Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data
2.2.1. Landsat Archive
2.2.2. LULC Data
2.2.3. Climatic Data
2.3. Calculating Indicator of Wetland Ecosystem Functioning
2.3.1. Generating the Observed NDVI Time Series
2.3.2. Generating the Simulated NDVI Time Series
2.3.3. Calculating NDVI-I
2.4. Influence of LULC Class and Number of Cloud-Free Landsat Observations on NDVI-I Accuracy
2.5. Correlation between NDVI-I and Climate Data
3. Results
3.1. CCDC Sensitivity
3.2. Spatiotemporal Dynamics of NDVI-I
3.3. Relationship between NDVI-I Temporal Trends and Climate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Pirttimysvuoma | Marais Vernier | Ouled Saïd | Taiamã ES | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
194/12 | 195/12 | 196/12 | 197/12 | 200/26 | 201/25 | 201/26 | 196/40 | 197/39 | 197/40 | 222/72 | |
L4–5 TM | 106 | 61 | 96 | 110 | 222 | 342 | 237 | 426 | 352 | 365 | 344 |
L7 ETM+ | 143 | 139 | 137 | 128 | 237 | 332 | 245 | 318 | 331 | 330 | 419 |
L8–9 OLI/TIRS | 73 | 87 | 79 | 104 | 129 | 197 | 149 | 198 | 197 | 198 | 166 |
References
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland Ecosystem Services Research: A Critical Review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive Global Wetland Loss over the Past Three Centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Ramsar Convention on Wetlands Scaling Up Wetland Conservation, Wise Use and Restoration to Achieve the Sustainable Developmenct Goals. 2018. Available online: https://ramsar.org/sites/default/files/documents/library/cop12_res02_strategic_plan_e_0.pdf (accessed on 17 July 2024).
- CBD Secretariat. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets; Secretariat of the Convention on Biological Diversity: Nagoya, Japan, 2010. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. In Outcome Document for the UN Summit to Adopt the Post-2015 Development Agenda; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Viñuales, J.E. The Paris Agreement on Climate Change. Ger. YB Int’l L 2016, 59, 11. [Google Scholar]
- Geijzendorffer, I.R.; Beltrame, C.; Chazee, L.; Gaget, E.; Galewski, T.; Guelmami, A.; Perennou, C.; Popoff, N.; Guerra, C.A.; Leberger, R.; et al. A More Effective Ramsar Convention for the Conservation of Mediterranean Wetlands. Front. Ecol. Evol. 2019, 7, 21. [Google Scholar] [CrossRef]
- Lock, M.C.; Skidmore, A.K.; van Duren, I.; Mücher, C.A. Evidence-Based Alignment of Conservation Policies with Remote Sensing-Enabled Essential Biodiversity Variables. Ecol. Indic. 2021, 132, 108272. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Bino, G.; Finlayson, C.M.; Falster, D.; Fitzsimons, J.A.; Gawlik, D.E.; Murray, N.J.; Grillas, P.; Gardner, R.C.; Regan, T.J.; et al. Ramsar Wetlands of International Importance–Improving Conservation Outcomes. Front. Environ. Sci. 2021, 9, 643367. [Google Scholar] [CrossRef]
- Jones, K.; Lanthier, Y.; van der Voet, P.; van Valkengoed, E.; Taylor, D.; Fernandez-Prieto, D. Monitoring and Assessment of Wetlands Using Earth Observation: The GlobWetland Project. J. Environ. Manag. 2009, 90, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Weise, K.; Höfer, R.; Franke, J.; Guelmami, A.; Simonson, W.; Muro, J.; O’Connor, B.; Strauch, A.; Flink, S.; Eberle, J.; et al. Wetland Extent Tools for SDG 6.6.1 Reporting from the Satellite-Based Wetland Observation Service (SWOS). Remote Sens. Environ. 2020, 247, 111892. [Google Scholar] [CrossRef]
- MacKay, H.; Finlayson, C.M.; Fernandez-Prieto, D.; Davidson, N.; Pritchard, D.; Rebelo, L.-M. The Role of Earth Observation (EO) Technologies in Supporting Implementation of the Ramsar Convention on Wetlands. J. Environ. Manag. 2009, 90, 2234–2242. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, L.-M.; Finlayson, C.M.; Strauch, A.; Rosenqvist, A.; Perennou, C.; Tottrup, C.; Hilarides, L.; Paganini, M.; Wielaard, N.; Siegert, F. The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring; Ramsar Technical Report 10; Ramsar Convention Secretariat: Gland, Switzerland, 2018; p. 31. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/bd68d105-ad61-4d5f-8d5e-f06229a6d4fe/content (accessed on 17 July 2024).
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar]
- Demarquet, Q.; Rapinel, S.; Dufour, S.; Hubert-Moy, L. Long-Term Wetland Monitoring Using the Landsat Archive: A Review. Remote Sens. 2023, 15, 820. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-Quality Vegetation Index Product Generation: A Review of NDVI Time Series Reconstruction Techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC Temporal Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. An Evaluation and Comparison of Four Dense Time Series Change Detection Methods Using Simulated Data. Remote Sens. 2019, 11, 2779. [Google Scholar] [CrossRef]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- Cabello, J.; Fernández, N.; Alcaraz-Segura, D.; Oyonarte, C.; Pineiro, G.; Altesor, A.; Delibes, M.; Paruelo, J.M. The Ecosystem Functioning Dimension in Conservation: Insights from Remote Sensing. Biodivers. Conserv. 2012, 21, 3287–3305. [Google Scholar] [CrossRef]
- Arévalo, P.; Baccini, A.; Woodcock, C.E.; Olofsson, P.; Walker, W.S. Continuous Mapping of Aboveground Biomass Using Landsat Time Series. Remote Sens. Environ. 2023, 288, 113483. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, X.; van Dijk, A.; Yue, C.; He, B. Continuous Woody Vegetation Biomass Estimation Based on Temporal Modeling of Landsat Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102811. [Google Scholar] [CrossRef]
- Fu, B.; Lan, F.; Yao, H.; Qin, J.; He, H.; Liu, L.; Huang, L.; Fan, D.; Gao, E. Spatio-Temporal Monitoring of Marsh Vegetation Phenology and Its Response to Hydro-Meteorological Factors Using CCDC Algorithm with Optical and SAR Images: In Case of Honghe National Nature Reserve, China. Sci. Total Environ. 2022, 843, 156990. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Creed, I.F.; Tangen, B.A.; Bridgham, S.D.; Desai, A.R.; Krauss, K.W.; Neubauer, S.C.; Noe, G.B.; Rosenberry, D.O.; Trettin, C. Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands 2023, 43, 105. [Google Scholar] [PubMed]
- Radeloff, V.C.; Dubinin, M.; Coops, N.C.; Allen, A.M.; Brooks, T.M.; Clayton, M.K.; Costa, G.C.; Graham, C.H.; Helmers, D.P.; Ives, A.R. The Dynamic Habitat Indices (Dhis) from Modis and Global Biodiversity. Remote Sens. Environ. 2019, 222, 204–214. [Google Scholar] [CrossRef]
- Dąbrowska-Zielińska, K.; Misiura, K.; Malińska, A.; Gurdak, R.; Grzybowski, P.; Bartold, M.; Kluczek, M. Spatiotemporal Estimation of Gross Primary Production for Terrestrial Wetlands Using Satellite and Field Data. Remote Sens. Appl. Soc. Environ. 2022, 27, 100786. [Google Scholar] [CrossRef]
- Rapinel, S.; Fabre, E.; Dufour, S.; Arvor, D.; Mony, C.; Hubert-Moy, L. Mapping Potential, Existing and Efficient Wetlands Using Free Remote Sensing Data. J. Environ. Manag. 2019, 247, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Carrillo, A.; Sanchez-Rodriguez, E.; Rodriguez-Galiano, V.F. Characterising Marshland Temporal Dynamics Using Remote Sensing: The Case of Bolboschoenetum Maritimi in Doñana National Park. Appl. Geogr. 2019, 112, 102094. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Chen, J.; Liu, D.; Chen, P. Spatiotemporal Patterns and Drivers of Net Primary Production in the Terrestrial Ecosystem of the Dajiuhu Basin, China, between 1990 and 2018. Ecol. Inform. 2022, 72, 101839. [Google Scholar] [CrossRef]
- Landsberg, H.; Pinna, M. L’atmosfera e il Clima; UTET: Turin, Italy, 1978. [Google Scholar]
- Lubke, M.; Rengarajan, R.; Choate, M. Preliminary Assessment of the Geometric Improvements to the Landsat Collection-2 Archive. In Earth Observing Systems XXVI; SPIE: Bellingham, MA, USA, 2021; Volume 11829, pp. 125–137. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200 2022, Dataset, Zenodo. Available online: https://pure.iiasa.ac.at/id/eprint/18478/ (accessed on 17 July 2024).
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- NOAA Gridded Climate: NOAA Physical Sciences Laboratory. Available online: https://psl.noaa.gov/data/gridded/ (accessed on 30 August 2023).
- Zhu, Z.; Woodcock, C.E. Automated Cloud, Cloud Shadow, and Snow Detection in Multitemporal Landsat Data: An Algorithm Designed Specifically for Monitoring Land Cover Change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating Synthetic Landsat Images Based on All Available Landsat Data: Predicting Landsat Surface Reflectance at Any given Time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Alcaraz, D.; Paruelo, J.; Cabello, J. Identification of Current Ecosystem Functional Types in the Iberian Peninsula. Glob. Ecol. Biogeogr. 2006, 15, 200–212. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–15. [Google Scholar]
- Richardson, J.T.E. Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 17 July 2024).
- Hijmans, R. Terra: Spatial Data Anaysis. Available online: https://rspatial.github.io/terra/ (accessed on 17 July 2024).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Wheeler, B.; Torchiano, M.; Torchiano, M.M. Package ‘lmPerm’. Available online: https://cran.r-project.org/web/packages/lmPerm/lmPerm.pdf (accessed on 17 July 2024).
- Yang, X.; Zhu, Z.; Qiu, S.; Kroeger, K.D.; Zhu, Z.; Covington, S. Detection and Characterization of Coastal Tidal Wetland Change in the Northeastern US Using Landsat Time Series. Remote Sens. Environ. 2022, 276, 113047. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4–8 and Sentinel-2 Imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Pirttimysvuoma | Ramsar Sites Information Service. Available online: https://rsis.ramsar.org/ris/2177?language=en (accessed on 9 March 2023).
- Frota, A.V.B.d.; Ikeda-Castrillon, S.K.; Kantek, D.L.Z.; da Silva, C.J. Macro-habitats of the Taiamã Ecological Station, in the context of the Pantanal wetland, Brazil. Bol. Mus. Para. Emílio Goeldi Ciências Nat. 2017, 12, 239–254. [Google Scholar]
- Wen, L.; Mason, T.J.; Ryan, S.; Ling, J.E.; Saintilan, N.; Rodriguez, J. Monitoring Long-Term Vegetation Condition Dynamics in Persistent Semi-Arid Wetland Communities Using Time Series of Landsat Data. Sci. Total Environ. 2023, 905, 167212. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Ju, J.; Masek, J.G. The Vegetation Greenness Trend in Canada and US Alaska from 1984–2012 Landsat Data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- De Souza Miranda, C.; Cândido, A.K.A.A.; Mioto, C.L.; da Silva, N.M.; Paranhos Filho, A.C.; Pott, A. Geotechnology as Support for the Management of Conservation Units in Brazil’s Pantanal. Bol. Mus. Para. Emílio Goeldi-Ciências Nat. 2017, 12, 255–264. [Google Scholar]
- Correa, D.B.; Alcântara, E.; Libonati, R.; Massi, K.G.; Park, E. Increased Burned Area in the Pantanal over the Past Two Decades. Sci. Total Environ. 2022, 835, 155386. [Google Scholar] [CrossRef] [PubMed]
- Ivory, S.J.; McGlue, M.M.; Spera, S.; Silva, A.; Bergier, I. Vegetation, Rainfall, and Pulsing Hydrology in the Pantanal, the World’s Largest Tropical Wetland. Environ. Res. Lett. 2019, 14, 124017. [Google Scholar] [CrossRef]
Parameter | Meaning | Value |
---|---|---|
breakpointBands | The name or index of the bands used for change detection | NDVI * |
tmaskBands | The name or index of the bands used for iterative TMask cloud detection | Green, SWIR2 |
MinObs | Moving window size for break detection | 5 |
Lambda | Penalty parameter for LASSO regression | 0.005 |
ChiSquareProbability | Chi-square probability threshold for break detection | 0.99 * |
MinNumOfYearsScaler | Minimum number of years before applying a new fitting | 1.33 |
Seg | Maximum number of temporal segments in the entire time series | 6 |
MaxIterations | Maximum number of runs for LASSO regression convergence | 10,000 * |
Ramsar Site | Factors | ||
---|---|---|---|
LULC | NLO | LULC × NLO | |
Pirttimysvuoma | 0.37 ± 0.05 *** | 0.10 ± 0.03 *** | ns |
Marais Vernier | 0.56 ± 0.03 *** | 0.01 ± 0.01 *** | 0.02 ± 0.01 *** |
Ouled Saïd | 0.40 ± 0.03 *** | 0.09 ± 0.02 *** | 0.05 ± 0.02 *** |
Taiamã Ecological Station | 0.37 ± 0.03 *** | 0.12 ± 0.02 *** | 0.05 ± 0.02 *** |
Climate Variable | Pirttimysvuoma | Marais Vernier | Oasis de Ouled Saïd | Taiamã Ecological Station |
---|---|---|---|---|
Tmin | 0.39 * | ns | 0.57 ** | ns |
Tmax | 0.53 ** | 0.62 ** | 0.57 ** | 0.60 ** |
Tmean | 0.47 ** | 0.49 ** | 0.59 ** | 0.51 ** |
Pmm | ns | ns | ns | −0.38 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarquet, Q.; Rapinel, S.; Arvor, D.; Corgne, S.; Hubert-Moy, L. Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management. Sustainability 2024, 16, 6301. https://doi.org/10.3390/su16156301
Demarquet Q, Rapinel S, Arvor D, Corgne S, Hubert-Moy L. Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management. Sustainability. 2024; 16(15):6301. https://doi.org/10.3390/su16156301
Chicago/Turabian StyleDemarquet, Quentin, Sébastien Rapinel, Damien Arvor, Samuel Corgne, and Laurence Hubert-Moy. 2024. "Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management" Sustainability 16, no. 15: 6301. https://doi.org/10.3390/su16156301
APA StyleDemarquet, Q., Rapinel, S., Arvor, D., Corgne, S., & Hubert-Moy, L. (2024). Satellite Long-Term Monitoring of Wetland Ecosystem Functioning in Ramsar Sites for Their Sustainable Management. Sustainability, 16(15), 6301. https://doi.org/10.3390/su16156301