Sea Level Variability Assessment along the African Coast
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- Permanent Service for Mean Sea Level (PSMSL). This service provides time series of sea level measurements from tide gauges, reduced as Revised Local Reference (RLR) data, with each station having a different time span of data [37]. Data were accessed on 25 November 2021.
- Copernicus Marine Environment Monitoring Service (CMEMS)—Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing (Id: SEALEVEL_GLO_PHY_L4_MY_008_047). This service provides daily sea level anomalies, with a temporal extent of 1 January 1993–31 December 2021 and a spatial resolution of 0.25° × 0.25° (Level 4 gridded product) [38]. Data were accessed on 3 April 2022.
- Copernicus Marine Environment Monitoring Service (CMEMS)—Global Ocea Ensemble Physics Reanalysis (Id: GLOBAL_REANALYSIS_PHY_001_031). This service provides monthly variables of the sea water salinity and sea water temperature, with a temporal extent of 1 January 1993–31 December 2021 and a spatial resolution of 0.25° × 0.25° (Level-4 gridded product) [38]. Data were accessed on 3 April 2022.
- Copernicus Marine Environment Monitoring Service (CMEMS)—Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD (Id: MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012). This service provides monthly variables of the sea water salinity and sea water temperature, with a temporal extent of 1 January 1993–31 December 2022 and a spatial resolution of 0.25° × 0.25° (Level-4 gridded product) [38]. Data were accessed in 15 September 2023.
- NOAA Physical Sciences Laboratory (NOAA PSL). This service provides the long-term mean monthly wind velocities (Gridded product: NCEP-NCAR Reanalysis 1—vwnd.mon.ltm.1991-2020.nc), with a spatial resolution of 2.50° × 2.50° [39]. Data were accessed on 18 December 2023.
4. Results and Validation
4.1. Trends of Sea Level Changes
4.2. Amplitudes of Sea Level Changes
4.3. Wind Analysis
4.4. Seawater Salinity and Seawater Potential Temperature
4.5. Potential Impact Factors for Sea Level Changes—Correlation Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, O.B.; Knudsen, P.; Stenseng, L. A new DTU18 MSS mean sea surface improvement from SAR altimetry. In Proceedings of the 25 Years of Progress in Radar Altimetry Symposium, Ponta Delgada, Portugal, 24–29 September 2018. [Google Scholar]
- Cazenave, A.; Dieng, H.B.; Meyssignac, B.; Schuckmann, K.V.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Change 2014, 4, 358–361. [Google Scholar] [CrossRef]
- Niu, Y.; Guo, J.; Yuan, J.; Zhu, C.; Zhou, M.; Liu, X.; Ji, B. Prediction of sea level change in Japanese coast using singular spectrum analysis and autoregression moving average. Chin. J. Geophys. 2020, 63, 3263–3274. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; Van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, C.; Deconto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Dong, W.S.; Ismailluddin, A.; Yun, L.S.; Ariffin, E.H.; Saengsupavanich, C.; Abdul Maulud, K.N.; Ramli, M.Z.; Miskon, M.F.; Jeofry, M.H.; Mohamed, J.; et al. The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon 2024, 10, e25609. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change 2022; Cambridge University Press: Cambridge, UK, 2022; p. 755. [Google Scholar] [CrossRef]
- Prasad, D.; Kumar, N. Coastal Erosion Studies—A Review. Int. J. Geosci. 2014, 5, 341–345. [Google Scholar] [CrossRef]
- Zulfakar, M.S.Z.; Ariffin, E.H.; Akhir, M.F.; Awang, N.A. Variation of Seasonal Monsoon Wave-Driven Circulation Pattern in the Lee of Groyne in Kuala Nerus beach. IOP Conf. Ser. Earth Environ. Sci. 2021, 698, 012042. [Google Scholar] [CrossRef]
- Shariful, F.; Sedrati, M.; Ariffin, E.H.; Md Shubri, S.; Akhir, M.F. Impact of 2019 tropical storm (Pabuk) on beach morphology, Terengganu coast (Malaysia). J. Coast. Res. 2020, 95, 346–350. [Google Scholar] [CrossRef]
- Saengsupavanich, C. Elevated Water Level from Wind along the Gulf of Thailand. Thalassas 2017, 33, 179–185. [Google Scholar] [CrossRef]
- Cao, W.; Wong, M.H. Current status of coastal zone issues and management in China. Environ. Int. 2007, 33, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Jing, K.; Zhiguo, G.; Yunzhong, J.; Wanghao, A. Current Study on Estuarine Coastal Ecological Environment and Its Development. Procedia Eng. 2012, 28, 171–177. [Google Scholar] [CrossRef]
- Saengsupavanich, C.; Chonwattana, S.; Naimsampao, N. Coastal erosion through integrated management. A Case South. Thail. Ocean Coast. Manag. 2009, 52, 307–316. [Google Scholar] [CrossRef]
- Goda, Y. Random Seas and Design of Maritime Structures. Advanced Series on Ocean Engineering; Word Scientific: Singapore, 2000; Volume 15, ISBN 978-981-02-3256-6. [Google Scholar] [CrossRef]
- Rattanapitikon, W.; Shibayama, T. Energy Dissipation Model for Computing Transformation of Spectral Significant Wave Height. Coast. Eng. J. 2010, 52, 305–330. [Google Scholar] [CrossRef]
- Cazenave, A.; Cabanes, C.; Dominh, K.; Gennero, M.; Le Provost, C. Present-Day Sea Level Change: Observations and Causes. Space Sci. Rev. 2003, 108, 131–144. [Google Scholar] [CrossRef]
- Voosen, P. Seas are rising faster than ever. Science 2020, 370, 901. [Google Scholar] [CrossRef] [PubMed]
- Cazenave, A.; Llovel, W. Contemporary SLR. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Ji, Y.; Xiao, K.; Lin, M.; Zhang, X. Analysis of Global Sea Level Change Based on Multi-Source Data. Remote Sens. 2022, 14, 4854. [Google Scholar] [CrossRef]
- Oraz Hsiao, Y.S.; Hwang, C.; Chen, T.W.; Cho, Y.H. Assessing Models of Sea Level Rise and Mean Sea Surface with Sentinel-3B and Jason-3 Altimeter Data near Taiwan: Impacts of Data Quality and Length. Remote Sens. 2023, 15, 3640. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.M. Intergovernmental Panel on Climate Change. Climate Change 2007, The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the IPCC 2007; Cambridge University Press: Cambridge, UK, 2007; Volume 499–587, pp. 434–497. [Google Scholar]
- Wunsch, C.; Ponte, R.M.; Heimbach, P. Decadal trends in Sea Level Patterns: 1993–2004. J. Clim. 2007, 20, 5889–5991. [Google Scholar] [CrossRef]
- Milne, G.; Gehrels, W.R.; Hughes, C.W.; Tamisiea, M.E. Identifying the causes of sea-level change. Nat. Geosci. 2009, 2, 471–478. [Google Scholar] [CrossRef]
- Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res. 2008, 113, C6. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Ponte, R.; Heimbach, P.; Wunsch, C. The mean seasonal cycle in sea level estimated from a data-constrained general circulation model. J. Geophys. Res. 2008, 113, C03032. [Google Scholar] [CrossRef]
- García, D.; Chao, B.F.; Del Río, J.; Vigo, I.; García-Lafuente, J. On the steric and mass-induced contributions to the annual sea level variations in the Mediterranean Sea. J. Geophys. Res. 2006, 111, C09030. [Google Scholar] [CrossRef]
- Su, C.P. Sea Level Variations Inferred from GRACE, Altimetry and Thermohaline Data. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2019. [Google Scholar]
- Guo, J.; Wang, J.; Hu, Z.; Hwang, C.; Chen, C.; Gao, Y. Temporal-spatial variations of sea-level over China seas derived from altimeter data of TOPEX/Poseidon, Jason-1 and Jason-2 from 1993 to 2012. Chin. J. Geophys. 2015, 58, 3103–3120. [Google Scholar]
- Dapeng, M.; Yan, H. The instantaneous rate of global mean sea-level rise. Chin. J. Geophys. 2018, 61, 4758–4766. [Google Scholar]
- Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 February 2024).
- Orme, A.R. Africa, coastal morphology. In Beaches and Coastal Geology; Encyclopedia of Earth Sciences Series; Springer: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H.; Dokken, D.J. Chapter 2 Africa. In Special Report of IPCC Working Group II. The Regional Impacts of Climate Change, An Assessment of Vulnerability; Cambridge University Press: Cambridge, UK, 1997; p. 517. ISBN 0-521-634555. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Allison, L.C.; Palmer, M.D.; Haigh, I.D. Projections of 21st century sea level rise for the coast of South Africa. Environ. Res. Commun. 2022, 4, 025001. [Google Scholar] [CrossRef]
- Pająk, K.; Idzikowska, M.; Kowalczyk, K. Relationship of Satellite Altimetry Data, and Bathymetry Observations on the West Coast of Africa. J. Mar. Sci. Eng. 2023, 11, 149. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2012, 29, 493–504. [Google Scholar] [CrossRef]
- CMEMS. Available online: https://data.marine.copernicus.eu/products (accessed on 15 September 2023).
- NOAA Physical Sciences Laboratory (NOAA PSL). Available online: https://psl.noaa.gov/ (accessed on 18 December 2023).
- Pająk, K.; Kowalczyk, K. A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data. Adv. Space Res. 2019, 63, 1768–1780. [Google Scholar] [CrossRef]
- Kowalczyk, K.; Pajak, K.; Wieczorek, B.; Naumowicz, B. An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens. 2021, 13, 2173. [Google Scholar] [CrossRef]
- Gommenginger, C.; Thibaut, P.; Fenoglio, L.; Quartly, G.; Deng, X.; Gomez-Enri, J.; Challenor, P.; Gao, Y. Coastal Altimetry; Springer: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 1–564. ISBN 978-3-642-12795-3. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Mitrovica, J.X. The Moving Boundaries of Sea Level Change: Understanding the Origins of Geographic Variability. Oceanography 2011, 24, 24–39. [Google Scholar] [CrossRef]
- Pajak, K.; Kowalczyk, K.; Kaminskis, J.; Idzikowska, M. Studying the Sensitivity of Satellite Altimetry, Tide Gauge and GNSS Observations to Changes in Vertical Displacements. Geomat. Environ. Eng. 2021, 15, 45–58. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, Z.; Xian, G.; Li, C. A novel regression method for harmonic analysis of time series. ISPRS J. Photogramm. Remote Sens. 2022, 185, 48–61. [Google Scholar] [CrossRef]
- Lan, W.H.; Kuo, C.Y.; Lin, L.C.; Kao, H.C. Annual Sea Level Amplitude Analysis over the North Pacific Ocean Coast by Ensemble Empirical Mode Decomposition Method. Remote Sens. 2021, 13, 730. [Google Scholar] [CrossRef]
- Shao, Q.; Zhao, J. Comparing the steric height in the Nordic Seas with satellite altimeter sea surface height. Acta Oceanol. Sin. 2015, 34, 32–37. [Google Scholar] [CrossRef]
- Ishii, M.; Kimoto, M.; Sakamoto, K.; Iwasaki, S.I. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr. 2006, 62, 155–170. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere—Ocean Dynamics; Academic Press: Cambridge, MA, USA, 1982; Volume 30, pp. 1–593. ISBN 0074-6142. [Google Scholar]
- Abessolo, G.O.; Almar, R.; Angnuureng, D.B.; Bonou, F.; Sohou, Z.; Camara, I.; Diouf, A.; Alory, G.; Onguéné, R.; Mama, A.C.; et al. African coastal camera network efforts at monitoring ocean, climate, and human impacts. Sci. Rep. 2023, 13, 1514. [Google Scholar] [CrossRef] [PubMed]
- Ankrah, J.; Monteiro, A.; Madureira, H. Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation. Geosciences 2023, 13, 59. [Google Scholar] [CrossRef]
- Saengsupavanich, C. Successful Coastal Protection by Step Concrete Revetments in Thailand. IOP Conf. Ser. Earth Environ. Sci. 2022, 1072, 012002. [Google Scholar] [CrossRef]
- Portillo Juan, N.; Negro Valdecantos, V.; del Campo, J.M. Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain. Sustainability 2022, 14, 7507. [Google Scholar] [CrossRef]
- Brown, S.; Kebede, A.S.; Nicholls, R.J. Sea-Level Rise and Impacts in Africa, 2000 to 2100; Technical Report; University of Southampton: Southampton, UK, 2011. [Google Scholar]
- Nhantumbo, B.J.; Dada, O.A.; Ghomsi, E.K. Sea Level Rise and Climate Change—Impacts on African Coastal Systems and Cities; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Ponte, R.M. Annual cycle in coastal sea level from tide gauges and altimetry. J. Geophys. Res. Oceans 2010, 115, C04021. [Google Scholar] [CrossRef]
- Dufau, C.; Martin-Puig, C.; Moreno, L. User Requirements in the Coastal Ocean for Satellite Altimetry. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 51–60. ISBN 978-3-642-12796-0. [Google Scholar] [CrossRef]
- López-García, P.; Gómez-Enri, J.; Muñoz-Pérez, J. Accuracy assessment of wave data from altimeter near the coast. Ocean Eng. 2019, 178, 229–232. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Xu, K.; Xu, Y.; Shi, L.W. Coastal Altimetry: A Promising Technology for the Coastal Oceanography Community. In Estuaries and Coastal Zones—Dynamics and Response to Environmental Changes; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Marti, F.; Cazenave, A.; Birol, F.; Passaro, M.; Léger, F.; Niño, F.; Almar, R.; Benveniste, J.; Legeais, J.F. Altimetry-based sea level trends along the coasts of Western Africa. Adv. Space Res. 2021, 68, 504–522. [Google Scholar] [CrossRef]
- Piecuch, C.G.; Bittermann, K.; Kemp, A.C.; Ponte, R.M.; Little, C.M.; Engelhart, S.E.; Lentz, S.J. River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc. Natl. Acad. Sci. USA 2018, 115, 7729–7734. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Piecuch, C.G.; Becker, M.; Papa, F.; Raju, S.V.; Khan, J.U.; Ponte, R.M. Impact of Continental Freshwater Runoff on Coastal Sea Level. Surv. Geophys. 2019, 40, 1437–1466. [Google Scholar] [CrossRef]
- Melet, A.; Meyssignac, B.; Almar, R.; Le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Change 2018, 8, 234–239. [Google Scholar] [CrossRef]
- Frihy, O.E. The Nile Delta-Alexandria Coast: Vulnerability to sea-level rise, consequences and adaptation. Mitig. Adapt. Strateg. Glob. Change 2003, 8, 115–138. [Google Scholar] [CrossRef]
- Woodworth, P.; Foden, P.; Jones, D.; Pugh, J.; Holgate, S.; Hibbert, A.; Blackman, D.; Bellingham, C.; Roussenov, V.; Williams, R. Sea level changes at Ascension Island in the last half century. Afr. J. Mar. Sci. 2012, 34, 443–452. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Aman, A.; Aarup, T. Sea level monitoring in Africa. Afr. J. Mar. Sci. 2007, 29, 321–330. [Google Scholar] [CrossRef]
- Mendes, V.B.; Barbosa, S.M.; Romero, I.; Madeira, J.; Brum da Silveira, A. Vertical land motion and sea level change in Macronesia. Geophys. J. Int. 2017, 210, 1264–1280. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Raucoules, D.; Wöppelmann, G.; Garcin, M.; Da Sylva, S.; Meyssignac, B.; Gravelle, M.; Lavigne, F. Vertical ground motion and historical sea-level records in Dakar (Senegal). Environ. Res. Lett. 2015, 10, 084016. [Google Scholar] [CrossRef]
- SONEL. Available online: https://www.sonel.org (accessed on 15 September 2023).
- Wahl, T.; Calafat, F.M.; Luther, M.E. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century. Geophys. Res. Lett. 2014, 41, 491–498. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, J.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S.; et al. Forcing Factors Affecting Sea Level Changes at the Coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef]
Section | TG Station | R2 TG Data | R2 SA Data | R2 SA Data— Harmonic Analyses |
---|---|---|---|---|
Section 1 | ALEXANDRIA | 0.069 | 0.169 | 0.261 |
PORT SAID | 0.040 | 0.156 | 0.265 | |
Section 3 | LAMU B | 0.225 | 0.318 | 0.705 |
MOMBASA II | 0.005 | 0.364 | 0.835 | |
ZANZIBAR | 0.080 | 0.448 | 0.950 | |
POINT LA RUE | 0.348 | 0.119 | 0.694 | |
Section 4b | DZAOUDZI | 0.001 | 0.136 | 0.746 |
NOSY BE | 0.190 | 0.370 | 0.822 | |
PORT LOUIS | 0.026 | 0.219 | 0.637 | |
RODRIGUES IS | 0.002 | 0.173 | 0.682 | |
POINTE DES GALETS | 0.234 | 0.276 | 0.796 | |
Section 4a | RICHARDS BAY | 0.064 | 0.136 | 0.746 |
DURBAN | 0.015 | 0.120 | 0.784 | |
PORT ELIZABETH | 0.310 | 0.154 | 0.566 | |
KNYSNA | 0.018 | 0.184 | 0.510 | |
MOSSEL BAY | 0.097 | 0.196 | 0.644 | |
SIMONS BAY | 0.250 | 0.436 | 0.947 | |
TABLE BAY HARBOUR | 0.383 | 0.413 | 0.923 | |
CAPE TOWN | 0.259 | 0.413 | 0.922 | |
SALAMANDER | 0.260 | 0.539 | 0.943 | |
Section 5 | PORT NOLLOTH | 0.036 | 0.573 | 0.917 |
LUDERITZ | 0.141 | 0.489 | 0.788 | |
WALVIS BAY | 0.218 | 0.516 | 0.811 | |
Section 6 | POINTE NOIRE | 0.007 | 0.221 | 0.318 |
JAMESTOWN LANDING STEPS | 0.007 | - | - | |
TEMA | 0.059 | 0.248 | 0.315 | |
TAKORADI | 0.322 | 0.182 | 0.237 | |
ENGLISH BAY (ASCENSION ISLAND) | 0.112 | 0.318 | 0.487 | |
DAKAR | 0.049 | 0.162 | 0.188 | |
PALMEIRA | 0.200 | 0.480 | 0.706 | |
Section 7 | ARRECIFE | 0.030 | 0.356 | 0.465 |
FUERTEVENTURA | 0.056 | 0.338 | 0.447 | |
ARINAGA | 0.606 | 0.341 | 0.477 | |
LAS PALMAS | 0.307 | 0.366 | 0.454 | |
TENERIFE | 0.131 | 0.278 | 0.345 | |
LA GOMERA | 0.150 | 0.245 | 0.343 | |
HIERRO | 0.192 | 0.306 | 0.429 | |
LA PALMA | 0.081 | 0.359 | 0.488 | |
FUNCHAL | 0.055 | 0.319 | 0.433 | |
FUNCHAL B | 0.113 | 0.316 | 0.443 | |
MELILLA | 0.019 | 0.197 | 0.300 | |
CEUTA | 0.191 | 0.137 | 0.206 |
Annual Amplitudes | |
---|---|
Wind in Section 1 | 0.17 |
Wind in Section 2 | 0.83 |
Wind in Section 3 | −0.46 |
Wind in Section 4a | −0.75 |
Wind in Section 4b | −0.80 |
Wind in Section 5 | 0.59 |
Wind in Section 6 | −0.52 |
Wind in Section 7 | 0.21 |
Section | Sea Level Change Trend [mm/Year] | Wind Velocity [m/s] | Harmonic Function Trend, SA [mm/Year] | Salinity Trend [1e−3/year] | Temperature Trend [Degrees Celsius/Year] |
---|---|---|---|---|---|
1 | SA trend Harmonic function trend (SA) | −0.75 −0.69 | 0.99 | 0.73 | 0.78 |
0.69 | 0.70 | ||||
2 | SA trend Harmonic function trend (SA) | 0.46 0.31 | 0.98 | 0.72 | −0.26 |
0.59 | −0.06 | ||||
3 | SA trend Harmonic function trend (SA) | −0.38 −0.27 | 0.98 | −0.66 | 0.17 |
−0.64 | 0.16 | ||||
4a | SA trend Harmonic function trend (SA) | −0.23 0.18 | 0.66 | −0.40 | 0.49 |
−0.78 | 0.71 | ||||
4b | SA trend Harmonic function trend (SA) | 0.10 0.01 | 0.91 | −0.21 −0.11 | −0.12 0.00 |
5 | SA trend Harmonic function trend (SA) | −0.63 −0.83 | 0.93 | 0.65 0.75 | −0.41 −0.49 |
6 | SA trend Harmonic function trend (SA) | −0.20 −0.13 | 0.97 | −0.12 −0.12 | −0.24 −0.25 |
7 | SA trend Harmonic function trend (SA) | −0.02 0.05 | 0.94 | 0.19 0.21 | 0.31 0.29 |
Correlation/RMSE | Harmonic Function Trend (SA) [mm/Year] | TG Trend [mm/Year] | Salinity Trend [1e−3/year] | Temperature Trend [Degrees Celsius/Year] | Wind Velocity [m/s] |
---|---|---|---|---|---|
SA Trend [mm/year] | 0.98/0.01 | −0.18/0.32 | −0.07/0.55 | 0.30/0.56 | 0.18/0.05 |
Harmonic Function Trend SA [mm/year] | −0.19/0.55 | −0.10/0.54 | 0.37/0.31 | 0.13/0.60 | |
TG Trend [mm/year] | −0.02/0.24 | −0.03/0.24 | −0.44/0.30 |
Section | Median SA Data/Standard Error | Kurtosis SA Data | Skewness SA Data | Variance SA Data |
---|---|---|---|---|
Section 1 | 3.56/0.08 | −0.86 | −0.52 | 0.15 |
Section 2 | 3.66/0.09 | −2.80 | −0.69 | 2.43 |
Section 3 | 4.02/0.06 | −0.323 | 0.512 | 0.168 |
Section 4 | 3.48/0.08 | −0.752 | 0.858 | 0.618 |
Section 5 | 3.11/0.03 | −1.465 | 0.241 | 0.048 |
Section 6 | 3.46/0.07 | −0.157 | −0.258 | 0.142 |
Section 7 | 3.34/0.05 | 0.233 | 0.192 | 0.110 |
TG STATION | Allison L.C. et al. [35] | Sonel [69] | In Work | |||
---|---|---|---|---|---|---|
SA [mm/yr] | TG [mm/yr] | SA [mm/yr] | TG [mm/yr] | SA [mm/yr] | TG [mm/yr] | |
PORT NOLLOTH | 3.25 (1993–2018) | 3.37 (1993–2018) | 3.26 ± 0.01 (1993–2021) | 2.11 ± 0.81 (2001–2015) | ||
SIMONS BAY | 3.05 (1993–2018) | 4.63 (1993–2018) | 3.18 ± 0.01 (1993–2021) | 1.19 ± 0.08 (1958–2018) | ||
MOSEL BAY | 2.69 (1993–2018) | 9.92 (1993–2018) | 2.76 ± 0.02 (1993–2021) | 0.80 ± 0.09 (1959–2018) | ||
KNYSNA | 2.59 (1993–2018) | 2.97 (1993–2018) | 3.12 ± 0.03 (1993–2021) | 1.61 ± 0.99 (2007–2018) | ||
PORT ELIZABETH | 2.99 (1993–2018) | −0.21 (1993–2018) | 3.48 ± 0.03 (1993–2021) | 3.23 ± 0.23 (1982–2018) | ||
DURBAN | 3.83 (1993–2018) | 3.87 (1993–2018) | 3.47 ± 0.02 (1993–2021) | 0.54 ± 0.18 (1971–2018) | ||
RICHARDS BAY | 3.48 (1993–2018) | 2.75 (1993–2018) | 3.29 ± 0.02 (1993–2021) | 2.64 ± 0.67 (2000–2018) | ||
ZANZIBAR | 3.34 ± 0.35 (1993–2015) | 3.61 ± 0.49 (1993–2012) | 4.56 ± 0.01 (1993–2021) | 1.49 ± 0.26 (1986–2016) | ||
LAS PALMAS | 3.36 ± 0.31 (1993–2015) | 3.85 ± 0.33 (1993–2014) | 3.08 ± 0.03 (1993–2021) | 2.28 ± 0.15 (1975–2018) | ||
DZAOUDZI | 2.17 ± 0.70 (1993–2015) | 3.82 ± 0.95 (1993–2012) | 3.72 ± 0.04 (1993–2021) | −1.20 ± 4.78 (2009–2017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajak, K.; Idzikowska, M.; Kowalczyk, K. Sea Level Variability Assessment along the African Coast. Sustainability 2024, 16, 5661. https://doi.org/10.3390/su16135661
Pajak K, Idzikowska M, Kowalczyk K. Sea Level Variability Assessment along the African Coast. Sustainability. 2024; 16(13):5661. https://doi.org/10.3390/su16135661
Chicago/Turabian StylePajak, Katarzyna, Magdalena Idzikowska, and Kamil Kowalczyk. 2024. "Sea Level Variability Assessment along the African Coast" Sustainability 16, no. 13: 5661. https://doi.org/10.3390/su16135661
APA StylePajak, K., Idzikowska, M., & Kowalczyk, K. (2024). Sea Level Variability Assessment along the African Coast. Sustainability, 16(13), 5661. https://doi.org/10.3390/su16135661