Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach
Abstract
:1. Introduction
1.1. Sustainability in the Wine Sector
1.2. Life Cycle Assessment
1.3. Life Cycle Inventory
1.4. Interpretation of Inventory Results
1.5. Material and Mass Flow
1.6. Carbon Footprint
2. Materials and Methods
3. Results and Discussion
3.1. Temporal Classification
References | Country | Functional Unit (UF) | Sustainability | System Boundary | ||
---|---|---|---|---|---|---|
Environmental | Social | Economic | ||||
Amienyo et al. (2014) [70] | Australia | 0.75 L | ✓ | X | ✓ | Cradle to grave |
Aranda et al. (2005) [71] | Spain | 0.75 L | ✓ | X | ✓ | Cradle to grave |
Ardente et al. (2006) [50] | Italy | 0.75 L | ✓ | X | X | Cradle to market |
Bellon-Maurel et al. (2015) [72] | France | 1 kg of grape | ✓ | X | X | Cradle to gate |
Benedetto et al. (2013) [73] | Italy | 0.75 L | ✓ | X | X | Cradle to gate |
Bonamente et al. (2016) [53] | Italy | 0.75 L | ✓ | X | X | Cradle to grave |
Bosco et al. (2011) [74] | Italy | 0.75 L | ✓ | X | X | Cradle to grave |
Casson et al. (2022) [75] | Italy | 1 ha | ✓ | X | ✓ | Cradle to gate |
Chiusano et al. (2015) [11] | Italy | 1 L | ✓ | X | X | Cradle to gate |
Cichelli et al. (2016) [76] | Italy | 1 ton of grape | ✓ | X | X | Cradle to gate |
Csiba-Herczeg et al. (2023) [77] | Hungary | Not identifiable | ✓ | X | X | Cradle to gate |
De Marco et al. (2015) [78] | Italy | 0.75 L | ✓ | X | X | Gate to gate |
Falcone et al. (2016) [79] | Italy | 1 kg of grape | ✓ | X | ✓ | Cradle to grave |
Ferrara et al. (2023) [80] | Italy | 3 L | ✓ | X | ✓ | Cradle to grave |
Ferrari et al. (2018) [81] | Italy | 566 t of grape | ✓ | X | X | Cradle to gate |
Fusi et al. (2014) [82] | Italy | 0.75 L | ✓ | X | ✓ | Cradle to gate |
García et al. (2023) [83] | Spain | 0.75 dm3 | ✓ | ✓ | ✓ | Cradle to grave |
Gazulla et al. (2010) [84] | Italy, Spain, Luxembourg | 0.75 L | ✓ | X | X | Cradle to grave or gate |
Hefler and Kissinger (2023) [85] | Israel | 1 ton of grape | ✓ | X | X | Cradle to gate |
Iannone et al. (2014) [86] | Italy | 0.75 L | ✓ | X | X | Cradle to gate |
Iannone et al. (2016) [87] | Italy | 0.75 L | ✓ | X | X | Gate to gate or grave |
Jiménez et al. (2013) [88] | Spain | 1 ha | ✓ | X | X | Cradle to grave |
Jradi et al. (2018) [47] | France | Not identifiable | ✓ | X | ✓ | Not identifiable |
Laca et al. (2020) [56] | Spain | 0.75 L | ✓ | X | X | Cradle to gate |
Letamendi et al. (2022) [89] | Chile | 0.75 L | ✓ | X | ✓ | Cradle to market |
Litskas et al. (2017) [90] | Cyprus | 1 kg of grape | ✓ | X | X | Vineyard to market |
Litskas et al. (2020) [91] | Cyprus | 0.75 L | ✓ | X | X | Vineyard to market |
Liu et al. (2023) [92] | China | 0.75 L | ✓ | X | X | Cradle to gate |
Martins et al. (2018) [46] | Portugal | 0.75 L | ✓ | X | ✓ | Gate to gate |
Masotti et al. (2022) [93] | Italy | 0.75 L | ✓ | X | X | Gate to gate |
Meneses et al. (2016) [49] | Spain | 0.75 L | ✓ | X | X | Cradle to grave |
Mura et al. (2023) [37] | Italy | 0.75 L | ✓ | X | ✓ | Cradle to gate |
Navarro et al. (2017) [94] | Italy, Spain | 0.75 L | ✓ | X | X | Cradle to gate |
Neto et al. (2013) [95] | Portugal | 0.75 L | ✓ | X | X | Cradle to market |
Notarnicola et al. (2015) [96] | Italy | 1000 L | ✓ | X | ✓ | Cradle to grave |
Pattara et al. (2012) [60] | Italy | 0.75 L | ✓ | X | X | Cradle to market |
Pizzigallo et al. (2008) [97] | Italy | 1 ton of wine | ✓ | X | X | Cradle to gate |
Point et al. (2012) [98] | Canada | 0.75 L | ✓ | X | X | Cradle to grave |
Recchia et al. (2018) [99] | Italy | 0.75 L | ✓ | X | X | Viticulture |
Rinaldi et al. (2016) [62] | Italy | 0.75 L | ✓ | X | X | Cradle to grave |
Ruggieri et al. (2009) [100] | Spain | 1 kg of N | ✓ | X | ✓ | End-of-life processes |
Russo et al. (2021) [101] | Africa | 1 kg of grape | ✓ | X | X | Viticulture |
Scrucca et al. (2019) [102] | Italy | 0.75 L | ✓ | X | X | Cradle to grave |
Sinisterra-Solís et al. (2023) [103] | Spain | 1 kg of grape | ✓ | X | ✓ | Viticulture |
Steenwerth et al. (2015) [104] | California | 1 ton of grape | ✓ | X | X | Vineyard to market |
Trombly and Fortier (2019) [105] | New York | 0.75 L | ✓ | X | X | Cradle to gate |
Vázquez-Rowe et al. (2012a) [45] | Spain | 0.75 L | ✓ | X | X | Cradle to gate |
Vázquez-Rowe et al. (2012b) [106] | Spain | 1.1 kg of grape | ✓ | X | ✓ | Not identifiable |
Vázquez-Rowe et al. (2013) [61] | Italy | 0.75 L | ✓ | X | X | Cradle to gate |
Vázquez-Rowe et al. (2017) [107] | Peru | 0.50 L | ✓ | X | X | Cradle to gate |
Vinci et al. (2022) [108] | Italy | 0.75 L | ✓ | X | X | Cradle to gate |
Wang et al. (2023) [109] | China | 1 ton of grape | ✓ | X | X | Cradle to gate |
Zhang and Rosentrater (2019) [110] | USA | 0.75 L | ✓ | X | ✓ | Cradle to grave |
3.2. Geographical Classification
3.3. Functional Unit (FU)
3.4. The Three Pillars of Sustainability
3.5. Circular Economy
3.6. System Boundary
References | Methodology | Inventory Database | Inventory Tables or Data | Questionnaire Available | Data Collection Interval |
---|---|---|---|---|---|
Amienyo et al. (2014) [70] | LCA | Ecoinvent | ✓ | X | n.s. |
Aranda et al. (2005) [71] | LCA | Various dataset | X | X | n.s. |
Ardente et al. (2006) [50] | LCA | Various dataset | ✓ | X | n.s. |
Bellon-Maurel et al. (2015) [72] | LCA | Ecoinvent v.2.2 | ✓ | X | per year |
Benedetto et al. (2013) [73] | LCA | EDIP | ✓ | X | n.s. |
Bonamente et al. (2016) [53] | LCA | Ecoinvent v.3.1 | ✓ | X | n.s. |
Bosco et al. (2011) [74] | LCA | Ecoinvent v.2 | ✓ | X | n.s. |
Casson et al. (2022) [75] | LCA | Ecoinvent v.3.6 | ✓ | X | 2 years |
Chiusano et al. (2015) [11] | LCA | n.a. | ✓ | X | 2 years |
Cichelli et al. (2016) [76] | LCA | n.a. | ✓ | X | per year |
Csiba-Herczeg et al. (2023) [77] | LCA | Ecoinvent v.3; USLCI | X | X | n.s. |
De Marco et al. (2015) [78] | LCA | Ecoinvent | ✓ | X | n.s. |
Falcone et al. (2016) [79] | LCA and LCC | Ecoinvent v.2.2 | ✓ | X | 3 years |
Ferrara et al. (2023) [80] | LCA and LCC | Ecoinvent v.3.8 | X | X | n.s. |
Ferrari et al. (2018) [81] | LCA | Ecoinvent | ✓ | X | n.s. |
Fusi et al. (2014) [82] | LCA | Ecoinvent v.2.2 | ✓ | X | 1–5 years |
García et al. (2023) [83] | LCA and LCC | Ecoinvent v.3.8 | ✓ | X | n.s. |
Gazulla et al. (2010) [84] | LCA | n.a. | ✓ | X | n.s. |
Hefler and Kissinger (2023) [85] | LCA | Ecoinvent v.3.9 | ✓ | X | 1 year |
Iannone et al. (2014) [86] | LCA | Ecoinvent | ✓ | X | n.s. |
Iannone et al. (2016) [87] | LCA | Ecoinvent | ✓ | X | n.s. |
Jiménez et al. (2013) [88] | LCA | n.a. | ✓ | X | n.s. |
Jradi et al. (2018) [47] | DEA | n.a. | ✓ | X | n.s. |
Laca et al. (2020) [56] | LCA | Ecoinvent v.3; Agri-footprint | ✓ | X | n.s. |
Letamendi et al. (2022) [89] | LCA | Ecoinvent v.3 | ✓ | X | 3 years |
Litskas et al. (2017) [90] | LCA | n.a. | ✓ | X | n.s. |
Litskas et al. (2020) [91] | LCA | n.a. | ✓ | X | 5 years |
Liu et al. (2023) [92] | LCA | CLCD v.0.8 | ✓ | X | n.s. |
Martins et al. (2018) [46] | LCA and EBITDA | Ecoinvent v.2 | ✓ | X | 3 years |
Masotti et al. (2022) [93] | LCA | Ecoinvent v.3 | ✓ | X | 1 year |
Meneses et al. (2016) [49] | LCA | Ecoinvent v.3.1 | ✓ | X | n.s. |
Mura et al. (2023) [37] | LCA and LCC | Literature; Ecoinvent | ✓ | X | 5 years |
Navarro et al. (2017) [94] | LCA | Ecoinvent; Thinkstep; ELCD | ✓ | ✓ | n.s. |
Neto et al. (2013) [95] | LCA | Ecoinvent v.2.2 | ✓ | X | 1 year |
Notarnicola et al. (2015) [96] | LCA | Ecoinvent | ✓ | X | 2 years |
Pattara et al. (2012) [60] | LCA and IWCC v.1.3 | ELCD | ✓ | X | n.s. |
Pizzigallo et al. (2008) [97] | LCA and Emergy | n.a. | ✓ | X | n.s. |
Point et al. (2012) [98] | LCA | Various dataset | ✓ | X | n.s. |
Recchia et al. (2018) [99] | LCA | Various dataset | ✓ | X | 2 years |
Rinaldi et al. (2016) [62] | LCA | Ecoinvent v.4 | ✓ | X | n.s. |
Ruggieri et al. (2009) [100] | LCA | Literature; Ecoinvent | ✓ | X | n.s. |
Russo et al. (2021) [101] | LCA | Ecoinvent v.3.6 | ✓ | X | 1 year |
Scrucca et al. (2019) [102] | LCA | Ecoinvent v.3 | ✓ | ✓ | n.s. |
Sinisterra-Solís et al. (2023) [103] | LCA | Ecoinvent v.3.8 | X | X | 8 years |
Steenwerth et al. (2015) [104] | LCA | Ecoinvent v.2.2; PEPD | ✓ | X | n.s. |
Trombly and Fortier (2019) [105] | LCA | Ecoinvent v.3; USLCI | X | X | n.s. |
Vázquez-Rowe et al. (2012a) [45] | LCA | Ecoinvent; ELCD | ✓ | X | 4 years |
Vázquez-Rowe et al. (2012b) [106] | LCA and DEA | Ecoinvent | ✓ | X | 1 year |
Vázquez-Rowe et al. (2013) [61] | LCA | EDIP | ✓ | X | n.s. |
Vázquez-Rowe et al. (2017) [107] | LCA | Ecoinvent v.3.1 | ✓ | ✓ | n.s. |
Vinci et al. (2022) [108] | LCA | Ecoinvent v.3.8 | ✓ | X | 1 year |
Wang et al. (2023) [109] | LCA | CLCD | ✓ | X | n.s. |
Zhang and Rosentrater (2019) [110] | LCA and TEA | n.a. | ✓ | X | n.s. |
3.7. Type of Methodology
3.8. Inventory Database
3.9. Inventory Tables or Data
3.10. Questionnaire Available
3.11. Data Collection Interval
3.12. Analysis Variables
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferrara, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for Recycling and Valorization of Grape Marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef] [PubMed]
- International Organization of Vine and Wine (OIV). State of the World Vine and Wine Sector, 24 April 2023. Available online: https://www.youtube.com/watch?v=WPWvFRczCg0&list=LL&index=2 (accessed on 25 June 2023).
- Plank, A.; Teichmann, K. A Facts Panel on Corporate Social and Environmental Behavior: Decreasing Information Asymmetries between Producers and Consumers through Product Labeling. J. Clean. Prod. 2018, 177, 868–877. [Google Scholar] [CrossRef]
- Bastianoni, S.; Marchettini, N.; Panzieri, M.; Tiezzi, E. Sustainability Assessment of a Farm in the Chianti Area (Italy). J. Clean. Prod. 2001, 9, 365–373. [Google Scholar] [CrossRef]
- Sogari, G.; Mora, C.; Menozzi, D. Sustainable Wine Labeling: A Framework for Definition and Consumers’ Perception. Agric. Agric. Sci. Procedia 2016, 8, 58–64. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Kara, S.; Røpke, I. Absolute Sustainability: Challenges to Life Cycle Engineering. CIRP Ann. 2020, 69, 533–553. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our common future (Report of the World Commission on Environment and Development). In Development and International Economic Co-Operation: Environment; UN General Assembly: New York, NY, USA, 1987; 374p. [Google Scholar]
- Moscovici, D.; Reed, A. Comparing Wine Sustainability Certifications around the World: History, Status and Opportunity. J. Wine Res. 2018, 29, 1–25. [Google Scholar] [CrossRef]
- Santini, C.; Cavicchi, A.; Casini, L. Sustainability in the Wine Industry: Key Questions and Research Trendsa. Agric. Econ. 2013, 1, 9. [Google Scholar] [CrossRef]
- Chiusano, L.; Cerutti, A.K.; Cravero, M.C.; Bruun, S.; Gerbi, V. An Industrial Ecology Approach to Solve Wine Surpluses Problem: The Case Study of an Italian Winery. J. Clean. Prod. 2015, 91, 56–63. [Google Scholar] [CrossRef]
- Gilinsky, A.; Newton, S.K.; Vega, R.F. Sustainability in the Global Wine Industry: Concepts and Cases. Agric. Agric. Sci. Procedia 2016, 8, 37–49. [Google Scholar] [CrossRef]
- De Steur, H.; Temmerman, H.; Gellynck, X.; Canavari, M. Drivers, Adoption, and Evaluation of Sustainability Practices in Italian Wine SMEs. Bus. Strat. Environ. 2020, 29, 744–762. [Google Scholar] [CrossRef]
- Dodds, R.; Graci, S.; Ko, S.; Walker, L. What Drives Environmental Sustainability in the New Zealand Wine Industry?: An Examination of Driving Factors and Practices. Int. J. Wine Bus. Res. 2013, 25, 164–184. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. OIV Guidelines for Sustainable Viticulture Adapted to Table Grapes and Raisins: Production, Storage, Drying, Processing and Packaging of Products; International Organization of Vine and Wine: Paris, France, 2011. [Google Scholar]
- van Calker, K.J.; Berentsen, P.B.M.; Romero, C.; Giesen, G.W.J.; Huirne, R.B.M. Development and Application of a Multi-Attribute Sustainability Function for Dutch Dairy Farming Systems. Ecol. Econ. 2006, 57, 640–658. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the Normative, Systemic and Procedural Dimensions in Indicator-Based Sustainability Assessments in Agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Global Reporting Initiative. G4 Sustainability Reporting Guidelines: Reporting Principles and Standard Disclosures; Global Reporting Initiative: Amsterdam, The Netherlands, 2013; pp. 7–14. [Google Scholar]
- Janker, J.; Mann, S. Understanding the Social Dimension of Sustainability in Agriculture: A Critical Review of Sustainability Assessment Tools. Environ. Dev. Sustain. 2020, 22, 1671–1691. [Google Scholar] [CrossRef]
- OECD. OECD Key Environmental Indicators; OECD: Paris, France, 2004. [Google Scholar]
- Berzi, L.; Dattilo, C.A.; Pero, F.D.; Delogu, M.; Gonzalez, M.I. Reduced Use of Rare Earth Elements for Permanent Magnet Generators: Preliminary Results from NEOHIRE Project. Procedia Struct. Integr. 2019, 24, 961–977. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Understanding Product Environmental Footprint and Organization Environmental Footprint Methods; Publications Office: Luxembourg, 2022. [Google Scholar]
- Gonçalves, A.; Silva, C. Looking for Sustainability Scoring in Apparel: A Review on Environmental Footprint, Social Impacts and Transparency. Energies 2021, 14, 3032. [Google Scholar] [CrossRef]
- Barni, A.; Capuzzimati, C.; Fontana, A.; Pirotta, M.; Hänninen, S.; Räikkönen, M.; Uusitalo, T. Design of a Lifecycle-Oriented Environmental and Economic Indicators Framework for the Mechanical Manufacturing Industry. Sustainability 2022, 14, 2602. [Google Scholar] [CrossRef]
- One Planet Network. UN Environment Programme (UNEP). Available online: https://www.oneplanetnetwork.org/sites/default/files/from-crm/InTex%2520-%252007272022.pdf (accessed on 9 June 2023).
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- ISO 14043; Environmental Management: Life Cycle Assessment: Life Cycle Interpretation. International Organization for Standardisation: Geneva, Switzerland, 2000.
- Merli, R.; Preziosi, M.; Acampora, A. Sustainability Experiences in the Wine Sector: Toward the Development of an International Indicators System. J. Clean. Prod. 2018, 172, 3791–3805. [Google Scholar] [CrossRef]
- Rugani, B.; Vázquez-Rowe, I.; Benedetto, G.; Benetto, E. A Comprehensive Review of Carbon Footprint Analysis as an Extended Environmental Indicator in the Wine Sector. J. Clean. Prod. 2013, 54, 61–77. [Google Scholar] [CrossRef]
- Ahmad, B. Integrated Biorefinery Approach to Valorize Winery Waste: A Review from Waste to Energy Perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef] [PubMed]
- Parra-Saldivar, R.; Bilal, M.; Iqbal, H.M.N. Life Cycle Assessment in Wastewater Treatment Technology. Curr. Opin. Environ. Sci. Health 2020, 13, 80–84. [Google Scholar] [CrossRef]
- Pinto da Silva, L.; Esteves da Silva, J.C.G. Evaluation of the Carbon Footprint of the Life Cycle of Wine Production: A Review. Clean. Circ. Bioeconomy 2022, 2, 100021. [Google Scholar] [CrossRef]
- Nitschelm, L.; Flipo, B.; Auberger, J.; Chambaut, H.; Dauguet, S.; Espagnol, S.; Gac, A.; Le Gall, C.; Malnoé, C.; Perrin, A.; et al. Life Cycle Assessment Data of French Organic Agricultural Products. Data Brief 2021, 38, 107356. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, M. Is There Mutual Methodology among the Environmental Impact Assessment Studies of Wine Production Chain? A Systematic Review. Sci. Total Environ. 2023, 857, 159531. [Google Scholar] [CrossRef]
- Casolani, N.; D’Eusanio, M.; Liberatore, L.; Raggi, A.; Petti, L. Life Cycle Assessment in the Wine Sector: A Review on Inventory Phase. J. Clean. Prod. 2022, 379, 134404. [Google Scholar] [CrossRef]
- Carroquino, J. Classification of Spanish Wineries According to Their Adoption of Measures against Climate Change. J. Clean. Prod. 2020, 244, 118874. [Google Scholar] [CrossRef]
- Mura, R.; Vicentini, F.; Botti, L.M.; Chiriacò, M.V. Economic and Environmental Outcomes of a Sustainable and Circular Approach: Case Study of an Italian Wine-Producing Firm. J. Bus. Res. 2023, 154, 113300. [Google Scholar] [CrossRef]
- Gladstones, J. Wine, Terroir and Climate Change; Wakefield Press: Adelaide, Australia, 2011; ISBN 978-1-86254-924-1. [Google Scholar]
- Mozell, M.R.; Thach, L. The Impact of Climate Change on the Global Wine Industry: Challenges & Solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Quinteiro, P.; Vázquez-Rowe, I.; Rafael, S.; Arroja, L.; Moreira, M.T.; Feijoo, G.; Dias, A.C. Assessing Water Footprint in a Wine Appellation: A Case Study for Ribeiro in Galicia, Spain. J. Clean. Prod. 2018, 172, 2097–2107. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Roșca, B. Climate Change Impact on Climate Suitability for Wine Production in Romania. Theor. Appl. Clim. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate Change, Viticulture, and Wine: Challenges and Opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Coulon-Leroy, C.; Quénol, H. Spatial Complexity and Temporal Dynamics in Viticulture: A Review of Climate-Driven Scales. Agric. For. Meteorol. 2019, 276–277, 107618. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Iribarren, D.; Teresa Moreira, M.; Feijoo, G. Joint Life Cycle Assessment and Data Envelopment Analysis of Grape Production for Vinification in the Rías Baixas Appellation (NW Spain). J. Clean. Prod. 2012, 27, 92–102. [Google Scholar] [CrossRef]
- Martins, A.A. Towards Sustainable Wine: Comparison of Two Portuguese Wines. J. Clean. Prod. 2018, 183, 662–676. [Google Scholar] [CrossRef]
- Jradi, S.; Chameeva, T.B.; Delhomme, B.; Jaegler, A. Tracking Carbon Footprint in French Vineyards: A DEA Performance Assessment. J. Clean. Prod. 2018, 192, 43–54. [Google Scholar] [CrossRef]
- Payen, F.T. Soil Organic Carbon Sequestration Rates in Vineyard Agroecosystems under Different Soil Management Practices: A Meta-Analysis. J. Clean. Prod. 2021, 290, 125736. [Google Scholar] [CrossRef]
- Meneses, M.; Torres, C.M.; Castells, F. Sensitivity Analysis in a Life Cycle Assessment of an Aged Red Wine Production from Catalonia, Spain. Sci. Total Environ. 2016, 562, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Ardente, F.; Beccali, G.; Cellura, M.; Marvuglia, A. POEMS: A Case Study of an Italian Wine-Producing Firm. Environ. Manag. 2006, 38, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Borsato, E.; Giubilato, E.; Zabeo, A.; Lamastra, L.; Criscione, P.; Tarolli, P.; Marinello, F.; Pizzol, L. Comparison of Water-Focused Life Cycle Assessment and Water Footprint Assessment: The Case of an Italian Wine. Sci. Total Environ. 2019, 666, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, F.; Bartocci, P.; D’Alessandro, B.; Testarmata, F.; Fantozzi, P. Carbon Footprint of Truffle Sauce in Central Italy by Direct Measurement of Energy Consumption of Different Olive Harvesting Techniques. J. Clean. Prod. 2015, 87, 188–196. [Google Scholar] [CrossRef]
- Bonamente, E.; Scrucca, F.; Rinaldi, S.; Merico, M.C.; Asdrubali, F.; Lamastra, L. Environmental Impact of an Italian Wine Bottle: Carbon and Water Footprint Assessment. Sci. Total Environ. 2016, 560–561, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Lamastra, L.; Balderacchi, M.; Di Guardo, A.; Monchiero, M.; Trevisan, M. A Novel Fuzzy Expert System to Assess the Sustainability of the Viticulture at the Wine-Estate Scale. Sci. Total Environ. 2016, 572, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Ponstein, H.J.; Meyer-Aurich, A.; Prochnow, A. Greenhouse Gas Emissions and Mitigation Options for German Wine Production. J. Clean. Prod. 2019, 212, 800–809. [Google Scholar] [CrossRef]
- Laca, A.; Gancedo, S.; Laca, A.; Díaz, M. Assessment of the Environmental Impacts Associated with Vineyards and Winemaking. A Case Study in Mountain Areas. Environ. Sci. Pollut. Res. 2021, 28, 1204–1223. [Google Scholar] [CrossRef] [PubMed]
- D’Ammaro, D.; Capri, E.; Valentino, F.; Grillo, S.; Fiorini, E.; Lamastra, L. A Multi-Criteria Approach to Evaluate the Sustainability Performances of Wines: The Italian Red Wine Case Study. Sci. Total Environ. 2021, 799, 149446. [Google Scholar] [CrossRef] [PubMed]
- D’Ammaro, D.; Capri, E.; Valentino, F.; Grillo, S.; Fiorini, E.; Lamastra, L. Benchmarking of Carbon Footprint Data from the Italian Wine Sector: A Comprehensive and Extended Analysis. Sci. Total Environ. 2021, 779, 146416. [Google Scholar] [CrossRef] [PubMed]
- Tsalidis, G.A.; Kryona, Z.-P.; Tsirliganis, N. Selecting South European Wine Based on Carbon Footprint. Environ. Sustain. 2022, 9, 100066. [Google Scholar] [CrossRef]
- Pattara, C.; Raggi, A.; Cichelli, A. Life Cycle Assessment and Carbon Footprint in the Wine Supply-Chain. Environ. Manag. 2012, 49, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping Carbon Footprint Variations in the European Wine Sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Rinaldi, S.; Bonamente, E.; Scrucca, F.; Merico, M.; Asdrubali, F.; Cotana, F. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study. Sustainability 2016, 8, 621. [Google Scholar] [CrossRef]
- Röös, E.; Sundberg, C.; Tidåker, P.; Strid, I.; Hansson, P.-A. Can Carbon Footprint Serve as an Indicator of the Environmental Impact of Meat Production? Ecol. Indic. 2013, 24, 573–581. [Google Scholar] [CrossRef]
- Ecoinvent. Impact Assessment. Swiss Centre for Life Cycle Inventory, CH. 2022. Available online: https://ecoinvent.org/the-ecoinvent-database/impact-assessment/ (accessed on 5 August 2023).
- Intergovernmental Panel on Climate Change (IPCC). Warming of the Climate System is Unequivocal. In Report on Climate Change 2013: The Physical Science Basis–Summary for Policymakers, Observed Changes in the Climate System; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change: The IPCC Scientific Assessment 1990; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Derwent, R.G. Global Warming Potential (GWP) for Hydrogen: Sensitivities, Uncertainties and Meta-Analysis. Int. J. Hydrogen Energy 2023, 48, 8328–8341. [Google Scholar] [CrossRef]
- Weidema, B.P.; Thrane, M.; Christensen, P.; Schmidt, J.; Løkke, S. Carbon Footprint: A Catalyst for Life Cycle Assessment? J. Ind. Ecol. 2008, 12, 3–6. [Google Scholar] [CrossRef]
- Marques, A.; Teixeira, C.A. Vine and Wine Sustainability in a Cooperative Ecosystem—A Review. Agronomy 2023, 13, 2644. [Google Scholar] [CrossRef]
- Amienyo, D.; Camilleri, C.; Azapagic, A. Environmental Impacts of Consumption of Australian Red Wine in the UK. J. Clean. Prod. 2014, 72, 110–119. [Google Scholar] [CrossRef]
- Aranda, A.; Zabalza, I.; Scarpellini, S. Economic and Environmental Analysis of the Wine Bottle Production in Spain by Means of Life Cycle Assessment. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 178. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Peters, G.M.; Clermidy, S.; Frizarin, G.; Sinfort, C.; Ojeda, H.; Roux, P.; Short, M.D. Streamlining Life Cycle Inventory Data Generation in Agriculture Using Traceability Data and Information and Communication Technologies–Part II: Application to Viticulture. J. Clean. Prod. 2015, 87, 119–129. [Google Scholar] [CrossRef]
- Benedetto, G. The Environmental Impact of a Sardinian Wine by Partial Life Cycle Assessment. Wine Econ. Policy 2013, 2, 33–41. [Google Scholar] [CrossRef]
- Bosco, S.; Di Bene, C.; Galli, M.; Remorini, D.; Massai, R.; Bonari, E. Greenhouse Gas Emissions in the Agricultural Phase of Wine Production in the Maremma Rural District in Tuscany, Italy. Ital. J. Agron. 2011, 6, 15. [Google Scholar] [CrossRef]
- Casson, A.; Ortuani, B.; Giovenzana, V.; Brancadoro, L.; Corsi, S.; Gharsallah, O.; Guidetti, R.; Facchi, A. A Multidisciplinary Approach to Assess Environmental and Economic Impact of Conventional and Innovative Vineyards Management Systems in Northern Italy. Sci. Total Environ. 2022, 838, 156181. [Google Scholar] [CrossRef] [PubMed]
- Cichelli, A.; Pattara, C.; Petrella, A. Sustainability in Mountain Viticulture. The Case of the Valle Peligna. Agric. Agric. Sci. Procedia 2016, 8, 65–72. [Google Scholar] [CrossRef]
- Csiba-Herczeg, Á.; Koteczki, R.; Lukács, B.; Balassa, B.E. Case Study-Based Scenario Analysis Comparing GHG Emissions of Wine Packaging Types. Clean. Eng. Technol. 2023, 15, 100649. [Google Scholar] [CrossRef]
- De Marco, I.; Raffaele, I.; Salvatore, M.; Riemma, S. Reduction of Carbon Dioxide Emissions during the Vinification Stages of a White Wine Produced in Italy. Chem. Eng. Trans. 2015, 43, 2173–2178. [Google Scholar] [CrossRef]
- Falcone, G.; De Luca, A.; Stillitano, T.; Strano, A.; Romeo, G.; Gulisano, G. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis. Sustainability 2016, 8, 793. [Google Scholar] [CrossRef]
- Ferrara, C.; Migliaro, V.; Ventura, F.; De Feo, G. An Economic and Environmental Analysis of Wine Packaging Systems in Italy: A Life Cycle (LC) Approach. Sci. Total Environ. 2023, 857, 159323. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.M.; Pini, M.; Sassi, D.; Zerazion, E.; Neri, P. Effects of grape quality on the environmental profile of an Italian vineyard for Lambrusco red wine production. J. Clean. Prod. 2018, 172, 3760–3769. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the Environmental Aspect of a Sardinian White Wine: From Partial to Total Life Cycle Assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- García García, J.; García Castellanos, B.; García García, B. Economic and Environmental Assessment of the Wine Chain in Southeastern Spain. Agronomy 2023, 13, 1478. [Google Scholar] [CrossRef]
- Gazulla, C.; Raugei, M.; Fullana-i-Palmer, P. Taking a Life Cycle Look at Crianza Wine Production in Spain: Where Are the Bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Hefler, Y.T.; Kissinger, M. Grape Wine Cultivation Carbon Footprint: Embracing a Life Cycle Approach across Climatic Zones. Agriculture 2023, 13, 303. [Google Scholar] [CrossRef]
- Iannone, R.; Miranda, S.; Riemma, S.; De Marco, I. Life Cycle Assessment of Red and White Wines Production in Southern Italy. Chem. Eng. Trans. 2014, 39, 595–600. [Google Scholar] [CrossRef]
- Iannone, R.; Miranda, S.; Riemma, S.; De Marco, I. Improving Environmental Performances in Wine Production by a Life Cycle Assessment Analysis. J. Clean. Prod. 2016, 111, 172–180. [Google Scholar] [CrossRef]
- Jiménez, E.; Martínez, E.; Blanco, J.; Pérez, M.; Graciano, C. Methodological Approach towards Sustainability by Integration of Environmental Impact in Production System Models through Life Cycle Analysis: Application to the Rioja Wine Sector. SIMULATION 2014, 90, 143–161. [Google Scholar] [CrossRef]
- Letamendi, J.; Sevigne-Itoiz, E.; Mwabonje, O. Environmental Impact Analysis of a Chilean Organic Wine through a Life Cycle Assessment. J. Clean. Prod. 2022, 371, 133368. [Google Scholar] [CrossRef]
- Litskas, V.D.; Irakleous, T.; Tzortzakis, N.; Stavrinides, M.C. Determining the Carbon Footprint of Indigenous and Introduced Grape Varieties through Life Cycle Assessment Using the Island of Cyprus as a Case Study. J. Clean. Prod. 2017, 156, 418–425. [Google Scholar] [CrossRef]
- Litskas, V.D.; Tzortzakis, N.; Stavrinides, M.C. Determining the Carbon Footprint and Emission Hotspots for the Wine Produced in Cyprus. Atmosphere 2020, 11, 463. [Google Scholar] [CrossRef]
- Liu, J.; Li, C.; Qu, Y.; Jia, Z.; Li, J. Comparative Life Cycle Assessment of the Linear and Circular Wine Industry Chains: A Case Study in Inner Mongolia, China. Environ. Sci. Pollut. Res. 2023, 30, 87645–87658. [Google Scholar] [CrossRef] [PubMed]
- Masotti, P.; Zattera, A.; Malagoli, M.; Bogoni, P. Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy. Sustainability 2022, 14, 6281. [Google Scholar] [CrossRef]
- Navarro, A.; Puig, R.; Fullana-i-Palmer, P. Product vs Corporate Carbon Footprint: Some Methodological Issues. A Case Study and Review on the Wine Sector. Sci. Total Environ. 2017, 581–582, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Neto, B.; Dias, A.C.; Machado, M. Life Cycle Assessment of the Supply Chain of a Portuguese Wine: From Viticulture to Distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A. Environmental and Technical Improvement of a Grape Must Concentration System via a Life Cycle Approach. J. Clean. Prod. 2015, 89, 87–98. [Google Scholar] [CrossRef]
- Pizzigallo, A.C.I.; Granai, C.; Borsa, S. The Joint Use of LCA and Emergy Evaluation for the Analysis of Two Italian Wine Farms. J. Environ. Manag. 2008, 86, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Point, E.; Tyedmers, P.; Naugler, C. Life Cycle Environmental Impacts of Wine Production and Consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Recchia, L.; Sarri, D.; Rimediotti, M.; Boncinelli, P.; Cini, E.; Vieri, M. Towards the Environmental Sustainability Assessment for the Viticulture. J. Agric. Eng. 2018, 49, 19–28. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of Organic Wastes in the Spanish Wine Industry. Technical, Economic and Environmental Analyses of the Composting Process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef]
- Russo, V.; Strever, A.E.; Ponstein, H.J. Exploring Sustainability Potentials in Vineyards through LCA? Evidence from Farming Practices in South Africa. Int. J. Life Cycle Assess. 2021, 26, 1374–1390. [Google Scholar] [CrossRef]
- Scrucca, F.; Baldassarri, C.; Baldinelli, G.; Bonamente, E.; Rinaldi, S.; Rotili, A.; Barbanera, M. Uncertainty in LCA: An Estimation of Practitioner-Related Effects. J. Clean. Prod. 2020, 268, 122304. [Google Scholar] [CrossRef]
- Sinisterra-Solís, N.K.; Sanjuán, N.; Ribal, J.; Estruch, V.; Clemente, G. From Farm Accountancy Data to Environmental Indicators: Assessing the Environmental Performance of Spanish Agriculture at a Regional Level. Sci. Total Environ. 2023, 894, 164937. [Google Scholar] [CrossRef] [PubMed]
- Steenwerth, K.L.; Strong, E.B.; Greenhut, R.F.; Williams, L.; Kendall, A. Life Cycle Greenhouse Gas, Energy, and Water Assessment of Wine Grape Production in California. Int. J. Life Cycle Assess. 2015, 20, 1243–1253. [Google Scholar] [CrossRef]
- Trombly, A.J.; Fortier, M.-O.P. Carbon Footprint of Wines from the Finger Lakes Region in New York State. Sustainability 2019, 11, 2945. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Moreira, M.T.; Feijoo, G. Environmental Analysis of Ribeiro Wine from a Timeline Perspective: Harvest Year Matters When Reporting Environmental Impacts. J. Environ. Manag. 2012, 98, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Rowe, I.; Cáceres, A.L.; Torres-García, J.R.; Quispe, I.; Kahhat, R. Life Cycle Assessment of the Production of Pisco in Peru. J. Clean. Prod. 2017, 142, 4369–4383. [Google Scholar] [CrossRef]
- Vinci, G.; Prencipe, S.A.; Abbafati, A.; Filippi, M. Environmental Impact Assessment of an Organic Wine Production in Central Italy: Case Study from Lazio. Sustainability 2022, 14, 15483. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Sun, T.; Milne, E.; Yang, Y.; Liu, K.; Li, J.; Yan, P.; Zhao, C.; Li, S.; et al. Environmental Impact of Organic and Conventional Wine Grape Production, a Case Study from Wuwei Wine Region, Gansu Province, China. Ecol. Indic. 2023, 154, 110730. [Google Scholar] [CrossRef]
- Zhang, C.; Rosentrater, K.A. Estimating Economic and Environmental Impacts of Red-Wine-Making Processes in the USA. Fermentation 2019, 5, 77. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Pieroni, M.P.P.; McAloone, T.C.; Pigosso, D.C.A. Business Model Innovation for Circular Economy and Sustainability: A Review of Approaches. J. Clean. Prod. 2019, 215, 198–216. [Google Scholar] [CrossRef]
- Lüdeke-Freund, F.; Gold, S.; Bocken, N.M.P. A Review and Typology of Circular Economy Business Model Patterns. J. Ind. Ecol. 2019, 23, 36–61. [Google Scholar] [CrossRef]
- Quick, R.; Brouder, A.; International Council of Chemical Associations. Handbook of Transnational Economic Governance Regimes; Brill Nijhoff: Leiden, The Netherlands, 2010; pp. 1055–1062. [Google Scholar]
Article Title, Abstract, Key Terms | Number of Scopus Documents Located | Number of Science Direct Documents Located |
---|---|---|
(“Life Cycle Assessment” OR LCA) AND “Wine” | 150 | 180 |
(“Life Cycle Assessment” OR LCA) AND “Inventory” AND “Wine” | 28 | 75 |
(“Global Warming Potential” OR GWP) AND “Wine” AND “Carbon footprint” | 10 | 56 |
“Sustainability” AND (“Life Cycle Assessment” OR LCA) AND “Wine” | 55 | 137 |
Carbon Footprint/Functional Unit (0.75 L) | |||
---|---|---|---|
References | Red Wines | White Wines | Red and White Wines |
Amienyo et al. (2014) [70] | 1.25 kg CO2-eq | ||
Ardente et al. (2006) [50] | 1.60 kg CO2-eq | ||
Benedetto et al. (2013) [73] | 1.64 kg CO2-eq | ||
Bonamente et al. (2016) [53] | 1.07 ± 0.09 kg CO2-eq | ||
Bosco et al. (2011) [74] | [0.60–1.30] kg CO2-eq | ||
De Marco et al. (2015) [78] | 0.10 kg CO2-eq | ||
Fusi et al. (2014) [82] | 1.01 kg CO2-eq | ||
Gazulla et al. (2010) [84] | 0.93 kg CO2-eq | ||
Iannone et al. (2014) [86] | [0.18–1.28] kg CO2-eq | ||
Iannone et al. (2016) [87] | [0.07–0.99] kg CO2-eq | ||
Laca et al. (2020) [56] | 2.35 kg CO2-eq | ||
Letamendi et al. (2022) [89] | 2.94 kg CO2-eq | ||
Litskas et al. (2020) [91] | 1.31 kg CO2-eq | ||
Masotti et al. (2022) [93] | [0.51–0.91] kg CO2-eq | ||
Meneses et al. (2016) [49] | 0.95 kg CO2-eq | ||
Mura et al. (2023) [37] | 0.86 kg CO2-eq | ||
Navarro et al. (2017) [94] | 0.85 kg CO2-eq | ||
Neto et al. (2013) [95] | 2.0 kg CO2-eq | ||
Pattara et al. (2012) [60] | 0.78 kg CO2-eq | ||
Point et al. (2012) [98] | 3.22 kg CO2-eq | ||
Rinaldi et al. (2016) [62] | [1.38; 1.43] kg CO2-eq | ||
Trombly and Fortier (2019) [105] | [0.62; 1.03] kg CO2-eq | ||
Vázquez-Rowe et al. (2012b) [106] | [1.65–3.21] kg CO2-eq | ||
Vázquez-Rowe et al. (2013) [61] | [1.13–3.77] kg de CO2-eq | ||
Vázquez-Rowe et al. (2017) [107] | [1.70–4.00] kg CO2-eq | ||
Vinci et al. (2022) [109] | 1.10 kg CO2-eq | ||
Zhang and Rosentrater (2019) [110] | 1.09 kg CO2-eq |
References | Grape Variety |
---|---|
Bellon-Maurel et al. (2015) [72] | Syrah |
Bosco et al. (2011) [74] | Sangiovese |
Cichelli et al. (2016) [76] | Montepulciano, Trebbiano, Pecorino, Incrocio Manzoni, Syrah, Primitivo di Manduria |
Fusi et al. (2014) [82] | Cannonau, Monica, Carignano, Vermentino |
Litskas et al. (2017) [90] | Xynisteri, Cabernet Sauvignon, Thompson Seedless |
Masotti et al. (2022) [93] | Ribolla Gialla, Friulano, Verduzzo, Malvasia Istriana |
Meneses et al. (2016) [49] | Cabernet Sauvignon and Tempranillo |
Pattara et al. (2012) [60] | Montepulciano |
Point et al. (2012) [98] | Chardonnay, Pinot Noir |
Recchia et al. (2018) [99] | Sangiovese |
Trombly and Fortier (2019) [105] | Riesling |
Vázquez-Rowe et al. (2013) [61] | Cannonau and Vermentino |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, M.; Ferreira, F.; Oliveira, A.A.; Pinto, T.; Teixeira, C.A. Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach. Sustainability 2024, 16, 5613. https://doi.org/10.3390/su16135613
Guerra M, Ferreira F, Oliveira AA, Pinto T, Teixeira CA. Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach. Sustainability. 2024; 16(13):5613. https://doi.org/10.3390/su16135613
Chicago/Turabian StyleGuerra, Mariana, Fátima Ferreira, Ana Alexandra Oliveira, Teresa Pinto, and Carlos A. Teixeira. 2024. "Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach" Sustainability 16, no. 13: 5613. https://doi.org/10.3390/su16135613
APA StyleGuerra, M., Ferreira, F., Oliveira, A. A., Pinto, T., & Teixeira, C. A. (2024). Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach. Sustainability, 16(13), 5613. https://doi.org/10.3390/su16135613