Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Observations
2.2. Data Analysis
2.3. Model Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avnery, S.; Mauzerall, D.L.; Liu, J.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, O.; Chen, X.; Wu, Q.; Gao, M.; Chen, H.; Qi, Y.; Wang, Z. Health impacts of long-term ozone exposure in China over 2013–2017. Environ. Int. 2020, 144, 106030. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Pusede, S.E.; Steiner, A.L.; Cohen, R.C. Temperature and Recent Trends in the Chemistry of Continental Surface Ozone. Chem. Rev. 2015, 115, 3898–3918. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wu, K.; Zhang, X.; Kang, P.; Du, Y.; Yang, F.; Fan, J.; Hou, J. Role of meteorology-driven regional transport on O3 pollution over the Chengdu Plain, southwestern China. Atmos. Res. 2023, 285, 106619. [Google Scholar] [CrossRef]
- Brankov, E.; Henry, R.F.; Civerolo, K.L.; Hao, W.; Rao, S.; Misra, P.; Bloxam, R.; Reid, N. Assessing the effects of transboundary ozone pollution between Ontario, Canada and New York, USA. Environ. Pollut. 2003, 123, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Castell-Balaguer, N.; Téllez, L.; Mantilla, E. Daily, seasonal and monthly variations in ozone levels recorded at the Turia river basin in Valencia (Eastern Spain). Environ. Sci. Pollut. Res. 2012, 19, 3461–3480. [Google Scholar] [CrossRef] [PubMed]
- Agudelo–Castaneda, D.M.; Teixeira, E.C.; Pereira, F.N. Time–series analysis of surface ozone and nitrogen oxides concentrations in an urban area at Brazil. Atmos. Pollut. Res. 2014, 5, 411–420. [Google Scholar] [CrossRef]
- Tyagi, B.; Singh, J.; Beig, G. Seasonal progression of surface ozone and NOx concentrations over three tropical stations in North-East India. Environ. Pollut. 2020, 258, 113662. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.J.; Revelle, M.K.; Dabdub, D. Modeling the Oxidative Capacity of the Atmosphere of the South Coast Air Basin of California. 1. Ozone Formation Metrics. Environ. Sci. Technol. 2004, 38, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, C.M.; Cohen, R.C. The Role of Temperature and NOx in Ozone Trends in the Los Angeles Basin. Environ. Sci. Technol. 2020, 54, 15652–15659. [Google Scholar] [CrossRef] [PubMed]
- VanCuren, R. Transport aloft drives peak ozone in the Mojave Desert. Atmos. Environ. 2015, 109, 331–341. [Google Scholar] [CrossRef]
- Biancofiore, F.; Verdecchia, M.; Carlo, P.D.; Tomassetti, B.; Aruffo, E.; Busilacchio, M.; Bianco, S.; Tommaso, S.D.; Colangeli, C. Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 2015, 514, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Zaini, N.; Ean, L.W.; Ahmed, A.N.; Malek, M.A. A systematic literature review of deep learning neural network for time series air quality forecasting. Environ. Sci. Pollut. Res. 2022, 29, 4958–4990. [Google Scholar] [CrossRef] [PubMed]
- Aruffo, E.; Carlo, P.D.; Cristofanelli, P.; Bonasoni, P. Neural Network Model Analysis for Investigation of NO Origin in a High Mountain Site. Atmosphere 2020, 11, 173. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Jumin, E.; Zaini, N.; Ahmed, A.N.; Abdullah, S.; Ismail, M.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction. Eng. Appl. Comput. Fluid Mech. 2020, 14, 713–725. [Google Scholar] [CrossRef]
- Vasilev, I.; Slater, D.; Spacagna, G.; Roelants, P.; Zocca, V. Python Deep Learning, Exploring Deep Learning Techniques and Neural Network Architectures with PyTorch, Keras, and TensorFlow; Packt Pub.: Birmingham, UK, 2019. [Google Scholar]
Urban (μgr/m3) | Rural (μgr/m3) | ||
---|---|---|---|
O3 | Max | 141.0 | 129.5 |
Min | 2.8 | 11.4 | |
Mean ± Std | 40.4 ± 29.6 | 74.1 ± 24.8 | |
NO | Max | 38.2 | 10.1 |
Min | 0.0 | 0.0 | |
Mean ± Std | 6.0 ± 4.4 | 1.3 ± 1.5 | |
NO2 | Max | 62.2 | 33.3 |
Min | 0.0 | 0.0 | |
Mean ± Std | 13.4 ± 8.6 | 5.4 ± 3.4 | |
NOx | Max | 88.8 | 32.1 |
Min | 0.0 | 0.0 | |
Mean ± Std | 22.0 ± 11.9 | 7.4 ± 3.3 |
Scenario | INPUT PARAMETERS | R | RMSE | MAPE | SLOPE |
---|---|---|---|---|---|
1 | NOx, NO, NO2, WS, WD, T, HR | 0.90 | 11.53 | 0.14 | 0.77 |
2 | NOx, NO, NO2, WS, WD | 0.81 | 15.18 | 0.19 | 0.63 |
3 | NOx, NO, NO2 | 0.17 | 25.23 | 0.36 | 0.02 |
4 | WS, WD | 0.81 | 15.24 | 0.19 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiacchiaretta, P.; Aruffo, E.; Mascitelli, A.; Colangeli, C.; Palermi, S.; Bianco, S.; Di Carlo, P. Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment. Sustainability 2024, 16, 6355. https://doi.org/10.3390/su16156355
Chiacchiaretta P, Aruffo E, Mascitelli A, Colangeli C, Palermi S, Bianco S, Di Carlo P. Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment. Sustainability. 2024; 16(15):6355. https://doi.org/10.3390/su16156355
Chicago/Turabian StyleChiacchiaretta, Piero, Eleonora Aruffo, Alessandra Mascitelli, Carlo Colangeli, Sergio Palermi, Sebastiano Bianco, and Piero Di Carlo. 2024. "Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment" Sustainability 16, no. 15: 6355. https://doi.org/10.3390/su16156355
APA StyleChiacchiaretta, P., Aruffo, E., Mascitelli, A., Colangeli, C., Palermi, S., Bianco, S., & Di Carlo, P. (2024). Inland O3 Production Due to Nitrogen Dioxide Transport Downwind a Coastal Urban Area: A Neural Network Assessment. Sustainability, 16(15), 6355. https://doi.org/10.3390/su16156355