Characteristics and Influencing Factors of Landscape Pattern Gradient Transformation of Small-Scale Agroforestry Patches in Mountain Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Study Object Selection
2.4. Sample Selection
2.5. Data Analysis
2.5.1. Calculation of SAP and Agroforestry Elements Landscape Indices
2.5.2. Statistical Analysis of Natural and Artificial Factors
Analysis of Topographic and Geomorphological Factors
Artificial Factor Analysis
2.5.3. Correlation Analysis
3. Results and Discussion
3.1. The Transformation Characteristics of Agricultural and Forestry Landscape Pattern Gradients
3.1.1. Overall Transformation Characteristics of Agroforestry Patches
3.1.2. Transformation Characteristics of Agricultural and Forestry Elements
Transformation Characteristics of Landscape Indices of Woodland
Transformation Characteristics of Patch Landscape Indices of Cultivated Land
Landscape Indices Transformation Characteristics of Garden Land
3.2. Drivers of Gradient Transformation of Agroforestry Landscape Patterns
3.2.1. The Driving Factors of the Overall Transformation of Agroforestry Landscape Pattern
3.2.2. Drivers of Transformation of Each Element Landscape Pattern
Analysis of Driving Factors of Woodland Conversion
Driver Factor Analysis of Cultivated Land Conversion
Analysis of Driving Factors of Garden Land Conversion
4. Discussion
4.1. Landscape Indices Transformation Characteristics and Driving Factors of Small-Scale Agroforestry Patches in Mountainous Urban Areas
4.2. Planning and Management Methods for the Conservation and Utilization of Small-Scale Agroforestry Patches in Mountainous Urban Areas Based on Landscape Pattern Characteristics
4.2.1. Assessment of the Current Status of Small-Scale Agroforestry Patches in Mountainous Areas Should Employ a Differentiated Zoning Assessment Approach
4.2.2. The Conservation of Small-Scale Agroforestry Patches in Mountainous Areas Should Adopt a Zoning-Based Targeted Planning and Management Approach
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plieninger, T.; Bieling, C. Resilience-Based Perspectives to Guiding High-Nature-Value Farmland through Socioeconomic Change. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- Ratcliffe, D.A.; Smith, J.E.; Clapham, A.R. Nature conservation: Aims, methods and achievements. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1997, 197, 11–29. [Google Scholar] [CrossRef]
- Benedetti, Y. Trends in High Nature Value farmland studies: A systematic review. Eur. J. Ecol. 2017, 3, 19–32. [Google Scholar] [CrossRef]
- Álvarez Díaz, J.E.; Santa Regina, M.D.C.; Santa Regina, I. Can the stepping stone enhance the establishment, competition and distribution of sown grassland species during recovery on exarable lands? Open J. Ecol. 2016, 6, 579–597. [Google Scholar] [CrossRef]
- Haggar, J.; Pons, D.; Saenz, L.; Vides, M. Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agric. Ecosyst. Environ. 2019, 283, 106567. [Google Scholar] [CrossRef]
- Hodel, U.; Gessler, M. In Situ Conservation of Plant Genetic Resources in Home Gardens of Southern Vietnam: A Report of Home Garden Surveys in Southern Vietnam, December 1996–May 1997; (Working Paper); International Plant Genetic Resources Institute: Italy, Rome, 1999; n. 106; ISBN 978-92-9043-419-1/ 92-9043-419-8. [Google Scholar]
- Han, L.; Wang, Z.; Wei, M.; Wang, M.; Shi, H.; Ruckstuhl, K.; Yang, W.; Alves, J. Small patches play a critical role in the con-nectivity of the Western Tianshan landscape, Xinjiang, China. Ecol. Indic. 2022, 144, 109542. [Google Scholar] [CrossRef]
- Brothers, T.S.; Spingarn, A. Forest Fragmentation and Alien Plant Invasion of Central Indiana Old-Growth Forests. Conserv. Biol. 1992, 6, 91–100. [Google Scholar] [CrossRef]
- Körner, C. Mountain Biodiversity, Its Causes and Function. AMBIO J. Hum. Environ. 2004, 33, 11–17. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, H.; Chen, A.; Cui, J.; Padoch, C. Relocating plants from swidden fallows to gardens in Southwestern China. Econ. Bot. 2003, 57, 389–402. [Google Scholar] [CrossRef]
- Eyzaguirre, P.B.; Linares, O.F. Homegardens and Agro Biodiversity; Smithsonian Press: Washinton, DC, USA, 2004; 296p, ISBN 158834-112-7. [Google Scholar]
- Ivanova, T.; Bosseva, Y.; Chervenkov, M.; Dimitrova, D. Enough to Feed Ourselves!—Food Plants in Bulgarian Rural Home Gardens. Plants 2021, 10, 2520. [Google Scholar] [CrossRef]
- Abdullah, A.; Khan, S.M.; Pieroni, A.; Haq, A.; Haq, Z.U.; Ahmad, Z.; Sakhi, S.; Hashem, A.; Al-Arjani, A.-B.F.; Alqarawi, A.A.; et al. A Comprehensive Appraisal of the Wild Food Plants and Food System of Tribal Cultures in the Hindu Kush Mountain Range; a Way Forward for Balancing Human Nutrition and Food Security. Sustainability 2021, 13, 5258. [Google Scholar] [CrossRef]
- Farina, A. The Cultural Landscape as a Model for the Integration of Ecology and Economics. BioScience 2000, 50, 313–320. [Google Scholar] [CrossRef]
- Halada, L.; Evans, D.; Romão, C.; Petersen, J.-E. Which habitats of European importance depend on agricultural practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Byrne, J.; Sipe, N.; Searle, G. Green around the gills? The challenge of density for urban greenspace planning in SEQ. Aust. Plan. 2010, 47, 162–177. [Google Scholar] [CrossRef]
- O’Rourke, E.; Kramm, N. Changes in the Management of the Irish Uplands: A Case-Study from the Iveragh Peninsula. Eur. Countrys. 2009, 1, 53–66. [Google Scholar] [CrossRef]
- Xu, J.; Ma, E.T.; Tashi, D.; Fu, Y.; Lu, Z.; Melick, D. Integrating Sacred Knowledge for Conservation: Cultures and Landscapes in Southwest China. Ecol. Soc. 2005, 10, 7. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [Google Scholar] [CrossRef]
- Qian, S.; Qin, D.; Wu, X.; Hu, S.; Hu, L.; Lin, D.; Zhao, L.; Shang, K.; Song, K.; Yang, Y. Urban growth and topographical fac-tors shape patterns of spontaneous plant community diversity in a mountainous city in southwest China. Urban For. Urban Green. 2020, 55, 126814. [Google Scholar] [CrossRef]
- Zhang, Y. Advantages and rational utilization of agricultural climatic resources in mountainous areas of China. Mt. Res. 1992, 1, 11–18. [Google Scholar]
- Xing, Z.; Tang, X.; Gu, Y.; He, Y.; Lei, Q. Urban-rural shared “Nature-Agriculture Park”: Research on the protection planning method for high-value small-scale agricultural and forestry land in urban-rural fringe areas. Urban Plan. 2021, 45, 54–64. [Google Scholar]
- Tang, X.; Xing, Z. Management of small-scale agricultural and forestry land systems in urban fringe areas in the context of spa-tial planning. Planners 2020, 36, 50–57. [Google Scholar]
- Del Mar López, T.; Aide, T.M.; Thomlinson, J.R. Urban Expansion and the Loss of Prime Agricultural Lands in Puerto Rico. AMBIO J. Hum. Environ. 2001, 30, 49–54. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Bhatta, B. Causes and Consequences of Urban Growth and Sprawl. In Analysis of Urban Growth and Sprawl from Remote Sensing Data; Advances in Geographic Information Science; Bhatta, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–36. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Su, S.; Hu, Y.; Luo, F.; Mai, G.; Wang, Y. Farmland fragmentation due to anthropogenic activity in rapidly developing region. Agric. Syst. 2014, 131, 87–93. [Google Scholar] [CrossRef]
- McDonnell, M.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.; Zipperer, W.; Parmelee, R.; Carreiro, M.; Medley, K. Eco-system Processes Along an Urban-to-Rural Gradient. Urban Ecosyst. 2008, 1, 299–313. [Google Scholar] [CrossRef]
- Burton, M.L.; Samuelson, L.J.; Pan, S. Riparian woody plant diversity and forest structure along an urban-rural gradient. Urban Ecosyst. 2005, 8, 93–106. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Tripler, C.E. Forest Remnants Along Urban-Rural Gradients: Examining Their Potential for Global Change Research. Ecosystems 2005, 8, 568–582. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Westlund, H.; Liu, Y. Urban–rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, D.J.; Venn, S.; Penev, L.; Stoyanov, I.; Spence, J.; Hartley, D.; de Oca, E.M. Carabid beetle assemblages (Col-eoptera, Carabidae) across urban-rural gradients: An international comparison. Landsc. Ecol. 2002, 17, 387–401. [Google Scholar] [CrossRef]
- Clergeau, P.; Savard, J.-P.L.; Mennechez, G.; Falardeau, G. Bird Abundance and Diversity along an Urban-Rural Gradient: A Comparative Study between Two Cities on Different Continents. Condor 1998, 100, 413–425. [Google Scholar] [CrossRef]
- Garaffa, P.I.; Filloy, J.; Bellocq, M.I. Bird community responses along urban–rural gradients: Does the size of the urbanized area matter? Landsc. Urban Plan. 2009, 90, 33–41. [Google Scholar] [CrossRef]
- Yang, Y.; Guangrong, S.; Chen, Z.; Hao, S.; Zhouyiling, Z.; Shan, Y. Quantitative analysis and prediction of urban heat island intensity on urban-rural gradient: A case study of Shanghai. Sci. Total Environ. 2022, 829, 154264. [Google Scholar] [CrossRef]
- Wear, D.N.; Turner, M.G.; Naiman, R.J. Land Cover Along an Urban–Rural Gradient: Implications for Water Quality. Ecol. Appl. 1998, 8, 619–630. [Google Scholar] [CrossRef]
- Kaminski, A.; Bauer, D.M.; Bell, K.P.; Loftin, C.S.; Nelson, E.J. Using landscape metrics to characterize towns along an ur-ban-rural gradient. Landsc. Ecol. 2021, 36, 2937–2956. [Google Scholar] [CrossRef]
- Tlapáková, L.; Stejskalová, D.; Karásek, P.; Podhrázská, J. Landscape Metrics as a Tool for Evaluation Landscape Struc-ture—Case Study Hustopeče. Eur. Countrys. 2013, 5, 52–70. [Google Scholar] [CrossRef]
- Dale, V.H.; Offerman, H.; Frohn, R.; Gardner, R.H. Landscape Characterization and Biodiversity Research (No. CONF-9408220-1); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1995. [Google Scholar]
- Zhang, Y.; Su, T.; Ma, Y.; Wang, Y.; Wang, W.; Zha, N.; Shao, M. Forest ecosystem service functions and their associations with landscape patterns in Renqiu City. PLoS ONE 2022, 17, e0265015. [Google Scholar] [CrossRef]
- Tischendorf, L. Can landscape indices predict ecological processes consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in land-scape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar]
- Cardille, J.A.; Turner, M.G. Understanding Landscape Metrics. In Learning Landscape Ecology: A Practical Guide to Concepts and Techniques; Gergel, S.E., Turner, M.G., Eds.; Springer: New York, NY, USA, 2017; pp. 45–63. [Google Scholar] [CrossRef]
- Li, H.; Reynolds, J.F. A Simulation Experiment to Quantify Spatial Heterogeneity in Categorical Maps. Ecology 1994, 75, 2446–2455. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Zhou, Y. Evolution of cultivated land fragmentation and its driving mechanism in rural development: A case study of Jiangsu Province. J. Rural Stud. 2022, 91, 58–72. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Lin, Y.; Chang, T.; Wu, C.; Chiang, T.; Lin, S. Assessing Impacts of Typhoons and the Chi-Chi Earthquake on Chenyulan Wa-tershed Landscape Pattern in Central Taiwan Using Landscape Metrics. Environ. Manag. 2006, 38, 108–125. [Google Scholar] [CrossRef]
- Xiao, L.; Yu, M.; Wang, H. Hill, pond, field, forest, and residence: Analysis of rural settlement landscapes in the hilly areas of Sichuan and Chongqing. Landsc. Archit. 2023, 40, 71–77. [Google Scholar]
- Yang, X.; Liu, Z. Quantifying landscape pattern and its change in an estuarine watershed using satellite imagery and landscape metrics. Int. J. Remote Sens. 2005, 26, 5297–5323. [Google Scholar] [CrossRef]
- Huang, G. Ecological considerations on the spatial structure of mountainous cities. Urban Plan. 2005, 01, 57–63. [Google Scholar]
- Duany, A. Introduction to the Special Issue: The Transect. J. Urban Des. 2002, 7, 251–260. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Ge, Y. Spatial correlation between farmland fragmentation and landform types in karst mountainous areas: A case study of Xiuwen County, Guizhou Province. J. Guizhou Norm. Univ. Nat. Sci. Ed. 2020, 38, 1–9. [Google Scholar] [CrossRef]
- Xu, X. Ecological strategy research on green city design based on bioclimatic conditions. Ph.D. Thesis, Southeast University, Nanjing, China, 2007. [Google Scholar]
- Deng, O.; Zhou, X.; Huang, P.; Deng, L. Study on the correlation between soil nutrient spatial differentiation and topographic factors in the purple soil area of central Sichuan. Resour. Sci. 2013, 35, 2434–2443. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Int. J. Epidemiol. 2010, 39, 1137–1150. [Google Scholar] [CrossRef]
- Wadduwage, S.; Millington, A.; Crossman, N.D.; Sandhu, H. Agricultural Land Fragmentation at Urban Fringes: An Applica-tion of Urban-To-Rural Gradient Analysis in Adelaide. Land 2017, 6, 28. [Google Scholar] [CrossRef]
- Penghui, J.; Dengshuai, C.; Manchun, L. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. J. Rural Stud. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Jiang, P.; Li, M.; Lv, J. The causes of farmland landscape structural changes in different geographical environments. Sci. Total Environ. 2019, 685, 667–680. [Google Scholar] [CrossRef]
- Gao, X.; Song, Z.; Li, C.; Charlie, L.; Liang, S.; Tang, H. Spatial differentiation characteristics of multifunctional value of culti-vated land under urban-rural gradients. Trans. Chin. Soc. Agric. Eng. 2021, 37, 251–259. [Google Scholar]
- Yang, J.; Zhao, L.; Xu, F.; Yue, Y.; Du, Z.; Zhu, D. High-standard basic farmland construction zoning based on the connectivity of cultivated land. Trans. Chin. Soc. Agric. Mach. 2017, 48, 142–148. [Google Scholar]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Tang, X. “Agriculture-Nature Park” planning. Ph.D. Thesis, Chongqing University, Chongqing, China, 2018. [Google Scholar]
- Xing, Z.; Tang, X.; Zhou, Q.; Gu, Y.; Chen, Z. Planning for a green infrastructure network in urban fringe areas: Ensuring public welfare output. Urban Plan. 2020, 44, 57–69. [Google Scholar]
- Moreau, M. Transect urbanism: Readings in human ecology. Urban Res. Pract. 2021, 14, 483–484. [Google Scholar] [CrossRef]
- Kashian, D.M.; Tinker, D.B.; Turner, M.G.; Scarpace, F.L. Spatial heterogeneity of lodgepole pine sapling densities following the 1988 fires in Yellowstone National Park, Wyoming, USA. Can. J. For. Res. 2004, 34, 2263–2276. [Google Scholar] [CrossRef]
- Southworth, J.; Nagendra, H.; Tucker, C. Fragmentation of a Landscape: Incorporating landscape metrics into satellite analyses of land-cover change. Landsc. Res. 2002, 27, 253–269. [Google Scholar] [CrossRef]
Type | Woodland | Cultivated Land | Garden Land | |||
---|---|---|---|---|---|---|
Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | |
Over 3.3 ha | 815.8 | 26.45 | 1865.4 | 26.56 | 124.54 | 8.94 |
Under 3.3 ha | 2268.13 | 73.55 | 5157.88 | 73.44 | 1268.29 | 91.06 |
Cultivated land | Paddy fields |
Irrigated land | |
Drylands | |
Garden land | Orchards |
Tea garden land | |
Oak park | |
Other garden land plots | |
Woodland | Arbor woodland |
Bamboo woodland | |
Shrub woodland | |
Other woodland |
Landscape Indices | Formula | Explain | Explain |
---|---|---|---|
Patch area (PA) | is the area of patch ij | PA can reflect the change in the agroforestry scale on the urban–rural gradient. | |
Plaque density (PD) | is the number of patches contained by patch type I, and is the area of the whole landscape, including the background within the landscape. Units are 1/100 hm2. | The patch density, defined as the number of patches per unit area, serves as an indicator of the fragmentation level in agricultural and forestry patches. | |
Edge density (ED) | Ed = E/A | E is the total perimeter of the plaque, and A is the total area of the patch. | The higher the boundary density, the more the land-use type is divided, and the more dispersed the layout. |
Largest plaque index (LPI) | represents the area of patch ij; and A denotes the total landscape area, encompassing both the landscape interior and background. | Reflecting dominant land-use patch types and landscape dominance in different partitions. | |
Fractal dimension (FD) | is the perimeter of patch ij; is the area of patch ij. | To quantify the complexity of patch shapes, values closer to 1 indicate simpler shapes, while values closer to 2 signify more intricate shapes, indicative of heightened artificial influence. | |
Aggregation index (AI) | is the similar adjacency ratio, is the area proportion of the patch type in the landscape. | Indicates the level of connectivity between patches; higher values denote increased connectivity. |
Samples | Average Elevation | Average Slope | Average Rise and Fall |
---|---|---|---|
1-1 | 276.41 | 5.21 | 27.89 |
1-2 | 279.58 | 6.17 | 35.56 |
1-3 | 283.26 | 5.16 | 25.11 |
1-4 | 293.68 | 8.13 | 43.12 |
1-5 | 345.34 | 12.32 | 84.50 |
2-1 | 281.75 | 5.47 | 28.65 |
2-2 | 351.17 | 12.27 | 88.75 |
2-3 | 627.08 | 20.11 | 172.52 |
2-4 | 412.84 | 15.65 | 127.00 |
3-1 | 304.28 | 7.76 | 44.24 |
3-2 | 336.14 | 5.34 | 34.18 |
3-3 | 285.56 | 4.95 | 30.21 |
4-1 | 286.97 | 6.22 | 33.77 |
4-2 | 281.83 | 5.42 | 29.66 |
4-3 | 266.73 | 4.86 | 27.84 |
4-4 | 243.97 | 5.07 | 27.05 |
Samples | Road Sites (ha) | Park Site (ha) | Building Surface (ha) | The Surface of Hang Tong Lake (ha) |
---|---|---|---|---|
1-1 | 148.76 | 63.02 | 750.4 | 24.10 |
1-2 | 148.71 | 72.86 | 662.5 | 44.55 |
1-3 | 67.6 | 5.85 | 307.07 | 46.91 |
1-4 | 42.68 | 0.62 | 109.44 | 52.50 |
1-5 | 25.39 | 0 | 67.62 | 25.28 |
2-1 | 226.68 | 84.76 | 651.96 | 16.62 |
2-2 | 54.06 | 70.1 | 183.27 | 32.86 |
2-3 | 19.09 | 0.07 | 27.42 | 7.48 |
2-4 | 23.35 | 0 | 59.2 | 29.82 |
3-1 | 129.8 | 64.78 | 408.98 | 35.41 |
3-2 | 33.23 | 0 | 132.55 | 111.58 |
3-3 | 0 | 0 | 167.03 | 92.53 |
4-1 | 110.44 | 59.44 | 566.69 | 34.74 |
4-2 | 109.79 | 110.6 | 402.18 | 95.40 |
4-3 | 120.11 | 4.33 | 536.53 | 48.72 |
4-4 | 56.35 | 0 | 95.19 | 97.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Xing, Z.; Ye, L.; Yang, J.; Xie, Z. Characteristics and Influencing Factors of Landscape Pattern Gradient Transformation of Small-Scale Agroforestry Patches in Mountain Cities. Sustainability 2024, 16, 6322. https://doi.org/10.3390/su16156322
Cheng C, Xing Z, Ye L, Yang J, Xie Z. Characteristics and Influencing Factors of Landscape Pattern Gradient Transformation of Small-Scale Agroforestry Patches in Mountain Cities. Sustainability. 2024; 16(15):6322. https://doi.org/10.3390/su16156322
Chicago/Turabian StyleCheng, Canhui, Zhong Xing, Lin Ye, Junyue Yang, and Zhuoming Xie. 2024. "Characteristics and Influencing Factors of Landscape Pattern Gradient Transformation of Small-Scale Agroforestry Patches in Mountain Cities" Sustainability 16, no. 15: 6322. https://doi.org/10.3390/su16156322
APA StyleCheng, C., Xing, Z., Ye, L., Yang, J., & Xie, Z. (2024). Characteristics and Influencing Factors of Landscape Pattern Gradient Transformation of Small-Scale Agroforestry Patches in Mountain Cities. Sustainability, 16(15), 6322. https://doi.org/10.3390/su16156322