. [Google Scholar] [CrossRef]
- Jia, X.; Xie, M.; Hu, B.; Zhou, Y.; Li, H.; Zhao, W.; Deng, W.; Shi, Z. Prediction of Soil Organic Carbon Contents in Tibet Using a Visible Near-Infrared Spectral Library. Eurasian Soil Sci. 2023, 56, 727–737. [Google Scholar] [CrossRef]
- Karyotis, K.; Tsakiridis, N.L.; Tziolas, N.; Samarinas, N.; Kalopesa, E.; Chatzimisios, P.; Zalidis, G. On-Site Soil Monitoring Using Photonics-Based Sensors and Historical Soil Spectral Libraries. Remote Sens. 2023, 15, 1624. [Google Scholar] [CrossRef]
- Murad, M.O.F.; Jones, E.J.; Minasny, B.; McBratney, A.B.; Wijewardane, N.; Ge, Y. Assessing a VisNIR Penetrometer System for In-Situ Estimation of Soil Organic Carbon under Variable Soil Moisture Conditions. Biosyst. Eng. 2022, 224, 197–212. [Google Scholar] [CrossRef]
- Priori, S.; Mzid, N.; Pascucci, S.; Pignatti, S.; Casa, R. Performance of a Portable FT-NIR MEMS Spectrometer to Predict Soil Features. Soil Syst. 2022, 6, 66. [Google Scholar] [CrossRef]
- Semella, S.; Hutengs, C.; Seidel, M.; Ulrich, M.; Schneider, B.; Ortner, M.; Thiele-Bruhn, S.; Ludwig, B.; Vohland, M. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling. Sensors 2022, 22, 2749. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, B.; Seidel, M.; Hutengs, C. Quantification of Soil Organic Carbon at Regional Scale: Benefits of Fusing Vis-NIR and MIR Diffuse Reflectance Data Are Greater for in Situ than for Laboratory-Based Modelling Approaches. Geoderma 2022, 405, 115426. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Xiao, C.; Shang, K.; Zhang, Y.; Pan, X. Prediction of Multiple Soil Fertility Parameters Using VisNIR Spectroscopy and PXRF Spectrometry. Soil Sci. Soc. Am. J. 2021, 85, 591–605. [Google Scholar] [CrossRef]
- Nawar, S.; Abdul Munnaf, M.; Mouazen, A.M. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. 2020, 12, 1308. [Google Scholar] [CrossRef]
- Chen, S.; Xu, D.; Li, S.; Ji, W.; Yang, M.; Zhou, Y.; Hu, B.; Xu, H.; Shi, Z. Monitoring Soil Organic Carbon in Alpine Soils Using in Situ Vis-NIR Spectroscopy and a Multilayer Perceptron. Land. Degrad. Dev. 2020, 31, 1026–1038. [Google Scholar] [CrossRef]
- Kusumo, B.H.; Hedley, M.J.; Hedley, C.B.; Tuohy, M.P. Measuring Carbon Dynamics in Field Soils Using Soil Spectral Reflectance: Prediction of Maize Root Density, Soil Organic Carbon and Nitrogen Content. Plant Soil 2011, 338, 233–245. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. On-Line Vis-NIR Spectroscopy Prediction of Soil Organic Carbon Using Machine Learning. Soil Tillage Res. 2019, 190, 120–127. [Google Scholar] [CrossRef]
- Crucil, G.; Castaldi, F.; Aldana-Jague, E.; van Wesemael, B.; Macdonald, A.; Van Oost, K. Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction. Sustainability 2019, 11, 1889. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Brown, D.J.; Barefield, J.E.; Clegg, S.M. Intact Soil Core Total, Inorganic, and Organic Carbon Measurement Using Laser-Induced Breakdown Spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 1006–1018. [Google Scholar] [CrossRef]
- Hutengs, C.; Ludwig, B.; Jung, A.; Eisele, A.; Vohland, M. Comparison of Portable and Bench-Top Spectrometers for Mid-Infrared Diffuse Reflectance Measurements of Soils. Sensors 2018, 18, 993. [Google Scholar] [CrossRef] [PubMed]
- Rossel, R.A.V.; Jeon, Y.S.; Odeh, I.O.A.; McBratney, A.B. Using a Legacy Soil Sample to Develop a Mid-IR Spectral Library. Soil Res. 2008, 46, 1. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Allen, D.J.; McLaughlin, M.J. Evaluation of the Performance of Portable Visible-Infrared Instruments for the Prediction of Soil Properties. Biosyst. Eng. 2017, 161, 24–36. [Google Scholar] [CrossRef]
- Wijewardane, N.K.; Ge, Y.; Wills, S.; Loecke, T. Prediction of Soil Carbon in the Conterminous United States: Visible and Near Infrared Reflectance Spectroscopy Analysis of the Rapid Carbon Assessment Project. Soil Sci. Soc. Am. J. 2016, 80, 973–982. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An Assessment of Model Averaging to Improve Predictive Power of Portable Vis-NIR and XRF for the Determination of Agronomic Soil Properties. Geoderma 2016, 279, 31–44. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating Soil Organic Carbon of Cropland Soil at Different Levels of Soil Moisture Using VIS-NIR Spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In Situ Measurements of Organic Carbon in Soil Profiles Using Vis-NIR Spectroscopy on the Qinghai–Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Wang, D.; Chakraborty, S.; Weindorf, D.C.; Li, B.; Sharma, A.; Paul, S.; Ali, N. Synthesized Use of VisNIR DRS and PXRF for Soil Characterization: Total Carbon and Total Nitrogen. Geoderma 2015, 243–244, 157–167. [Google Scholar] [CrossRef]
- Ji, W.; Shi, Z.; Huang, J.; Li, S. Correction: In Situ Measurement of Some Soil Properties in Paddy Soil Using Visible and Near-Infrared Spectroscopy. PLoS ONE 2016, 11, e0159785. [Google Scholar] [CrossRef] [PubMed]
- Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between Artificial Neural Network and Partial Least Squares for On-Line Visible and near Infrared Spectroscopy Measurement of Soil Organic Carbon, PH and Clay Content. Soil Tillage Res. 2015, 146, 243–252. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Blöcher, J.R.; Bell, S.M.; Borůvka, L.; Vašát, R. Can in Situ Spectral Measurements under Disturbance-Reduced Environmental Conditions Help Improve Soil Organic Carbon Estimation? Sci. Total Environ. 2022, 838, 156304. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Sudduth, K.; Veum, K.; Li, M. Improving In-Situ Estimation of Soil Profile Properties Using a Multi-Sensor Probe. Sensors 2019, 19, 1011. [Google Scholar] [CrossRef]
- Fultz-Waters, S. Introduction to Carbon Sensing in Soil. A Surface-Level Review of Traditional and Alternative Methods of Soil Carbon Measurement; Sandia National Lab.: Albuquerque, NM, USA; Livermore, CA, USA, 2022. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Dor, E.B.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and Applications of Miniaturized Near-Infrared (NIR) Spectrometers. Chem. Eur. J. 2021, 27, 1514–1532. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-Infrared (NIR) and Mid-Infrared (MIR) Spectroscopic Techniques for Assessing the Amount of Carbon Stock in Soils—Critical Review and Research Perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Metzger, K.; Zhang, C.; Daly, K. From Benchtop to Handheld MIR for Soil Analysis: Predicting Lime Requirement and Organic Matter in Agricultural Soils. Biosyst. Eng. 2021, 204, 257–269. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil Organic Carbon and Its Fractions Estimated by Visible–near Infrared Transfer Functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Das, D.; Sahoo, R.N.; Aggarwal, P.; Murgaokar, D.; Mondal, B.P. Partial Least Square Regression Based Machine Learning Models for Soil Organic Carbon Prediction Using Visible–near Infrared Spectroscopy. Geoderma Reg. 2023, 33, e00628. [Google Scholar] [CrossRef]
- Duro, A.M.; Hirmas, D.R.; Ajami, H.; Billings, S.A.; Zhang, X.; Li, L.; Flores, A.; Moreno, V.; Cao, X.; Guilinger, J.; et al. Topographic Correction of Visible Near-infrared Reflectance Spectra for Horizon-scale Soil Organic Carbon Mapping. Soil Sci. Soc. Am. J. 2024, 88, 207–223. [Google Scholar] [CrossRef]
- Knadel, M.; Stenberg, B.; Deng, F.; Thomsen, A.; Greve, M.H. Comparing Predictive Abilities of Three Visible-Near Infrared Spectrophotometers for Soil Organic Carbon and Clay Determination. J. Near Infrared Spectrosc. 2013, 21, 67–80. [Google Scholar] [CrossRef]
- Ge, Y.; Thomasson, J.A.; Morgan, C.L.S. Mid-Infrared Attenuated Total Reflectance Spectroscopy for Soil Carbon and Particle Size Determination. Geoderma 2014, 213, 57–63. [Google Scholar] [CrossRef]
- Reeves, J.B. Near- versus Mid-Infrared Diffuse Reflectance Spectroscopy for Soil Analysis Emphasizing Carbon and Laboratory versus on-Site Analysis: Where Are We and What Needs to Be Done? Geoderma 2010, 158, 3–14. [Google Scholar] [CrossRef]
- Sanderman, J.; Savage, K.; Dangal, S.R.S. Mid-infrared Spectroscopy for Prediction of Soil Health Indicators in the United States. Soil Sci. Soc. Am. J. 2020, 84, 251–261. [Google Scholar] [CrossRef]
- Shi, Z.; Yin, J.; Li, B.; Sun, F.; Miao, T.; Cao, Y.; Shi, Z.; Chen, S.; Hu, B.; Ji, W. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy. Sensors 2023, 23, 5967. [Google Scholar] [CrossRef] [PubMed]
- Senesi, G.S.; Senesi, N. Laser-Induced Breakdown Spectroscopy (LIBS) to Measure Quantitatively Soil Carbon with Emphasis on Soil Organic Carbon. A Review. Anal. Chim. Acta 2016, 938, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Cremers, D.A.; Ebinger, M.H.; Breshears, D.D.; Unkefer, P.J.; Kammerdiener, S.A.; Ferris, M.J.; Catlett, K.M.; Brown, J.R. Measuring Total Soil Carbon with Laser-Induced Breakdown Spectroscopy (LIBS). J. Environ. Qual. 2001, 30, 2202–2206. [Google Scholar] [CrossRef] [PubMed]
- Ebinger, M.H.; Norfleet, M.L.; Breshears, D.D.; Cremers, D.A.; Ferris, M.J.; Unkefer, P.J.; Lamb, M.S.; Goddard, K.L.; Meyer, C.W. Extending the Applicability of Laser-Induced Breakdown Spectroscopy for Total Soil Carbon Measurement. Soil Sci. Soc. Am. J. 2003, 67, 1616–1619. [Google Scholar] [CrossRef]
- Dwivedi, V.; Ahokas, J.; Viljanen, J.; Ryczkowski, P.; Shurpali, N.J.; Raj Bhattarai, H.; Virkajärvi, P.; Toivonen, J. Optical Assessment of the Spatial Variation in Total Soil Carbon Using Laser-Induced Breakdown Spectroscopy. Geoderma 2023, 436, 116550. [Google Scholar] [CrossRef]
- Lazic, V.; Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A. Self-Absorption Model in Quantitative Laser Induced Breakdown Spectroscopy Measurements on Soils and Sediments. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 807–820. [Google Scholar] [CrossRef]
- Huang, Y.; Harilal, S.S.; Bais, A.; Hussein, A.E. Progress Toward Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy with an Emphasis on Soil Analysis. IEEE Trans. Plasma Sci. 2023, 51, 1729–1749. [Google Scholar] [CrossRef]
- Wielopolski, L.; Chatterjee, A.; Mitra, S.; Lal, R. In Situ Determination of Soil Carbon Pool by Inelastic Neutron Scattering: Comparison with Dry Combustion. Geoderma 2011, 160, 394–399. [Google Scholar] [CrossRef]
- Yakubova, G.; Wielopolski, L.; Kavetskiy, A.; Torbert, H.A.; Prior, S.A. Field Testing a Mobile Inelastic Neutron Scattering System to Measure Soil Carbon. Soil Sci. 2014, 179, 529–535. [Google Scholar] [CrossRef]
- Wielopolski, L.; Hendrey, G.; Johnsen, K.H.; Mitra, S.; Prior, S.A.; Rogers, H.H.; Torbert, H.A. Nondestructive System for Analyzing Carbon in the Soil. Soil Sci. Soc. Am. J. 2008, 72, 1269–1277. [Google Scholar] [CrossRef]
- Wielopolski, L.; Yanai, R.D.; Levine, C.R.; Mitra, S.; Vadeboncoeur, M.A. Rapid, Non-Destructive Carbon Analysis of Forest Soils Using Neutron-Induced Gamma-Ray Spectroscopy. For. Ecol. Manage. 2010, 260, 1132–1137. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Miloš, B.; Bensa, A. Prediction of Organic Carbon and Calcium Carbonates in Agricultural Soils with Vis-NIR Spectroscopy. Poljoprivreda 2018, 24, 45–51. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Tong, Z.; Zhao, Y. Particle Size Effects on the Reflectance and Negative Polarization of Light Backscattered from Natural Surface Particulate Medium: Soil and Sand. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 1–12. [Google Scholar] [CrossRef]
- Fan, R.; Yang, X.; Drury, C.F.; Zhang, Z. Curve-Fitting Techniques Improve the Mid-Infrared Analysis of Soil Organic Carbon: A Case Study for Brookston Clay Loam Particle-Size Fractions. Sci. Rep. 2018, 8, 12174. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Biswas, A.; Dhawale, N.M.; Sudarsan, B.; Zhang, Y.; Viscarra Rossel, R.A.; Shi, Z. Assessment of Soil Properties in Situ Using a Prototype Portable MIR Spectrometer in Two Agricultural Fields. Biosyst. Eng. 2016, 152, 14–27. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Zhang, J.; Yuan, H.; Acquah, G.E. Spectral Variable Selection for Estimation of Soil Organic Carbon Content Using Mid-infrared Spectroscopy. Eur. J. Soil Sci. 2022, 73, e13267. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R. Discrimination of Australian Soil Horizons and Classes from Their Visible-near Infrared Spectra. Eur. J. Soil Sci. 2011, 62, 637–647. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V. Diffuse Reflectance Spectroscopy for High-Resolution Soil Sensing. In Proximal Soil Sensing; Springer: Dordrecht, The Netherlands, 2010; pp. 29–47. [Google Scholar] [CrossRef]
- Greenberg, I.; Seidel, M.; Vohland, M.; Koch, H.J.; Ludwig, B. Performance of in Situ vs. Laboratory Mid-Infrared Soil Spectroscopy Using Local and Regional Calibration Strategies. Geoderma 2022, 409, 115614. [Google Scholar] [CrossRef]
- Bruun, S.W.; Kohler, A.; Adt, I.; Sockalingum, G.D.; Manfait, M.; Martens, H. Correcting Attenuated Total Reflection—Fourier Transform Infrared Spectra for Water Vapor and Carbon Dioxide. Appl. Spectrosc. 2006, 60, 1029–1039. [Google Scholar] [CrossRef]
- Wielopolski, L.; Orion, I.; Hendrey, G.; Roger, H. Soil Carbon Measurements Using Inelastic Neutron Scattering. IEEE Trans. Nucl. Sci. 2000, 47, 914–917. [Google Scholar] [CrossRef]
- Falahat, S.; Köble, T.; Schumann, O.; Waring, C.; Watt, G. Development of a Surface Scanning Soil Analysis Instrument. Appl. Radiat. Isot. 2012, 70, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Wielopolski, L.; Mitra, S.; Hendrey, G.; Rogers, H.; Torbert, A.; Prior, S. Non-Destructive in Situ Soil Carbon Analysis: Principles and Results. In Proceedings of the 2nd Annual Conference Carbon Sequestration: Developing and Validating the Technology Base to Reduce Carbon Intensity, Alexandria, VA, USA, 5–8 May 2003. [Google Scholar]
- Gehl, R.J.; Rice, C.W. Emerging Technologies for in Situ Measurement of Soil Carbon. Clim. Chang. 2007, 80, 43–54. [Google Scholar] [CrossRef]
- Glumac, N.G.; Dong, W.K.; Jarrell, W.M. Quantitative Analysis of Soil Organic Carbon Using Laser-Induced Breakdown Spectroscopy: An Improved Method. Soil Sci. Soc. Am. J. 2010, 74, 1922–1928. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Ma, X. Improving the Accuracy of Soil Organic Carbon Estimation: CWT-Random Frog-XGBoost as a Prerequisite Technique for In Situ Hyperspectral Analysis. Remote Sens. 2023, 15, 5294. [Google Scholar] [CrossRef]
- Salani, G.M.; Lissoni, M.; Bianchini, G.; Brombin, V.; Natali, S.; Natali, C. Soil Organic Carbon Estimation in Ferrara (Northern Italy) Combining In Situ Geochemical Analyses and Hyperspectral Remote Sensing. Environments 2023, 10, 173. [Google Scholar] [CrossRef]
- Mohamed, E.S.; A El Baroudy, A.; El-beshbeshy, T.; Emam, M.; Belal, A.A.; Elfadaly, A.; Aldosari, A.A.; Ali, A.M.; Lasaponara, R. Vis-NIR Spectroscopy and Satellite Landsat-8 OLI Data to Map Soil Nutrients in Arid Conditions: A Case Study of the Northwest Coast of Egypt. Remote Sens. 2020, 12, 3716. [Google Scholar] [CrossRef]
- Abdoli, P.; Khanmirzaei, A.; Hamzeh, S.; Rezaei, S.; Moghimi, S. Use of Remote Sensing Data to Predict Soil Organic Carbon in Some Agricultural Soils of Iran. Remote Sens. Appl. 2023, 30, 100969. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Saberioon, M.; Borůvka, L.; Houška, J.; Vašát, R.; Chapman Agyeman, P.; Coblinski, J.A.; Klement, A. Exploring the Suitability of UAS-Based Multispectral Images for Estimating Soil Organic Carbon: Comparison with Proximal Soil Sensing and Spaceborne Imagery. Remote Sens. 2021, 13, 308. [Google Scholar] [CrossRef]
- Ladoni, M.; Alavipanah, S.K.; Bahrami, H.A.; Noroozi, A.A. Remote Sensing of Soil Organic Carbon in Semi-Arid Region of Iran. Arid. Land. Res. Manag. 2010, 24, 271–281. [Google Scholar] [CrossRef]
- Sayão, V.M.; Demattê, J.A.M.; Bedin, L.G.; Nanni, M.R.; Rizzo, R. Satellite Land Surface Temperature and Reflectance Related with Soil Attributes. Geoderma 2018, 325, 125–140. [Google Scholar] [CrossRef]
- Pascucci, S.; Casa, R.; Belviso, C.; Palombo, A.; Pignatti, S.; Castaldi, F. Estimation of Soil Organic Carbon from Airborne Hyperspectral Thermal Infrared Data: A Case Study. Eur. J. Soil Sci. 2014, 65, 865–875. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Lan, Z.; Mu, X.; Wu, Y.; Xin, Z.; Miping, P.; Zhao, G. Improved Surface Soil Organic Carbon Mapping of SoilGrids250m Using Sentinel-2 Spectral Images in the Qinghai–Tibetan Plateau. Remote Sens. 2022, 15, 114. [Google Scholar] [CrossRef]
- Li, X.; McCarty, G.W.; Du, L.; Lee, S. Use of Topographic Models for Mapping Soil Properties and Processes. Soil Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Hateffard, F.; Szatmári, G.; Novák, T.J. Applicability of Machine Learning Models for Predicting Soil Organic Carbon Content and Bulk Density under Different Soil Conditions. Soil Sci. Annu. 2023, 74, 1–11. [Google Scholar] [CrossRef]
- Haubrock, S.-N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface Soil Moisture Quantification Models from Reflectance Data under Field Conditions. Int. J. Remote Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- de Paul Obade, V.; Lal, R. Assessing Land Cover and Soil Quality by Remote Sensing and Geographical Information Systems (GIS). Catena 2013, 104, 77–92. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Pourghasemi, H.R.; Edalat, M. Prediction of Soil Organic Carbon and Its Mapping Using Regression Analyses and Remote Sensing Data in GIS and R. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 429–450. [Google Scholar] [CrossRef]
- Van Huynh, C.; Pham, T.G.; Nguyen, L.H.K.; Nguyen, H.T.; Nguyen, P.T.; Le, Q.N.P.; Tran, P.T.; Nguyen, M.T.H.; Tran, T.T.A. Application GIS and Remote Sensing for Soil Organic Carbon Mapping in a Farm-Scale in the Hilly Area of Central Vietnam. Air Soil Water Res. 2022, 15, 117862212211147. [Google Scholar] [CrossRef]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial Analysis of Soil Properties Using GIS Based Geostatistics Models. Model. Earth Syst. Environ. 2016, 2, 107. [Google Scholar] [CrossRef]
- de Castro Padilha, M.C.; Vicente, L.E.; Demattê, J.A.M.; dos Santos Wendriner Loebmann, D.G.; Vicente, A.K.; Salazar, D.F.U.; Guimarães, C.C.B. Using Landsat and Soil Clay Content to Map Soil Organic Carbon of Oxisols and Ultisols near São Paulo, Brazil. Geoderma Reg. 2020, 21, e00253. [Google Scholar] [CrossRef]
- Gabriele, M.; Brumana, R.; Previtali, M.; Cazzani, A. A Combined GIS and Remote Sensing Approach for Monitoring Climate Change-Related Land Degradation to Support Landscape Preservation and Planning Tools: The Basilicata Case Study. Appl. Geomat. 2022, 15, 497–532. [Google Scholar] [CrossRef]
- Ayala Izurieta, J.E.; Jara Santillán, C.A.; Márquez, C.O.; García, V.J.; Rivera-Caicedo, J.P.; Van Wittenberghe, S.; Delegido, J.; Verrelst, J. Improving the Remote Estimation of Soil Organic Carbon in Complex Ecosystems with Sentinel-2 and GIS Using Gaussian Processes Regression. Plant Soil 2022, 479, 159–183. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Saby, N.P.A.; Martin, M.P.; Barthès, B.G.; Gomez, C.; Shi, Z.; Arrouays, D. Integrating Additional Spectroscopically Inferred Soil Data Improves the Accuracy of Digital Soil Mapping. Geoderma 2023, 433, 116467. [Google Scholar] [CrossRef]
- Tiruneh, G.A.; Meshesha, D.T.; Adgo, E.; Tsunekawa, A.; Haregeweyn, N.; Fenta, A.A.; Alemayehu, T.Y.; Ayana, G.; Reichert, J.M.; Tilahun, K. Geospatial Modeling and Mapping of Soil Organic Carbon and Texture from Spectroradiometric Data in Nile Basin. Remote Sens. Appl. 2023, 29, 100879. [Google Scholar] [CrossRef]
- Kok, M.; Sarjant, S.; Verweij, S.; Vaessen, S.F.C.; Ros, G.H. On-Site Soil Analysis: A Novel Approach Combining NIR Spectroscopy, Remote Sensing and Deep Learning. Geoderma 2024, 446, 116903. [Google Scholar] [CrossRef]
- van der Voort, T.S.; Verweij, S.; Fujita, Y.; Ros, G.H. Enabling Soil Carbon Farming: Presentation of a Robust, Affordable, and Scalable Method for Soil Carbon Stock Assessment. Agron. Sustain. Dev. 2023, 43, 22. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, D.; Guan, X.; Chu, D.; Ma, Y.; Shen, H. Impacts of the Data Quality of Remote Sensing Vegetation Index on Gross Primary Productivity Estimation. GIScience Remote Sens. 2023, 60, 2275421. [Google Scholar] [CrossRef]
- Broeg, T.; Blaschek, M.; Seitz, S.; Taghizadeh-Mehrjardi, R.; Zepp, S.; Scholten, T. Transferability of Covariates to Predict Soil Organic Carbon in Cropland Soils. Remote Sens. 2023, 15, 876. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef]
- Nieto, L.; Houborg, R.; Tivet, F.; Olson, B.J.S.C.; Prasad, P.V.V.; Ciampitti, I.A. Limitations and Future Perspectives for Satellite-Based Soil Carbon Monitoring. Environ. Chall. 2024, 14, 100839. [Google Scholar] [CrossRef]
- Modak, K.; Ghosh, A.; Singh, P.D.; Alam, K.; Choudhury, S.; Misra, S.; Singh, A.D.; Ahmed, S.; Moharana, P.C. Global Carbon Cycle and Methods for Estimating Soil Carbon: General Concepts. In Agricultural Soil Sustainability and Carbon Management; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–25. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and Emerging Methodologies for Estimating Carbon Sequestration in Agricultural Soils: A Review. Sci. Total Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, N.H.; Ostwald, M. Methods for Estimating Soil Organic Carbon. In Carbon Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer: Dordrecht, The Netherlands, 2008; Volume 29, pp. 165–180. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Roselle, R.A.; Gasparoni, J.C.; Galantini, J.A. Soil Organic Matter Evaluation. In Assessment Methods for Soil Carbon; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; Lewis Publishers: Washington, DC, USA, 2001; pp. 311–322. [Google Scholar]
- Davis, M.; Alves, B.; Karlen, D.; Kline, K.; Galdos, M.; Abulebdeh, D. Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation. Sustainability 2017, 10, 53. [Google Scholar] [CrossRef]
- Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining Soil Organic Carbon for Agricultural Soils: A Comparison between the Walkley & Black and the Dry Combustion Methods (North Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Noble, R.R.P.; Post, C.J. Comparison of Soil Organic Carbon Recovery by Walkley-Black and Dry Combustion Methods in the Russian Chernozem. Commun. Soil Sci. Plant Anal. 2003, 34, 1853–1860. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis Part 3 Chemical Analysis; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Soon, Y.K.; Abboud, S. A Comparison of Some Methods for Soil Organic Carbon Determination. Commun. Soil Sci. Plant Anal. 1991, 22, 943–954. [Google Scholar] [CrossRef]
- Breithaupt, J.L.; Steinmuller, H.E.; Rovai, A.S.; Engelbert, K.M.; Smoak, J.M.; Chambers, L.G.; Radabaugh, K.R.; Moyer, R.P.; Chappel, A.; Vaughn, D.R.; et al. An Improved Framework for Estimating Organic Carbon Content of Mangrove Soils Using Loss-on-Ignition and Coastal Environmental Setting. Wetlands 2023, 43, 57. [Google Scholar] [CrossRef]
- David, M.B. Use of Loss-on-ignition to Assess Soil Organic Carbon in Forest Soils. Commun. Soil Sci. Plant Anal. 1988, 19, 1593–1599. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating Soil Organic Carbon through Loss on Ignition: Effects of Ignition Conditions and Structural Water Loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Cathcart, J.; Cannon, K.; Heinz, J. Selection and Establishment of Alberta Agricultural Soil Quality Benchmark Sites. Can. J. Soil Sci. 2008, 88, 399–408. [Google Scholar] [CrossRef]
- Reza, S.K.; Nayak, D.C.; Chattopadhyay, T.; Mukhopadhyay, S.; Singh, S.K.; Srinivasan, R. Spatial Distribution of Soil Physical Properties of Alluvial Soils: A Geostatistical Approach. Arch. Agron. Soil Sci. 2016, 62, 972–981. [Google Scholar] [CrossRef]
- Stanley, P.; Spertus, J.; Chiartas, J.; Stark, P.B.; Bowles, T. Valid Inferences about Soil Carbon in Heterogeneous Landscapes. Geoderma 2023, 430, 116323. [Google Scholar] [CrossRef]
- Payton, R.W.; Barr, J.J.F.; Martin, A.; Sillitoe, P.; Deckers, J.F.; Gowing, J.W.; Hatibu, N.; Naseem, S.B.; Tenywa, M.; Zuberi, M.I. Contrasting Approaches to Integrating Indigenous Knowledge about Soils and Scientific Soil Survey in East Africa and Bangladesh. Geoderma 2003, 111, 355–386. [Google Scholar] [CrossRef]
- Jarvis, N.; Coucheney, E.; Lewan, E.; Klöffel, T.; Meurer, K.H.E.; Keller, T.; Larsbo, M. Interactions between Soil Structure Dynamics, Hydrological Processes, and Organic Matter Cycling: A New Soil-crop Model. Eur. J. Soil Sci. 2024, 75, e13455. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, M.; Zhao, X.; Li, Y.; Zhao, W.; Li, A.; Chen, S.; Chen, S.; Han, X.; Huang, J. Topography and Grazing Effects on Storage of Soil Organic Carbon and Nitrogen in the Northern China Grasslands. Ecol. Indic. 2018, 93, 45–53. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; Demattê, J.A.M.; McBratney, A.B. Incorporating Soil Knowledge into Machine-learning Prediction of Soil Properties from Soil Spectra. Eur. J. Soil Sci. 2023, 74, e13438. [Google Scholar] [CrossRef]
- Yu, B.; Yan, C.; Yuan, J.; Ding, N.; Chen, Z. Prediction of Soil Properties Based on Characteristic Wavelengths with Optimal Spectral Resolution by Using Vis-NIR Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122452. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, A.; Neumann, C.; Chabrillat, S.; van Wesemael, B.; Castaldi, F.; Borůvka, L.; Sanderman, J.; Klement, A.; Hohmann, C. Soil Organic Carbon Estimation Using VNIR–SWIR Spectroscopy: The Effect of Multiple Sensors and Scanning Conditions. Soil Tillage Res. 2021, 211, 105017. [Google Scholar] [CrossRef]
- Vohland, M.; Besold, J.; Hill, J.; Fründ, H.-C. Comparing Different Multivariate Calibration Methods for the Determination of Soil Organic Carbon Pools with Visible to near Infrared Spectroscopy. Geoderma 2011, 166, 198–205. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Miller, P.R.; Paustian, K.; Keck, T.; Nielsen, G.A.; Antle, J.M. Soil Organic Carbon Variability and Sampling Optimization in Montana Dryland Wheat Fields. J. Soil. Water Conserv. 2005, 60, 42–51. [Google Scholar]
- Liu, S.; Chen, J.; Guo, L.; Wang, J.; Zhou, Z.; Luo, J.; Yang, R. Prediction of Soil Organic Carbon in Soil Profiles Based on Visible–near-Infrared Hyperspectral Imaging Spectroscopy. Soil Tillage Res. 2023, 232, 105736. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Reyes, J.; Ließ, M. Spectral Data Processing for Field-Scale Soil Organic Carbon Monitoring. Sensors 2024, 24, 849. [Google Scholar] [CrossRef]
- Kaźmierowski, C.; Herodowicz, K.; Królewicz, S.; Nowosad, J.; Piekarczyk, J. Representative Elementary Area Issue in Soil Spectral Measurements. Soil Tillage Res. 2019, 186, 259–269. [Google Scholar] [CrossRef]
- Chinilin, A.V.; Savin, I.Y. Comparison of the Effectiveness of Various Ways of Preprocessing Spectrometric Data in Order to Predict the Concentration of Organic Soil Carbon. J. Opt. Technol. 2018, 85, 789. [Google Scholar] [CrossRef]
- Clairotte, M.; Grinand, C.; Kouakoua, E.; Thébault, A.; Saby, N.P.A.; Bernoux, M.; Barthès, B.G. National Calibration of Soil Organic Carbon Concentration Using Diffuse Infrared Reflectance Spectroscopy. Geoderma 2016, 276, 41–52. [Google Scholar] [CrossRef]
- Yun, Y.-H. Method of Selecting Calibration Samples. In Chemometric Methods in Analytical Spectroscopy Technology; Springer Nature: Singapore, 2022; pp. 297–308. [Google Scholar] [CrossRef]
- Xu, M.; Chu, X.; Fu, Y.; Wang, C.; Wu, S. Improving the Accuracy of Soil Organic Carbon Content Prediction Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Environ. Earth Sci. 2021, 80, 326. [Google Scholar] [CrossRef]
- Lucà, F.; Conforti, M.; Castrignanò, A.; Matteucci, G.; Buttafuoco, G. Effect of Calibration Set Size on Prediction at Local Scale of Soil Carbon by Vis-NIR Spectroscopy. Geoderma 2017, 288, 175–183. [Google Scholar] [CrossRef]
- Yousuf, M.F.; Mahmud, M.S.; Li, B.; Lei, Y.; Tao, H. A Novel In-Situ Method for Measuring Soil Organic Carbon Using Photoacoustic Sensor. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Kodaira, M.; Shibusawa, S. In-Situ Multiple Parameter Calibration and Mapping Using a Mobile Soil Sensor. Soil Sci. Plant Nutr. 2020, 66, 837–846. [Google Scholar] [CrossRef]
- Greenberg, I.; Seidel, M.; Vohland, M.; Ludwig, B. Performance of Field-scale Lab vs in Situ Visible/Near- and Mid-infrared Spectroscopy for Estimation of Soil Properties. Eur. J. Soil Sci. 2022, 73, e13180. [Google Scholar] [CrossRef]
- Qiao, X.-X.; Wang, C.; Feng, M.-C.; Yang, W.-D.; Ding, G.-W.; Sun, H.; Liang, Z.-Y.; Shi, C.-C. Hyperspectral Estimation of Soil Organic Matter Based on Different Spectral Preprocessing Techniques. Spectrosc. Lett. 2017, 50, 156–163. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Sensors 2017, 17, 2428. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Combining Mid Infrared Spectroscopy with Stacked Generalisation Machine Learning for Prediction of Key Soil Properties. Eur. J. Soil Sci. 2022, 73, e13323. [Google Scholar] [CrossRef]
- Lin, L.; Liu, X. Soil-Moisture-Index Spectrum Reconstruction Improves Partial Least Squares Regression of Spectral Analysis of Soil Organic Carbon. Precis. Agric. 2022, 23, 1707–1719. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hartemink, A.E.; Triantafilis, J.; Desai, A.R.; Soldat, D.; Zhu, J.; Townsend, P.A.; Zhang, Y.; Huang, J. Characterization of Field-Scale Soil Variation Using a Stepwise Multi-Sensor Fusion Approach and a Cost-Benefit Analysis. Catena 2021, 201, 105190. [Google Scholar] [CrossRef]
- Taylor, A.; Kalnins, A.; Koot, M.; Jackson, R.; Toloza, A.; Ahmed, H.S.; Goddard, R.; Blake, W.H. Portable Gamma Spectrometry for Rapid Assessment of Soil Texture, Organic Carbon and Total Nitrogen in Agricultural Soils. J. Soils Sediments 2023, 23, 2556–2563. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Lobsey, C.R.; Sharman, C.; Flick, P.; McLachlan, G. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition. Environ. Sci. Technol. 2017, 51, 5630–5641. [Google Scholar] [CrossRef] [PubMed]
- Tóth, B.; Tóth, T.; Hermann, T.; Tóth, G. Evaluating Methods of In-Field Soil Organic Matter Analysis. Commun. Soil Sci. Plant Anal. 2006, 37, 2471–2479. [Google Scholar] [CrossRef]
- Mills, R.; Glanville, H.; McGovern, S.; Emmett, B.; Jones, D.L. Soil Respiration across Three Contrasting Ecosystem Types: Comparison of Two Portable IRGA Systems. J. Plant Nutr. Soil Sci. 2011, 174, 532–535. [Google Scholar] [CrossRef]
- Joshi Gyawali, A.; Lester, B.J.; Stewart, R.D. Talking SMAAC: A New Tool to Measure Soil Respiration and Microbial Activity. Front. Earth Sci. 2019, 7, 138. [Google Scholar] [CrossRef]
- Gu, M.; Chen, J.; Zhang, Y.; Tan, T.; Wang, G.; Liu, K.; Gao, X.; Mei, J. Portable TDLAS Sensor for Online Monitoring of CO2 and H2O Using a Miniaturized Multi-Pass Cell. Sensors 2023, 23, 2072. [Google Scholar] [CrossRef] [PubMed]
- Brecheisen, Z.S.; Cook, C.W.; Heine, P.R.; Ryang, J.; Richter, D. deB. Development and Deployment of a Field-Portable Soil O2 and CO2 Gas Analyzer and Sampler. PLoS ONE 2019, 14, e0220176. [Google Scholar] [CrossRef] [PubMed]
- Sainju, U.M.; Caesar-TonThat, T.; Caesar, A. Comparison of Soil Carbon Dioxide Flux Measurements by Static and Portable Chambers in Various Management Practices. Soil Tillage Res. 2012, 118, 123–131. [Google Scholar] [CrossRef]
- Jensen, L.S.; Mueller, T.; Tate, K.R.; Ross, D.J.; Magid, J.; Nielsen, N.E. Soil Surface CO2 Flux as an Index of Soil Respiration in Situ: A Comparison of Two Chamber Methods. Soil Biol. Biochem. 1996, 28, 1297–1306. [Google Scholar] [CrossRef]
- Scudiero, E.; Berti, A.; Teatini, P.; Morari, F. Simultaneous Monitoring of Soil Water Content and Salinity with a Low-Cost Capacitance-Resistance Probe. Sensors 2012, 12, 17588–17607. [Google Scholar] [CrossRef]
- Reeves, J.B.; McCarty, G.W. Quantitative Analysis of Agricultural Soils Using near Infrared Reflectance Spectroscopy and a Fibre-Optic Probe. J. Near Infrared Spectrosc. 2001, 9, 25–34. [Google Scholar] [CrossRef]
- Angeletti da Fonseca, A.; Pasquini, C.; Cristina Costa, D.; Mercês Barros Soares, E. Effect of the Sample Measurement Representativeness on Soil Carbon Determination Using Near-Infrared Compact Spectrophotometers. Geoderma 2022, 409, 115636. [Google Scholar] [CrossRef]
- Fortuna, A.-M.; Starks, P.J.; Nelson, A.M.; Steiner, J.L. Prediction of Soil Carbon Fractions Using a Field Spectroradiometer Equipped with an Illuminating Contact Probe. Soil Syst. 2019, 3, 71. [Google Scholar] [CrossRef]
- Shonk, J.; Gaultney, L.; Schulze, D.; Vanscoyoc, G. Spectroscopic Sensing of Soil Organic-Matter Content. Trans. ASABE 1991, 34, 1978–1984. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Heller, D.; Chudnovsky, A. A Novel Method of Classifying Soil Profiles in the Field Using Optical Means. Soil Sci. Soc. Am. J. 2008, 72, 1113–1123. [Google Scholar] [CrossRef]
- Guy, A.L.; Siciliano, S.D.; Lamb, E.G. Spiking Regional Vis-NIR Calibration Models with Local Samples to Predict Soil Organic Carbon in Two High Arctic Polar Deserts Using a Vis-NIR Probe. Can. J. Soil Sci. 2015, 95, 237–249. [Google Scholar] [CrossRef]
- Gobrecht, A.; Roger, J.-M.; Bellon-Maurel, V. Major Issues of Diffuse Reflectance NIR Spectroscopy in the Specific Context of Soil Carbon Content Estimation. Adv. Agron. 2014, 123, 145–175. [Google Scholar] [CrossRef]
- Nielsen, C.K.; Thomsen, A.G. Local Calibration of TDR Measurements for Determining Water and Organic Carbon Contents of Peaty Soils. Soil Syst. 2023, 7, 10. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Shi, T.; Wang, J.; Hong, Y.; Fei, T.; Zhang, Y. The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy. Remote Sens. 2019, 11, 450. [Google Scholar] [CrossRef]
- Minu, S.; Shetty, A. Prediction Accuracy of Soil Organic Carbon from Ground Based Visible Near-Infrared Reflectance Spectroscopy. J. Indian. Soc. Remote Sens. 2018, 46, 697–703. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. An Evaluation of Different NIR-Spectral Pre-Treatments to Derive the Soil Parameters C and N of a Humus-Clay-Rich Soil. Sensors 2021, 21, 1423. [Google Scholar] [CrossRef]
- Zhou, P.; Sudduth, K.A.; Veum, K.S.; Li, M. Extraction of Reflectance Spectra Features for Estimation of Surface, Subsurface, and Profile Soil Properties. Comput. Electron. Agric. 2022, 196, 106845. [Google Scholar] [CrossRef]
- Seema; Ghosh, A.K.; Das, B.S.; Reddy, N. Application of VIS-NIR Spectroscopy for Estimation of Soil Organic Carbon Using Different Spectral Preprocessing Techniques and Multivariate Methods in the Middle Indo-Gangetic Plains of India. Geoderma Reg. 2020, 23, e00349. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the Soil Clay Content and Organic Matter by Means of Different Calibration Methods of Vis-NIR Diffuse Reflectance Spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Fu, Y.; Taneja, P.; Lin, S.; Ji, W.; Adamchuk, V.; Daggupati, P.; Biswas, A. Predicting Soil Organic Matter from Cellular Phone Images under Varying Soil Moisture. Geoderma 2020, 361, 114020. [Google Scholar] [CrossRef]
- Taneja, P.; Vasava, H.K.; Daggupati, P.; Biswas, A. Multi-Algorithm Comparison to Predict Soil Organic Matter and Soil Moisture Content from Cell Phone Images. Geoderma 2021, 385, 114863. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Vašát, R.; Bell, S.M.; Kebonye, N.M.; Klement, A.; John, K.; Borůvka, L. Prediction of Topsoil Organic Carbon Content with Sentinel-2 Imagery and Spectroscopic Measurements under Different Conditions Using an Ensemble Model Approach with Multiple Pre-Treatment Combinations. Soil Tillage Res. 2022, 220, 105379. [Google Scholar] [CrossRef]
- Bricklemyer, R.S.; Brown, D.J.; Turk, P.J.; Clegg, S. Comparing Vis–NIRS, LIBS, and Combined Vis–NIRS-LIBS for Intact Soil Core Soil Carbon Measurement. Soil Sci. Soc. Am. J. 2018, 82, 1482–1496. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, R.; Li, S.; Chen, S.; Jiang, Q.; Zhou, L.; Shi, Z. Multi-Sensor Fusion for the Determination of Several Soil Properties in the Yangtze River Delta, China. Eur. J. Soil Sci. 2019, 70, 162–173. [Google Scholar] [CrossRef]
- dos Santos Teixeira, A.F.; Andrade, R.; Mancini, M.; Silva, S.H.G.; Weindorf, D.C.; Chakraborty, S.; Guilherme, L.R.G.; Curi, N. Proximal Sensor Data Fusion for Tropical Soil Property Prediction: Soil Fertility Properties. J. South. Am. Earth Sci. 2022, 116, 103873. [Google Scholar] [CrossRef]
- Mahmood, H.S.; Hoogmoed, W.B.; Henten, E.J. Sensor Data Fusion to Predict Multiple Soil Properties. Precis. Agric. 2012, 13, 628–645. [Google Scholar] [CrossRef]
- Reeves, J.; McCarty, G.; Mimmo, T. The Potential of Diffuse Reflectance Spectroscopy for the Determination of Carbon Inventories in Soils. Environ. Pollut. 2002, 116, S277–S284. [Google Scholar] [CrossRef] [PubMed]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Viscarra Rossel, R.A.; Boruvka, L.; Klement, A. Spectroscopic Measurements and Imaging of Soil Colour for Field Scale Estimation of Soil Organic Carbon. Geoderma 2020, 357, 113972. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Wang, X.; Wang, H. Analyzing Errors Due to Measurement Positions and Sampling Locations for In Situ Measurements of Soil Organic Matter Using Vis-NIR Spectroscopy. Spectrosc. Spectr. Anal. 2020, 40, 3499–3507. [Google Scholar] [CrossRef]
- Piekarczyk, J.; Kaźmierowski, C.; Królewicz, S.; Cierniewski, J. Effects of Soil Surface Roughness on Soil Reflectance Measured in Laboratory and Outdoor Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 827–834. [Google Scholar] [CrossRef]
- Römer, C.; Rodionov, A.; Behmann, J.; Pätzold, S.; Welp, G.; Plümer, L. Quantifying Moisture and Roughness with Support Vector Machines Improves Spectroscopic Soil Organic Carbon Prediction. J. Plant Nutr. Soil Sci. 2014, 177, 845–847. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, C.; Lu, Y.; Shen, Q.; Zhao, H.; Tao, Y.; Pan, X. Evaluating the Characteristics of Soil Vis-NIR Spectra after the Removal of Moisture Effect Using External Parameter Orthogonalization. Geoderma 2020, 376, 114568. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of Soil Organic Carbon for Different Levels of Soil Moisture Using Vis-NIR Spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Seidel, M.; Vohland, M.; Greenberg, I.; Ludwig, B.; Ortner, M.; Thiele-Bruhn, S.; Hutengs, C. Soil Moisture Effects on Predictive VNIR and MIR Modeling of Soil Organic Carbon and Clay Content. Geoderma 2022, 427, 116103. [Google Scholar] [CrossRef]
- Cierniewski, J. Spectral Reflectance of Soil. In Springer Series in Light Scattering; Kokhanovsky, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 5, pp. 135–192. [Google Scholar] [CrossRef]
- Li, Q.; Guo, G.; Singh, B.P.; Li, L.; Hu, W.; Wang, H.; Li, Y. Associations of Soil Fe Oxides and Organic Carbon Vary in Different Aggregate Fractions under Warming. J. Soils Sediments 2023, 23, 2744–2755. [Google Scholar] [CrossRef]
- Rodionov, A.; Pätzold, S.; Welp, G.; Pude, R.; Amelung, W. Proximal Field Vis-NIR Spectroscopy of Soil Organic Carbon: A Solution to Clear Obstacles Related to Vegetation and Straw Cover. Soil Tillage Res. 2016, 163, 89–98. [Google Scholar] [CrossRef]
- Dijair, T.S.B.; Silva, F.M.; dos Santos Teixeira, A.F.; Silva, S.H.G.; Guilherme, L.R.G.; Curi, N. Correcting Field Determination of Elemental Contents in Soils via Portable X-Ray Fluorescence Spectrometry. Ciência Agrotecnologia 2020, 44, e002420. [Google Scholar] [CrossRef]
- Zhang, Y.; Biswas, A.; Ji, W.; Adamchuk, V.I. Depth-Specific Prediction of Soil Properties In Situ Using Vis-NIR Spectroscopy. Soil Sci. Soc. Am. J. 2017, 81, 993–1004. [Google Scholar] [CrossRef]
- Shahrayini, E.; Shafizadeh-Moghadam, H.; Noroozi, A.A.; Eghbal, M.K. Multiple-Depth Modeling of Soil Organic Carbon Using Visible–near Infrared Spectroscopy. Geocarto Int. 2022, 37, 1393–1407. [Google Scholar] [CrossRef]
- Coblinski, J.A.; Giasson, É.; Demattê, J.A.M.; Dotto, A.C.; Costa, J.J.F.; Vašát, R. Prediction of Soil Texture Classes through Different Wavelength Regions of Reflectance Spectroscopy at Various Soil Depths. Catena 2020, 189, 104485. [Google Scholar] [CrossRef]
- Peng, Y.; Knadel, M.; Gislum, R.; Deng, F.; Norgaard, T.; de Jonge, L.W.; Moldrup, P.; Greve, M.H. Predicting Soil Organic Carbon at Field Scale Using a National Soil Spectral Library. J. Near Infrared Spectrosc. 2013, 21, 213–222. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Argentati, I.; Holden, N.M. The Effect of Region of Interest Size on Model Calibration for Soil Organic Carbon Prediction from Hyperspectral Images of Prepared Soils. J. Near Infrared Spectrosc. 2011, 19, 161–170. [Google Scholar] [CrossRef]
- Conforti, M.; Buttafuoco, G. Insights into the Effects of Study Area Size and Soil Sampling Density in the Prediction of Soil Organic Carbon by Vis-NIR Diffuse Reflectance Spectroscopy in Two Forest Areas. Land 2022, 12, 44. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Demattê, J.A.M.; Kooistra, L.; Bartholomeus, H.; Rizzo, R.; Fongaro, C.T.; Molin, J.P. Effects of External Factors on Soil Reflectance Measured On-the-Go and Assessment of Potential Spectral Correction through Orthogonalisation and Standardisation Procedures. Soil Tillage Res. 2018, 177, 19–36. [Google Scholar] [CrossRef]
- Veum, K.S.; Parker, P.A.; Sudduth, K.A.; Holan, S.H. Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors 2018, 18, 3869. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Improved Estimates of Organic Carbon Using Proximally Sensed Vis-NIR Spectra Corrected by Piecewise Direct Standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Wang, S.; Han, P.; Song, H.; Liang, G.; Cheng, X. Application of Slope/Bias and Direct Standardization Algorithms to Correct the Effect of Soil Moisture for the Prediction of Soil Organic Matter Content Based on the Near Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 1986–1992. [Google Scholar]
- Roudier, P.; Hedley, C.B.; Lobsey, C.R.; Viscarra Rossel, R.A.; Leroux, C. Evaluation of Two Methods to Eliminate the Effect of Water from Soil Vis–NIR Spectra for Predictions of Organic Carbon. Geoderma 2017, 296, 98–107. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Removal of External Influences from On-Line Vis-NIR Spectra for Predicting Soil Organic Carbon Using Machine Learning. Catena 2022, 211, 106015. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Hu, B.; Li, S.; Chen, S.; Luo, D.; Peng, J. Predicting Soil Organic Carbon Content Using Simulated Insitu Spectra and Moisture Correction Algorithms in Southern Xinjiang, China. Geoderma Reg. 2024, 37, e00783. [Google Scholar] [CrossRef]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil Organic Carbon Assessment by Field and Airborne Spectrometry in Bare Croplands: Accounting for Soil Surface Roughness. Geoderma 2014, 226–227, 94–102. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, Y.; Yang, H.; Yang, Y.; Wu, Z. Effects of Different Particle Sizes on the Spectral Prediction of Soil Organic Matter. Catena 2021, 196, 104933. [Google Scholar] [CrossRef]
- Maleki, M.R.; Mouazen, A.M.; Ramon, H.; De Baerdemaeker, J. Multiplicative Scatter Correction during On-Line Measurement with Near Infrared Spectroscopy. Biosyst. Eng. 2007, 96, 427–433. [Google Scholar] [CrossRef]
- Lin, Z.D.; Wang, Y.B.; Wang, R.J.; Wang, L.S.; Lu, C.P.; Zhang, Z.Y.; Song, L.T.; Liu, Y. Improvements of the Vis-NIRS Model in the Prediction of Soil Organic Matter Content Using Spectral Pretreatments, Sample Selection, and Wavelength Optimization. J. Appl. Spectrosc. 2017, 84, 529–534. [Google Scholar] [CrossRef]
- Gobrecht, A.; Bendoula, R.; Roger, J.-M.; Bellon-Maurel, V. A New Optical Method Coupling Light Polarization and Vis–NIR Spectroscopy to Improve the Measurement of Soil Carbon Content. Soil Tillage Res. 2016, 155, 461–470. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Pellikka, P.; Luotamo, M.; Sädekoski, N.; Hietanen, J.; Vuorinne, I.; Räsänen, M.; Heiskanen, J.; Siljander, M.; Karhu, K.; Klami, A. Tropical Altitudinal Gradient Soil Organic Carbon and Nitrogen Estimation Using Specim IQ Portable Imaging Spectrometer. Sci. Total Environ. 2023, 883, 163677. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon Farming by Recarbonization of Agroecosystems. Pedosphere 2023, 33, 676–679. [Google Scholar] [CrossRef]
- McCole, M.; Bradley, M.; McCaul, M.; McCrudden, D. A Low-Cost Portable System for on-Site Detection of Soil PH and Potassium Levels Using 3D Printed Sensors. Results Eng. 2023, 20, 101564. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Biswas, A.; Huang, H.-H.; Holland, J.E.; Taylor, J.A.; Stenberg, B.; Wetterlind, J.; Singh, K.; Minasny, B.; Fidelis, C.; et al. Soil Sensing. In Sensing Approaches for Precision Agriculture; Springer: Cham, Switzerland, 2021; pp. 93–132. [Google Scholar] [CrossRef]
- Tola, E.; Al-Gaadi, K.A.; Madugundu, R.; Kayad, A.G.; Alameen, A.A.; Edrees, H.F.; Edrris, M.K. Determining Soil Organic Carbon Concentration in Agricultural Fields Using a Handheld Spectroradiometer: Implication for Soil Fertility Measurement. Int. J. Agric. Biol. Eng. 2018, 11, 13–19. [Google Scholar] [CrossRef]
- Lal, R. Soil Management for Carbon Sequestration. South Afr. J. Plant Soil 2021, 38, 231–237. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Josephson, C.; Barnhart, B.; Katti, S.; Winstein, K.; Chandra, R. RF Soil Moisture Sensing via Radar Backscatter Tags. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, NSW, Australia, 21–24 April 2020. [Google Scholar]
- Khan, U.M.; Shahzad, M. Estimating Soil Moisture Using RF Signals. In Proceedings of the 28th Annual International Conference on Mobile Computing and Networking, Sydney, NSW, Australia, 17–21 October 2022; ACM: New York, NY, USA, 2022; pp. 242–254. [Google Scholar] [CrossRef]
- Kerr, D.D.; Ochsner, T.E. Soil Organic Carbon More Strongly Related to Soil Moisture than Soil Temperature in Temperate Grasslands. Soil Sci. Soc. Am. J. 2020, 84, 587–596. [Google Scholar] [CrossRef]
- Heil, J.; Jörges, C.; Stumpe, B. Evaluation of Using Digital Photography as a Cost-Effective Tool for the Rapid Assessment of Soil Organic Carbon at a Regional Scale. Soil Secur. 2022, 6, 100023. [Google Scholar] [CrossRef]
- Gozukara, G.; Hartemink, A.E.; Zhang, Y. Illumination Levels Affect the Prediction of Soil Organic Carbon Using Smartphone-Based Digital Images. Comput. Electron. Agric. 2023, 204, 107524. [Google Scholar] [CrossRef]
- Chauhan, A.; Balpande, S. A Smartphone-Mediated System for Soil Organic Carbon Detection. Int. J. Next-Gener. Comput. 2021, 12, 666–672. [Google Scholar]
- Gorthi, S.; Swetha, R.K.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Dutta, S.; Banerjee, H.; Das, K.; Majumdar, K. Soil Organic Matter Prediction Using Smartphone-Captured Digital Images: Use of Reflectance Image and Image Perturbation. Biosyst. Eng. 2021, 209, 154–169. [Google Scholar] [CrossRef]
- Golicz, K.; Hallett, S.; Sakrabani, R.; Ghosh, J. Adapting Smartphone App Used in Water Testing, for Soil Nutrient Analysis. Comput. Electron. Agric. 2020, 175, 105532. [Google Scholar] [CrossRef]
- Klein, J. Yard Stick Provides Measurement Technology to Combat Climate Change. Available online: https://techcrunch.com/2021/02/17/yard-stick-provides-measurement-technology-to-combat-climate-change/ (accessed on 30 April 2024).
- Teralytic. Soil Probes to Soil Insight: How Your Data Gets from Your Farm to You. Available online: https://teralytic.com/how-it-works/ (accessed on 1 May 2024).
- Agrocares. AgroCares Nutrient Scanner. Available online: https://agrocares.com/scanners/ (accessed on 1 May 2024).
- Veris Technologies. The Perfect Platform for Every Operation. Available online: https://www.veristech.com/sensing (accessed on 1 May 2024).
- CropX. Field Data Management: Know to Grow. Available online: https://cropx.com/cropx-system/field-data/ (accessed on 1 May 2024).
- Turf-Tec International. Field Scout Digital Moisture Sensor (TDR 350). Available online: https://www.turf-tec.com/MSFS-TDR350.html (accessed on 1 May 2024).
Study | Country | Land Use | In Situ Approach | R (nm) | N | D (cm) | Reference Method | Preprocessing Technique | Calibration Model | Validation | R2 | RMSE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Murad et al. (2023) [48] | USA | Ag | FT-NIR | 1350–2500 | 270 | 0–5 | DC | EPO | SVM | 10-fold CV | 0.17–0.70 | 9.2–5 * |
Singha et al. (2023) [49] | India | Ag | VNIR | 350–2500 | 200 | 0–30 | WB | FD-SG and SD-SG | SVM | LOOCV | 0.84 | 0.12 |
Jia et al. (2023) [50] | Tibet | S.M and F | VNIR | 350–2500 | 85 | 0–30 | DC | FD + SG | LWR | Independent | 0.68 | 16.15 * |
Karyotis et al. (2023) [51] | Cyprus, Greece, Lithuania | Na | SWIR | 1750–2150 | 280 | 0–20 | WB | FD-SG and SNV | RF | Independent | 0.43 | 0.36 |
Murad et al. (2022) [52] | Australia | Ag | VNIR | 350–2500 | 33 | 0–90 | WB | EPO | Cubist | Independent | 0.86 | 0.36 |
Priori et al. (2022) [53] | Italy | Ag | FT-NIR | 1350–2500 | 182 | - | WB | - | PLSR | 10-fold CV | 0.82 | 0.34 |
VNIR | 350–2500 | 0.88 | 0.27 | |||||||||
VNIR | 1350–2500 | 0.78 | 0.37 | |||||||||
Semella et al. (2022) [54] | Germany | Ag | VNIR | 350–2500 | 75 | 0–25 | DC | - | PLSR | Monte Carlo CV (k = 100) | 0.89 | 2.57 * |
MIR | 2500–15,000 | 0.98 | 1.12 * | |||||||||
Vohland et al. (2022) [55] | Germany | Ag; F and semi-Na | VNIR and MIR | 400–2500 and 2500–15,000 | 186 | 0–5 | DC | PCHIP | PLSR | 10-fold CV | 0.78 | 0.24 |
Liu et al. (2021) [56] | China | Ag | VNIR | 350–2500 | 117 | 0–20 | WB | SG | PLSR | LOOCV | 0.77 | 0.09 |
Nawar et al. (2020) [57] | Belgium | Ag | VNIR | 305–1700 | 381 | 15–25 | DC | EPO | Cubist | Independent | 0.76 | 0.12 |
Chen et al. (2020) [58] | China | F, S.M. | VNIR | 350–2500 | 547 | 0–100 | DC | SG | MLP | 10-fold-CV | 0.92 | 6.22 * |
Hutengs et al. (2019) [22] | Germany | Ag | MIR | 2500 –15,000 | 90 | 0–5 | DC | MSC | PLSR | 10-fold CV | 0.63 | 0.17 |
Kusumo et al. (2011) [59] | New Zealand | Pa | VNIR | 350–2500 | 210 | 3.75–11.25 | DC | SG | PLSR | Independent | 0.75 | 1.21 * |
Sharififar et al. (2019) [27] | Australia | Ag and Pa | VNIR | 350–2500 | 232 | 100 | WB | SG& SNV | Cubist | 10-fold CV | 0.89 | 0.12 |
VNIR (Neo Spectra) | 1300–2500 | 0.78 | 0.16 | |||||||||
Nawar and Mouazen (2019) [60] | Yorkshire, UK | Ag | VNIR | 305–2200 | 139 | 0–15 | DC | SG | RF (Spiked) | - | 0.75 | 0.17 |
Crucil et al. (2019) [61] | UK | Ag | VNIR | 350–2500 | 96 | 0–2 | DC | SG | PLSR | LOOCV | 0.95 | 2.5 * |
Bricklemyer et al. (2011) [62] | Montana, USA | Ag | LIBS | 200–300 | 306 | 0–50 | DC | - | PLSR | Independent | 0.22 | 3.2 * |
Hutengs et al. (2018) [63] | Germany | Ag | MIR | 2500–15,000 | 40 | 0–5 | DC | DHR PCHIP | PLSR | 10-fold CV | 0.85 | 0.16 |
Gomez et al. (2008) [32] | Australia | Ag and Pa | VNIR | 350–2500 | 146 | 0–10 | MIR [64] | - | PLSR | LOOCV | 0.71 | 0.53 |
Hyperion hyperspectral RS | 400–2500 | 72 | 0.51 | 0.73 | ||||||||
Soriano-Disla et al. (2017) [65] | Australia | Ag | VNIR | 350–2500 | 458 | 0–180 | WB | SG | PLSR | LOOCV | 0.65 | 0.33 |
MIR | 2500–22,000 and 2500–13,000 | 0.67 | 0.31 | |||||||||
Wijewardane et al. (2016) [66] | USA | Ag, F, Pa, R, and W | VNIR | 350–2500 | 19,891 | - | DC | - | ANN | Independent | 0.96 | 3.61 * |
O’Rourke et al. (2016) [67] | Ireland | Pa, Ag, F, Pe | VNIR | 350–2500 | 322 | 0–10 | WB | SG + SNV | GRA | Independent | 0.79 | 3.17 * |
Jiang et al. (2016) [68] | China | Ag | VNIR | 350–2500 | 95 | 0–10 | DC | SG + OSC + GLSW | GLSW-PLSR | LOOCV | 0.77 | 0.08 |
Li et al. (2015) [69] | China | Ag, F | VNIR | 350–2500 | 413 | 0–100 | DC | SG + FD | LS-SVM | Independent | 0.81 | 8.40 * |
Wang et al. (2015) [70] | USA | Ag | VNIR | 350–2500 | 675 | 0–45 | DC | SG + FD | PSR | Independent | 0.88 | 0.2 |
Ji et al. (2016) [71] | China | Ag | VNIR | 350–2500 | 184 | 0–20 | DC | SG | LS-SVM | Independent | 0.79 | 2.95 * |
Cozzolino et al. (2013) [39] | Australia | Ag | VNIR | 350–1850 | 140 | 0–50 | DC | SG + SNV | PLSR | Independent | 0.74 | 0.03 |
Nocita et al. (2011) [31] | South Africa | Shrubs and trees (2–5 m) | VNIR | 400–2400 | 113 | 0–20 | WB | MSC + FD-SG | PLSR | Independent | 0.93 | 2.87 * |
Muñoz & Kravchenko (2011) [33] | Michigan, USA | Ag | NIR | 1100–2225 | 100 | 0–10 | DC | None | PLS-O | Independent | 0.46 (Adjusted) | 1.58 * |
Kuang et al. (2015) [72] | Denmark | Ag | VNIR | 305–2200 | 212 | 15–20 | DC | SG | ANN | Independent | 0.90 | 1.50 * |
Biney et al. (2022) [73] | Czech Republic | Ag | VNIR | 350–2500 | 57 | 0–15 | WB | SG + SNV + MSC | SVM | 5-fold CV | 0.72 | 0.21 |
Pei et al. (2019) [74] | Missouri, USA | Ag | VNIR | 343–2222 | 148 | 0–120 | DC | GS + SNV | PLSR | Random CV | 0.80 | 0.19 |
Method | Spectral Range (nm) | Benefits | Challenges | References |
---|---|---|---|---|
Visible and Near-Infrared Spectroscopy | 350–2500 | Rapid; low-cost; require little sample preparation; account for moisture and texture variations | Limited depth of measurement; sample size and variability | [80,81,82,83] |
Mid-Infrared Spectroscopy | 2500–25,000 | Suitability across different organic matter contents; simultaneous analysis of multiple soil properties; high throughput capability; depth-specific predictions | Requires sample preparation; reduced sensitivity in environments with high humidity; instrument cost | [21,84,85,86,87] |
Laser-Induced Breakdown Spectroscopy | 190–1000 | Rapid analysis (one minute per sample); minimal sample preparation | Spatial variability resulting from small-point sample measurements; instrument sensitivity decreases with the increase in carbon; matrix effects due to other soil elements; quantification issues due to spectral overlap; limited depth of measurement | [88,89,90,91,92,93] |
Inelastic Neutron Scattering | Gamma ray (approx. 0.01 nm or less) | Non-destructive; minimum sample preparation; provides multiple elements; large area scanning | Achieving precise depth resolution; instrument complexity; matrix effects, such as interactions between soil constituents and neutron beams | [94,95,96,97] |
Data Source | Analytical Approaches | Challenges |
---|---|---|
Satellite Imagery | Image classification, object-based image analysis (OBIA), change detection | Atmospheric interference, cloud cover, image resolution limitations |
Soil Characteristics | Soil sampling and laboratory analysis, soil databases | Spatial variability, limited soil data availability |
Land Classification | Land cover classification, land-use mapping | Classifying complex land cover types, integrating land-use change data |
Topographic Information | Digital elevation models (DEMs), slope and aspect analysis | Data resolution limitations, accuracy of DEMs |
Meteorological Data | Climate data interpolation, weather station data | Limited weather station coverage, missing data |
Spectroscopic Measurements | Spectral indices, regression models (e.g., PLSR) | Calibration and validation, spectral signature interpretation challenges |
Remote Sensing Data | Vegetation indices (e.g., NDVI), thermal infrared imagery, hyperspectral data | Sensor limitations, atmospheric correction, data integration issues |
Spatial Information | GIS overlay analysis, spatial interpolation, geostatistical techniques | Data incompatibility, uncertainty in interpolation, scale mismatch |
Machine Learning Algorithms | RF, SVM, ANN | Overfitting, model complexity, data requirements |
Spatial Analysis | Spatial autocorrelation analysis, hotspot analysis, spatial clustering | Spatial dependence, data clustering interpretation |
Device Name | Type | Spectral Range (nm) | Spectral Resolution (nm) | Manufacturer | Light Source | Detector | References |
---|---|---|---|---|---|---|---|
Agilent 4300 Handheld Spectrometer | Handheld FTIR Spectrometer | 2500–15,000 | 1.25 × 106 | Agilent, Santa Clara, CA, USA | QCL | DTGS | [63,179] |
Terra Spec 4 Hi-Res Mineral Spectrometer | Portable Near-Infrared Spectrometer | 350–1000 | 3–6 | PANalytical Boulder, USA | Halogen | 512 element silicon array | [99] |
VERIS P4000 soil profiler | Soil Electrical Conductivity Meter | 350–2200 | 8 | Veris Technologies, Salina, KS, USA | Halogen | CCD, InGaAs | [74] |
ASD FieldSpec3 Spectroradiometer | Portable Near-Infrared Spectrometer | 350–2500 | 3–6 | Analytical Spectral Devices, Boulder, CO, USA | Halogen lamp | Silicon-CCD | [69,180] |
Model SAS3000 Soil sensor | VNIR Spectrophotometer | 320–1700 | - | Shibuya Seiki Co., Ltd., Japan | Tungsten halogen lamp | Si-CCD | [178] |
Mobile CompactSpec | VNIR Spectrophotometer | 305–1700 | 1 | Tec5 Technology, Germany | Xe flash lamp; halogen | CCD | [57] |
Nirone sensor S2.2 | SWIR | 1750–2500 | 20 | Spectral Engines Steinbach, Germany | 2 tungsten vacuum lamps | InGaAs | [51] |
Neospectra Scanner | FT-NIR MEMS | 1350–2500 | 16 | Neospectra Si-Ware Systems (Menlo Park, CA, USA) | LED | InGaAs | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loria, N.; Lal, R.; Chandra, R. Handheld In Situ Methods for Soil Organic Carbon Assessment. Sustainability 2024, 16, 5592. https://doi.org/10.3390/su16135592
Loria N, Lal R, Chandra R. Handheld In Situ Methods for Soil Organic Carbon Assessment. Sustainability. 2024; 16(13):5592. https://doi.org/10.3390/su16135592
Chicago/Turabian StyleLoria, Nancy, Rattan Lal, and Ranveer Chandra. 2024. "Handheld In Situ Methods for Soil Organic Carbon Assessment" Sustainability 16, no. 13: 5592. https://doi.org/10.3390/su16135592
APA StyleLoria, N., Lal, R., & Chandra, R. (2024). Handheld In Situ Methods for Soil Organic Carbon Assessment. Sustainability, 16(13), 5592. https://doi.org/10.3390/su16135592