State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm
Abstract
:1. Introduction
2. Health Feature Extraction
2.1. Definition of SOH
2.2. Lithium-Ion Battery Aging Test Dataset
2.3. Health Feature Extraction Based on Charging Curve
2.4. Spearman Correlation Analysis
3. Methodology
3.1. LSTM-FC
3.2. Harris Hawk Optimization
3.2.1. Global Exploration Phase
3.2.2. Transition Phase
3.2.3. Exploitation Phase
- Soft besiege: When and , it indicates that the prey’s energy E is sufficient and attempts to escape the encirclement by randomly jumping but ultimately fails and is captured. The position of the Harris hawk is updated as follows:
- Hard besiege: When and , it indicates that the prey’s energy E is low, and the prey is directly captured. The position is updated as follows:
- Soft besiege with progressive rapid dives: When and , it indicates that the prey’s energy E is sufficient, ensuring successful escape. However, the hawk swoops down in the optimal direction to softly encircle and capture the prey, and its position is updated as follows:Then, the process compares the results with the previous ones. If Y is not reasonable, they will swoop down in a pattern based on Levy’s flight when approaching the rabbit, and the position is updated as follows:Therefore, the final strategy can be executed by using Equation (18).
3.3. Transfer Learning
3.4. HHO-LSTM-FC-TL Model
- Data processing. S and D lithium-ion battery aging data are processed as described previously, extracting health features and normalizing them.
- S and D datasets are divided into training and validation parts.
- Hyperparameter optimization of the LSTM-FC-TL model based on the HHO algorithm.
- (a)
- There are three optimization objects: the neurons in the LSTM hidden layer, the neurons in the FC layer, and the training epochs in the base model. In accordance with the actual training volume and experience, LSTM hidden layer neurons are selected between [1, 100], the FC units are selected between [1, 30], and the epochs are selected between [100, 500].
- (b)
- Construct the solution space by initializing the HHO parameters. The population size is 20, and the number of iterations is 120. According to step (a), the positions of 20 Harris hawks are initialized. For faster convergence, both population initialization and iterations are taken as integer values, which is also required for the selected hyperparameters in the neural network.
- (c)
- Calculate the objective function and determine the rabbit’s position representing the optimal solution ().
- (d)
- Update solution X during the exploration and exploitation phase. The LSTM-FC base model is constructed by using the parameters associated with each Harris hawk. The fitness value is determined by using the error of the prediction results of the validation set.
- (e)
- Determine whether the termination criteria have been met. If they are, stop the process and output the optimal solution . In any other case, return to step (c).
- Model training. Configure the LSTM-FC base model using the globally optimal parameters found in step 3.
4. Example Results and Analysis
4.1. Simulation Platform
4.2. Data Processing and Evaluation Index
4.3. Analysis of Results
4.3.1. Performance of HHO-LSTM-FC on NASA Datasets
4.3.2. Performance of HHO-LSTM-FC-TL on CALCE Datasets
4.3.3. Performance of HHO-LSTM-FC-TL on the XJTU Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Sun, C.; Ni, Y.; Lyu, C.; Wu, C.; Zhang, H.; Yang, Q.; Feng, F. Fast identification of micro-health parameters for retired batteries based on a simplified P2D model by using padé approximation. Batteries 2023, 9, 64. [Google Scholar] [CrossRef]
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery lifetime prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Zhu, J.; Mathews, I.; Ren, D.; Li, W.; Cogswell, D.; Xing, B.; Sedlatschek, T.; Kantareddy, S.N.R.; Yi, M.; Gao, T.; et al. End-of-life or second-life options for retired electric vehicle batteries. Cell Rep. Phys. Sci. 2021, 2, 100537. [Google Scholar] [CrossRef]
- Ruan, H.; Wei, Z.; Shang, W.; Wang, X.; He, H. Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging. Appl. Energy 2023, 336, 120751. [Google Scholar] [CrossRef]
- Lin, M.; Yan, C.; Wang, W.; Dong, G.; Meng, J.; Wu, J. A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance. Energy 2023, 277, 127675. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Z.; Liu, P.; Zhao, Y.; Cui, D.; Wang, Z. Data-driven battery state-of-health estimation and prediction using IC based features and coupled model. J. Energy Storage 2023, 72, 108413. [Google Scholar] [CrossRef]
- Li, X.; Lyu, M.; Li, K.; Gao, X.; Liu, C.; Zhang, Z. Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning. Energy 2023, 282, 128445. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Zhu, Q.; Rashid, H.; Li, H. A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging. Energy 2023, 282, 128782. [Google Scholar] [CrossRef]
- Zhao, J.; Xuebin, L.; Daiwei, Y.; Jun, Z.; Wenjin, Z. Lithium-ion battery state of health estimation using meta-heuristic optimization and Gaussian process regression. J. Energy Storage 2023, 58, 106319. [Google Scholar] [CrossRef]
- Wu, M.; Zhong, Y.; Wu, J.; Wang, Y.; Wang, L. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. Energy 2023, 283, 129061. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhang, C.; Qiao, X.; Ge, Y.; Li, X.; Peng, T.; Nazir, M.S. State-of-health estimation for lithium-ion battery via an evolutionary Stacking ensemble learning paradigm of random vector functional link and active-state-tracking long–short-term memory neural network. Appl. Energy 2024, 356, 122417. [Google Scholar] [CrossRef]
- Li, W.; Sengupta, N.; Dechent, P.; Howey, D.; Annaswamy, A.; Sauer, D.U. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks. J. Power Sources 2021, 482, 228863. [Google Scholar] [CrossRef]
- Tagade, P.; Hariharan, K.S.; Ramachandran, S.; Khandelwal, A.; Naha, A.; Kolake, S.M.; Han, S.H. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis. J. Power Sources 2020, 445, 227281. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, D.; Wang, Y.; Li, R.; Zhou, Y. Research on health state estimation methods of lithium-ion battery for small sample data. Energy Rep. 2022, 8, 2686–2698. [Google Scholar] [CrossRef]
- Feng, H.; Shi, G. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression. J. Power Electron. 2021, 21, 1845–1854. [Google Scholar] [CrossRef]
- Zhang, Y.; Wik, T.; Bergström, J.; Pecht, M.; Zou, C. A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data. J. Power Sources 2022, 526, 231110. [Google Scholar] [CrossRef]
- Roman, D.; Saxena, S.; Robu, V.; Pecht, M.; Flynn, D. Machine learning pipeline for battery state-of-health estimation. Nat. Mach. Intell. 2021, 3, 447–456. [Google Scholar] [CrossRef]
- Tang, X.; Yang, M.; Shi, L.; Hou, Z.; Xu, S.; Sun, C. Adaptive state-of-health temperature sensitivity characteristics for durability improvement of PEM fuel cells. Chem. Eng. J. 2024, 491, 151951. [Google Scholar] [CrossRef]
- You, G.W.; Park, S.; Oh, D. Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Zhao, K.; Wang, L.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Zhang, F.; Xing, Z.-X.; Wu, M.-H. State of health estimation for Li-ion battery using characteristic voltage intervals and genetic algorithm optimized back propagation neural network. J. Energy Storage 2023, 57, 106277. [Google Scholar]
- Jafari, S.; Byun, Y.C. Optimizing battery RUL prediction of lithium-ion batteries based on Harris hawk optimization approach using random forest and LightGBM. IEEE Access 2023, 11, 87034–87046. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Srivastava, G.; Liyanage, M.; Iyapparaja, M.; Chowdhary, C.L.; Koppu, S.; Maddikunta, P.K.R. Hand gesture recognition based on a Harris hawks optimized convolution neural network. Comput. Electr. Eng. 2022, 100, 107836. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Deng, Z.; Lin, X.; Cai, J.; Hu, X. Battery health estimation with degradation pattern recognition and transfer learning. J. Power Sources 2022, 525, 231027. [Google Scholar] [CrossRef]
- Yao, J.; Han, T. Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data. Energy 2023, 271, 127033. [Google Scholar] [CrossRef]
- Che, Y.; Deng, Z.; Lin, X.; Hu, L.; Hu, X. Predictive battery health management with transfer learning and online model correction. IEEE Trans. Veh. Technol. 2021, 70, 1269–1277. [Google Scholar] [CrossRef]
- Mansoor, H.; Rauf, H.; Mubashar, M.; Khalid, M.; Arshad, N. Past vector similarity for short term electrical load forecasting at the individual household level. IEEE Access 2021, 9, 42771–42785. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Li, X.; Wang, Z. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy 2020, 190, 116467. [Google Scholar] [CrossRef]
- Jorge, I.; Mesbahi, T.; Samet, A.; Boné, R. Time series feature extraction for lithium-ion batteries state-of-health prediction. J. Energy Storage 2023, 59, 106436. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. Battery Data Set, NASA Ames Research Center, Moffett Field, CA, USA. NASA Ames Research Center. Moffett Field CA USA. 2007. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (accessed on 10 May 2024).
- He, W.; Williard, N.; Osterman, M.; Pecht, M. Prognostics of lithium-ion batteries based on Dempster—Shafer theory and the Bayesian Monte Carlo method. J. Power Sources 2011, 196, 10314–10321. [Google Scholar] [CrossRef]
- Wang, F.; Zhai, Z.; Zhao, Z.; Di, Y.; Chen, X. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nat. Commun. 2024, 15, 4332. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model. IEEE Access 2019, 7, 39474–39484. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Luo, J.H.; Wei, X.S.; Wu, J. In defense of fully connected layers in visual representation transfer. In Proceedings of the Pacific Rim Conference on Multimedia, Harbin, China, 28–29 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 807–817. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Liu, K.; Peng, Q.; Che, Y.; Zheng, Y.; Li, K.; Teodorescu, R.; Widanage, D.; Barai, A. Transfer learning for battery smarter state estimation and ageing prognostics: Recent progress, challenges, and prospects. Adv. Appl. Energy 2023, 9, 100117. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, Y.; Liu, W.; Bao, C.; Shen, J.; Liao, Q. Estimating the state of health of lithium-ion batteries based on a probability density function. Int. J. Electrochem. Sci. 2023, 18, 100137. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, W.; Zou, G.; Zhou, C.; Zou, H. State of health estimation of lithium-ion battery by removing model redundancy through aging mechanism. J. Energy Storage 2022, 52, 105018. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, B. Battery health prognosis using improved temporal convolutional network modeling. J. Energy Storage 2022, 51, 104480. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
- Song, C.; Lee, S. Accurate RUL Prediction Based on Sliding Window with Sparse Sampling. In Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea, 4–6 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Yayan, U.; Arslan, A.T.; Yucel, H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data. Appl. Artif. Intell. 2021, 35, 421–439. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. IEEE Trans. Ind. Electron. 2019, 67, 8723–8731. [Google Scholar] [CrossRef]
Battery | F1 | F2 | F3 | F4 |
---|---|---|---|---|
B6 | 0.98 | −0.97 | 0.99 | 0.99 |
B7 | 0.92 | −0.95 | 0.98 | 0.99 |
C5 | 0.95 | −0.92 | 0.99 | - |
C6 | 0.96 | −0.95 | 0.98 | - |
C7 | 0.96 | −0.94 | 0.98 | - |
C8 | 0.70 | −0.82 | 0.99 | - |
X1 | 0.97 | −0.97 | 0.99 | 0.85 |
RMSE | MAE | R2 | ||
---|---|---|---|---|
B6 | LSTM-FC | 0.0086 | 0.0055 | 0.9757 |
HHO-LSTM-FC | 0.0010 | 0.0009 | 0.9996 | |
B7 | LSTM-FC | 0.0080 | 0.0068 | 0.9645 |
HHO-LSTM-FC | 0.0010 | 0.0008 | 0.9995 |
References | RMSE | |
---|---|---|
B6 | B7 | |
Lin et al. [41] | 0.0100 | 0.0114 |
Zhu et al. [42] | 0.0136 | 0.0056 |
Zhou et al. [43] | 0.0190 | 0.0140 |
Yang et al. [44] | 0.0149 | 0.0078 |
HHO-LSTM-FC | 0.0010 | 0.0010 |
HHO-LSTM-FC | HHO-LSTM-FC-TL(B6) | HHO-LSTM-FC-TL(B7) | ||
---|---|---|---|---|
C5 | RMSE | 0.0033 | 0.0015 | 0.0022 |
MAE | 0.0021 | 0.0009 | 0.0007 | |
R2 | 0.9940 | 0.9988 | 0.9973 | |
C6 | RMSE | 0.0093 | 0.0017 | 0.0025 |
MAE | 0.0056 | 0.0012 | 0.0017 | |
R2 | 0.9781 | 0.9993 | 0.9984 | |
C7 | RMSE | 0.0098 | 0.0014 | 0.0018 |
MAE | 0.0070 | 0.0011 | 0.0011 | |
R2 | 0.9648 | 0.9992 | 0.9988 | |
C8 | RMSE | 0.0046 | 0.0017 | 0.0021 |
MAE | 0.0029 | 0.0014 | 0.0017 | |
R2 | 0.9909 | 0.9988 | 0.9902 |
References | RMSE | MAE |
---|---|---|
LSTM-LWS [45] | 0.2106 | - |
StackedLSTM [46] | 0.0186 | 0.0333 |
LSTM-FC-TL [47] | 0.0075 | - |
HHO-LSTM-FC-TL(B6) | 0.0014 | 0.0011 |
RMSE | MAE | R2 | |
---|---|---|---|
HHO-LSTM-FC-TL(B6) | 0.0037 | 0.0029 | 0.9941 |
HHO-LSTM-FC-TL(B7) | 0.0034 | 0.0027 | 0.9952 |
HHO-LSTM-FC | 0.0078 | 0.0065 | 0.9422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Wang, X.; Li, R.; Zhang, X. State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm. Sustainability 2024, 16, 6316. https://doi.org/10.3390/su16156316
Yang G, Wang X, Li R, Zhang X. State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm. Sustainability. 2024; 16(15):6316. https://doi.org/10.3390/su16156316
Chicago/Turabian StyleYang, Guangyi, Xianglin Wang, Ran Li, and Xiaoyu Zhang. 2024. "State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm" Sustainability 16, no. 15: 6316. https://doi.org/10.3390/su16156316
APA StyleYang, G., Wang, X., Li, R., & Zhang, X. (2024). State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm. Sustainability, 16(15), 6316. https://doi.org/10.3390/su16156316