The Circular Economy (CE) Rebound as a Paradox of Knowledge: Forecasting the Future of the CE–IoT Nexus through the Global E-Waste Crisis
Abstract
:1. Introduction
2. Literature Review: The CE–IoT Nexus as an “Epistemic Engine”
- (1)
- (2)
- In terms of error distribution, i.e., choosing the lesser evil when errors do occur (e.g., supporting “false acquittal” instead of “false convictions”) [20], data-driven sustainability science finds itself in the awkward position of being both judge and jury as it tries to account for the environmental burden of its own sensing-and-measuring apparatus, namely at the CE–IoT nexus [51,52].
There has been an accumulation and maturation of structural contradictions in modern science [36], […] between real and acknowledged uncertainty in science’s pronouncements, between technological progress and technological risk, and in its purported structural relation to democracy [67]. […] A radically new concept, practice, and ethos need[s] to be imagined and acted, by scientists—who need to be clearer about what they can deliver and what they cannot –, and by society—which must come to accept a more circumspect understanding of the role of science in informing societal and technological directions.[68] (p. 87–88)
3. Main Theoretical Argument: The CE Rebound as a Paradox of Knowledge
3.1. “Paralysis by Analysis”: Statistical Methods’ Paradoxical Appeal to Sophistication
“Beyond a methodological explanation for our results, we build on the view that strategic decision [or statistical] comprehensiveness provides symbolic value for organizations [or research], which can be captured by managers’ [or researchers’] accounts of organizational performance [i.e., research impact]. […] Although advanced predictive analytics can help managers [and researchers] better predict complex and uncertain future states, contributors to research on the strategic implications of big data have a duty to remind readers [and themselves] that “unhealthy obsession with numbers” and “paralysis by analysis” remain relevant concerns. […] Our findings regarding the comprehensiveness-outcome relationship suggest that while it provides some benefits, comprehensiveness may have been oversold. Thus, managers [and researchers] should understand that comprehensiveness is likely not the sought-after panacea.”[91] (pp. 431–433)
Circular economy rebound could be a serious obstacle to creating meaningful environmental improvement. How, then, can we work to avoid rebound so that the promise of the circular economy is realized? From the preceding discussion, several necessary conditions emerge for avoiding circular economy rebound. […] Unfortunately, due to the unpredictable nature of highly complex systems, such as the system of markets involved in the circular economy, it is likely impossible to derive any meaningful conditions that are both necessary and sufficient. Unforeseen consequences may mean that a well-intentioned circular economy activity nonetheless results in rebound.[21] (p. 599. Emphasis added.)
3.2. The CE Rebound as an Ever-Receding Frontier of Knowledge
With such a tremendously expanding demand for wireless communications in the future, researchers are currently looking for viable solutions to meet the stringent throughput requirement. […] Even with the [new] 5G paradigms for improving EE, the power consumption will still grow because of the explosive data rate requirements in the future. Therefore, improving EE can only alleviate the power consumption problem to a certain extent and is insufficient for enabling sustainable 5G communications.[63] (pp. 72–73)
4. Discussion: Gaining Perspective through Electronic Waste (E-Waste) Crisis
4.1. Snapshot on the Global E-Waste Crisis
By placing the emphasis on scientific uncertainty [i.e., error reduction and distribution], [we] utterly misconstrue the nature of the obstacle that keeps us from acting in the face of [collective] catastrophe. The obstacle is not uncertainty, scientific or otherwise; it is the impossibility of believing that the worst is going to occur. […] Even when it is known that it is going to take place, a catastrophe is not credible: this is the principal obstacle.[139] (pp. 577, 585–586)
4.2. Neither Hope Nor Hoax: The E-Waste IoT as a Quintessential Paradox of Knowledge
The application of digital technologies in the transition to a circular electronics value chain is still developing and its impact on the space is still not completely understood or expansively studied. While there is consensus on the benefits of digitalization in accelerating circularity, it can pose negative impacts as well. […] Such an evolution needs to be complemented with continuing research and efforts to understand its impact on the electronics value chain and its stakeholders, considering the most vulnerable such as those working in the informal sector. Digitalization comes with numerous benefits, but an unregulated space can alienate some of those involved and potentially underscore inequalities, infringe on privacy and even create more e-waste.[98] (p. 22, 28)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intelligent Assets: Unlocking the Circular Economy Potential; Ellen MacArthur Foundation: Cowes, UK, 2016; Available online: https://ellenmacarthurfoundation.org/intelligent-assets-unlocking-the-circular-economy-potential (accessed on 24 April 2023).
- Lonca, G.; Muggéo, R.; Imbeault-Tétreault, H.; Bernard, S.; Margni, M. Does material circularity rhyme with environmental efficiency? Case studies on used tires. J. Clean. Prod. 2018, 183, 424–435. [Google Scholar] [CrossRef]
- Luis, P.H. Closing the Loop—An EU Action Plan for Circular Economy; OECD—Organisation for Economic Co-Operation and Development: Paris, France, 2016; Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final (accessed on 23 July 2024).
- Audet, R. Transition as discourse. Int. J. Sustain. Dev. 2016, 19, 365–382. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Ferry, L. Les Sept Écologies; L’Observatoire: New York, NY, USA, 2021. [Google Scholar]
- Friant, M.C.; Vermeulen, W.J.; Salomone, R. A typology of circular economy discourses: Navigating the diverse visions of a contested paradigm. Resour. Conserv. Recycl. 2020, 161, 104917. [Google Scholar] [CrossRef]
- Bauwens, T.; Hekkert, M.; Kirchherr, J. Circular futures: What Will They Look Like? Ecol. Econ. 2020, 175, 106703. [Google Scholar] [CrossRef]
- Gu, F.; Ma, B.; Guo, J.; Summers, P.A.; Hall, P. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study. Waste Manag. 2017, 68, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Miaoudakis, A.; Petroulakis, N.; Fysarakis, K.; Alexaki, S.; Alexandirs, G.; Ioannidis, S.; Spanoudakis, G.; Katos, V.; Verikoukis, C. Pairing a Circular Economy and the 5G-Enabled Internet of Things: Creating a Class of Looping Smart Assets? IEEE Veh. Technol. Mag. 2020, 15, 20–31. [Google Scholar] [CrossRef]
- Akbari, M. Revolutionizing supply chain and circular economy with edge computing: Systematic review, research themes and future directions. Manag. Decis. 2023; ahead of print. [Google Scholar] [CrossRef]
- Magrini, C.; Nicolas, J.; Berg, H.; Bellini, A.; Paolini, E.; Vincenti, N.; Campadello, L.; Bonoli, A. Using Internet of Things and Distributed Ledger Technology for Digital Circular Economy Enablement: The Case of Electronic Equipment. Sustainability 2021, 13, 4982. [Google Scholar] [CrossRef]
- Agrawal, R.; Wankhede, V.A.; Kumar, A.; Luthra, S.; Majumdar, A.; Kazancoglu, Y. An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling. Oper. Manag. Res. 2022, 15, 609–626. [Google Scholar] [CrossRef]
- Genovese, A.; Pansera, M. The circular economy at a crossroads: Technocratic eco-modernism or convivial technology for social revolution? Capital. Nat. Social. 2021, 32, 95–113. [Google Scholar] [CrossRef]
- Lowe, B.H.; Genovese, A. What theories of value (could) underpin our circular futures? Ecol. Econ. 2022, 195, 107382. [Google Scholar] [CrossRef]
- Figge, F.; Thorpe, A.S. The symbiotic rebound effect in the circular economy. Ecol. Econ. 2019, 163, 61–69. [Google Scholar] [CrossRef]
- Lazarevic, D.; Valve, H. Narrating expectations for the circular economy: Towards a common and contested European transition. Energy Res. Soc. Sci. 2017, 31, 60–69. [Google Scholar] [CrossRef]
- Desvaux, P. Économie circulaire acritique et condition post-politique: Analyse de la valorisation des déchets en France. Flux 2017, 108, 36. [Google Scholar] [CrossRef]
- Leclerc, S.H.; Badami, M.G. Extended producer responsibility for E-waste management: Policy drivers and challenges. J. Clean. Prod. 2020, 251, 119657. [Google Scholar] [CrossRef]
- Laudan, L. Thinking about Error in the Law. In Social Epistemology: Essential Readings; Oxford University Press: Oxford, UK, 2011; pp. 271–296. [Google Scholar]
- Zink, T.; Geyer, R. Circular economy rebound. J. Ind. Ecol. 2017, 21, 593–602. [Google Scholar] [CrossRef]
- Coady, D.; Fricker, M. Introduction to Special Issue on Applied Epistemology. J. Appl. Philos. 2017, 34, 153–156. [Google Scholar] [CrossRef]
- Gendron, C.; Ivanaj, S.; Girard, B.; Arpin, M.-L. Science-fiction literature as inspiration for social theorizing within sustainability research. J. Clean. Prod. 2017, 164, 1553–1562. [Google Scholar] [CrossRef]
- Mercer, D. Why Popper can’t resolve the debate over global warming: Problems with the uses of philosophy of science in the media and public framing of the science of global warming. Public Underst. Sci. 2018, 27, 139–152. [Google Scholar] [CrossRef]
- Bradshaw, G.A.; Borchers, J.G. Uncertainty as information: Narrowing the science-policy gap. Conserv. Ecol. 2000, 4, 7. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Ballard, T.; Pancost, R.D. Uncertainty as knowledge. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20140462. [Google Scholar] [CrossRef]
- Arpin, M.-L.; Merveille, N.; Revéret, J.-P. Between Scientific Orthodoxy and Informal Epistemology: How Is the Tension between LCA Knowledge and Purpose Resolved in Practice? Ph.D. Thesis, Université du Québec à Montréal, Montréal, QC, Canada, 2020. Available online: http://archipel.uqam.ca/id/eprint/13683 (accessed on 1 January 2024).
- Freidberg, S. From behind the curtain: Talking about values in LCA. Int. J. Life Cycle Assess. 2018, 23, 1410–1414. [Google Scholar] [CrossRef]
- Temesgen, A.; Storsletten, V.; Jakobsen, O. Circular economy–reducing symptoms or radical change? Philos. Manag. 2021, 20, 37–56. [Google Scholar] [CrossRef]
- Patton, M.; Quinn, Q. Qualitative Research and Evaluation Methods, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Saltelli, A.; Giampietro, M. What is wrong with evidence based policy, and how can it be improved? Futures 2017, 91, 62–71. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Hammitt, J.K.; Pease, W.S. A Theoretical Foundation for Life-Cycle Assessment: Recognizing the Role of Values in Environmental Decision Making. J. Ind. Ecol. 2000, 4, 13–28. [Google Scholar] [CrossRef]
- Hofstetter, P. The value debate: Ecodesign in a global context are there differences in global values and do they matter? Int. J. Life Cycle Assess. 2002, 7, 62–63. [Google Scholar] [CrossRef]
- Nathan, C.; Coles, S. Life Cycle Assessment and Judgement. NanoEthics 2020, 14, 271–283. [Google Scholar] [CrossRef]
- Lo Piano, S.; Benini, L. A critical perspective on uncertainty appraisal and sensitivity analysis in life cycle assessment. J. Ind. Ecol. 2022, 26, 763–781. [Google Scholar] [CrossRef]
- Ravetz, J.R. Postnormal Science and the maturing of the structural contradictions of modern European science. Futures 2011, 43, 142–148. [Google Scholar] [CrossRef]
- Longino, H.E. Science as Social Knowledge: Values and Objectivity in Scientific Inquiry; Princeton University Press: Princeton, NJ, USA, 1990. [Google Scholar]
- Andersen, I.; Ishii, N.; Brooks, T.; Cummis, C.; Fonseca, G.; Hillers, A.; Macfarlane, N.; Nakicenovic, N.; Moss, K.; Rockström, J.; et al. Defining ‘science-based targets’. Natl. Sci. Rev. 2021, 8, nwaa186. [Google Scholar] [CrossRef]
- Arendt, H. Thinking and Moral Considerations: A Lecture. Soc. Res. 1971, 38:3, 417–446. [Google Scholar]
- Arendt, H. Hannah Arendt Papers: Speeches and Writings File, -1975; Essays and lectures; Remarks; American Society of Christian Ethics, Richmond, Va. 1973. [Manuscript/Mixed Material] Retrieved from the Library of Congress. Available online: https://www.loc.gov/item/mss1105601295/ (accessed on 23 June 2024).
- Bourdieu, P. The peculiar history of scientific reason. Sociol. Forum 1991, 6, 3–26. [Google Scholar] [CrossRef]
- Collins, H.; Evans, R. Rethinking Expertise; Paperback edition; University of Chicago Press: Chicago, IL, USA; London, UK, 2009. [Google Scholar]
- Hoffmann, S.; Weber, C.; Mitchell, C. Principles for Leading, Learning, and Synthesizing in Inter- and Transdisciplinary Research. BioScience 2022, 72, 963–977. [Google Scholar] [CrossRef]
- Callard, F.; Fitzgerald, D. Rethinking Interdisciplinarity across the Social Sciences and Neurosciences; Palgrave Macmillan: London, UK, 2015. [Google Scholar]
- Hoffmann, S.; Deutsch, L.; Klein, J.T.; O’Rourke, M. Integrate the integrators! A call for establishing academic careers for integration experts. Humanit. Soc. Sci. Commun. 2022, 9, 147. [Google Scholar] [CrossRef]
- Rejeb, A.; Suhaiza, Z.; Rejeb, K.; Seuring, S.; Treiblmaier, H. The Internet of Things and the circular economy: A systematic literature review and research agenda. J. Clean. Prod. 2022, 350, 131439. [Google Scholar] [CrossRef]
- Mboli, J.S.; Thakker, D.; Mishra, J.L. An Internet of Things-enabled decision support system for circular economy business model. Softw. Pract. Exp. 2022, 52, 772–787. [Google Scholar] [CrossRef]
- Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 2014, 1, 2053951714528481. [Google Scholar] [CrossRef]
- Calude, C.S.; Longo, G. The Deluge of Spurious Correlations in Big Data. Found. Sci. 2017, 22, 595–612. [Google Scholar] [CrossRef]
- Smith, G. Data mining fool’s gold. J. Inf. Technol. 2020, 35, 182–194. [Google Scholar] [CrossRef]
- Pirson, T.; Bol, D. Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approach. J. Clean. Prod. 2021, 322, 128966. [Google Scholar] [CrossRef]
- Ligozat, A.-L.; Lefevre, J.; Bugeau, A.; Combaz, J. Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle Assessment of AI Solutions. Sustainability 2022, 14, 5172. [Google Scholar] [CrossRef]
- Schad, J.; Lewis, M.W.; Raisch, S.; Smith, W.K. Paradox research in management science: Looking back to move forward. Acad. Manag. Ann. 2016, 10, 5–64. [Google Scholar] [CrossRef]
- Arpin, M.-L. L’Ingénieur: Entre Problème et Paradoxe. Ph.D. Thesis, Université du Québec à Montréal, Montréal, QC, Canada, 2020. Available online: http://archipel.uqam.ca/id/eprint/13683 (accessed on 1 January 2024).
- Cunha, M.P.; Clegg, S. Persistence in Paradox. In Dualities, Dialectics, and Paradoxes in Organizational Life; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Berti, M.; Simpson, A.V. The dark side of organizational paradoxes: The dynamics of disempowerment. Acad. Manag. Rev. 2021, 46, 252–274. [Google Scholar] [CrossRef]
- Meng, X.-L. Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 US presidential election. Ann. Appl. Stat. 2018, 12, 685–726. [Google Scholar] [CrossRef]
- Ghoroghi, A.; Rezgui, Y.; Petri, I.; Beach, T. Advances in application of machine learning to life cycle assessment: A literature review. Int. J. Life Cycle Assess. 2022, 27, 433–456. [Google Scholar] [CrossRef]
- Zhang, A.; Zhong, R.Y.; Farooque, M.; Kang, K.; Venkatesh, V.G. Blockchain-based life cycle assessment: An implementation framework and system architecture. Resour. Conserv. Recycl. 2020, 152, 104512. [Google Scholar] [CrossRef]
- Iglesias-Suarez, F.; Gentine, P.; Solino-Fernandez, B.; Beucler, T.; Pritchard, M.; Runge, J.; Eyring, V. Causally-Informed Deep Learning to Improve Climate Models and Projections. J. Geophys. Res. Atmos. 2024, 129, e2023JD039202. [Google Scholar] [CrossRef]
- Pagoropoulos, A.; Pigosso, D.C.A.; McAloone, T.C. The Emergent Role of Digital Technologies in the Circular Economy: A Review. Procedia CIRP 2017, 64, 19–24. [Google Scholar] [CrossRef]
- Canu, C.; Beaudry, R.; Delafosse, M.J.A. Die-Level Serialization Platform Demonstration. In Proceedings of the 2024 35th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Albany, NY, USA, 13 May 2024; pp. 1–5. [Google Scholar]
- Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R. An overview of sustainable green 5G networks. IEEE Wirel. Commun. 2017, 24, 72–80. [Google Scholar] [CrossRef]
- Gillingham, K.; Rapson, D.; Wagner, G. The rebound effect and energy efficiency policy. Rev. Environ. Econ. Policy 2016, 10, 1–37. [Google Scholar] [CrossRef]
- Castro, C.G.; Trevisan, A.H.; Pigosso, D.C.A.; Mascarenhas, J. The rebound effect of circular economy: Definitions, mechanisms and a research agenda. J. Clean. Prod. 2022, 345, 131136. [Google Scholar] [CrossRef]
- Giampietro, M.; Funtowicz, S.O. From elite folk science to the policy legend of the circular economy. Environ. Sci. Policy 2020, 109, 64–72. [Google Scholar] [CrossRef]
- Saltelli, A.; Funtowicz, S. What is science’s crisis really about? Futures 2017, 91, 5–11. [Google Scholar] [CrossRef]
- Saltelli, A. Why science’s crisis should not become a political battling ground. Futures 2018, 104, 85–90. [Google Scholar]
- Howe, L.C.; MacInnis, B.; Krosnick, J.A.; Markowitz, E.M.; Socolow, R. Acknowledging uncertainty impacts public acceptance of climate scientists’ predictions. Nat. Clim. Chang. 2019, 9, 863–867. [Google Scholar] [CrossRef]
- Freudenburg, W.R.; Gramling, R.; Davidson, D.J. Scientific Certainty Argumentation Methods (SCAMs): Science and the Politics of Doubt*. Sociol. Inq. 2008, 78, 2–38. [Google Scholar] [CrossRef]
- Lewis, M.W. Exploring paradox: Toward a more comprehensive guide. Acad. Manag. Rev. 2000, 25, 760–776. [Google Scholar] [CrossRef]
- Lewis, M.W.; Smith, W.K. Reflections on the 2021 AMR Decade Award: Navigating Paradox Is Paradoxical. Acad. Manag. Rev. 2022, 47, 528–548. [Google Scholar] [CrossRef]
- Felsberger, A.; Reiner, G. Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review. Sustainability 2020, 12, 7982. [Google Scholar] [CrossRef]
- Bordeleau, F.-È.; Santa-Eulalia, L.A.; Mosconi, E. Digital transformation framework: Creating sensing, smart, sustainable and social (S^4) organisations. In Proceedings of the 54th Hawaii International Conference on System Sciences, HICSS-54, Kauai, HI, USA, 5 January 2021. [Google Scholar]
- Rajput, S.; Singh, S.P. Industry 4.0 Model for circular economy and cleaner production. J. Clean. Prod. 2020, 277, 123853. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, Z. Advanced manufacturing systems: Supply-demand matching of manufacturing resource based on complex networks and Internet of Things. Enterp. Inf. Syst. 2018, 12, 780–797. [Google Scholar] [CrossRef]
- de Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet–Can industry 4.0 revolutionize the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Chang. 2018, 132, 18–25. [Google Scholar] [CrossRef]
- Hatzivasilis, G.; Christodoulakis, N.; Tzagkarakis, C.; Ioannidis, S.; Demetriou, G.; Fysarakis, K.; Panayiotou, M. The CE-IoT framework for green ICT organizations: The interplay of CE-IoT as an enabler for green innovation and e-waste management in ICT. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 436–442. [Google Scholar]
- Nobre, G.C.; Tavares, E. Scientific literature analysis on big data and internet of things applications on circular economy: A bibliometric study. Scientometr. Int. J. Quant. Asp. Sci. Sci. Commun. Sci. Sci. Policy 2017, 111, 463–492. [Google Scholar] [CrossRef]
- Nižetić, S.; Šolić, P.; López-de-Ipiña González-de-Artaza, D.; Patrono, L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef] [PubMed]
- Hittinger, E.; Jaramillo, P. Internet of Things: Energy boon or bane? Science 2019, 364, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Tamar, M. David Font Vivanco Does the Circular Economy Grow the Pie? The Case of Rebound Effects from Smartphone Reuse. Front. Energy Res. 2018, 6, 39. [Google Scholar] [CrossRef]
- Warmington-Lundström, J.; Laurenti, R. Reviewing circular economy rebound effects: The case of online peer-to-peer boat sharing. Resour. Conserv. Recycl. X 2020, 5, 100028. [Google Scholar] [CrossRef]
- Siderius, T.; Poldner, K. Reconsidering the circular economy rebound effect: Propositions from a case study of the Dutch Circular Textile Valley. J. Clean. Prod. 2021, 293, 125996. [Google Scholar] [CrossRef]
- Ramos, G.; Müller, J.M.; Lees, M. Introduction to the OECD-IIASA Strategic Partnership: The Potential of Systems Analysis for Addressing Global Policy Challenges in the 21st Century. In Systemic Thinking for Policy Making; OECD Publishing: Paris, France, 2020. [Google Scholar]
- IEA Secreteriat. Empowering Cities for a Net Zero Future: Unlocking Resilient, Smart, Sustainable Urban Energy Systems; International Energy Agency (IEA): Paris, France, 2021; Available online: https://iea.blob.core.windows.net/assets/4d5c939d-9c37-490b-bb53-2c0d23f2cf3d/G20EmpoweringCitiesforaNetZeroFuture.pdf (accessed on 23 July 2024).
- Burrell, J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data Soc. 2016, 3, 2053951715622512. [Google Scholar] [CrossRef]
- Langley, A. Between’paralysis by analysis’ and’extinction by instinct’. MIT Sloan Manag. Rev. 1995, 36, 63. [Google Scholar]
- Eisenhardt, K.M. Speed and Strategic Choice: How Managers Accelerate Decision Making. Calif. Manag. Rev. 1990, 32, 39–54. [Google Scholar] [CrossRef]
- Cabantous, L.; Gond, J.-P. Rational Decision Making as Performative Praxis: Explaining Rationality’s Éternel Retour. Organ. Sci. 2011, 22, 573–586. [Google Scholar] [CrossRef]
- Samba, C.; Tabesh, P.; Thanos, I.C.; Papadakis, V.M. Method in the madness? A meta-analysis on the strategic implications of decision comprehensiveness. Strateg. Organ. 2021, 19, 414–440. [Google Scholar] [CrossRef]
- De Neys, W.; Pennycook, G. Logic, Fast and Slow: Advances in Dual-Process Theorizing. Curr. Dir. Psychol. Sci. 2019, 28, 503–509. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Calabretta, G.; Gemser, G.; Wijnberg, N.M. The Interplay between Intuition and Rationality in Strategic Decision Making: A Paradox Perspective. Organ. Stud. 2017, 38, 365–401. [Google Scholar] [CrossRef]
- Rousseau, D.M. The Realist Rationality of Evidence-Based Management. Acad. Manag. Learn. Educ. 2020, 19, 415–424. [Google Scholar] [CrossRef]
- Dyer, J.S.; Smith, J.E. Innovations in the Science and Practice of Decision Analysis: The Role of Management Science. Manag. Sci. 2021, 67, 5364–5378. [Google Scholar] [CrossRef]
- Rittel, H.W.; Webber, M.M. Dilemmas in a general theory of planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Sherpa, Y.; Sinha, D. Digital Solutions for an Electronics Value Chain; International Telecommunication Union, the WEEE Forum, the GSMA and Sofies Group: Geneva, Switzerland, 2021; p. 39. [Google Scholar]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; Nykvist, B.; et al. A safe operating space for humanity: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues. Nature 2009, 461, 472. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.; McAllister, P.; Wyatt, P. Precisely wrong or roughly right? An evaluation of development viability appraisal modelling. J. Financ. Manag. Prop. Constr. 2011, 16, 249–271. [Google Scholar] [CrossRef]
- Easterlin, R.A. Does economic growth improve the human lot? Some empirical evidence. In Nations and Households in Economic Growth; Elsevier: Amsterdam, The Netherlands, 1974; pp. 89–125. [Google Scholar]
- Boltanski, L.; Chiapello, È. Le Nouvel Esprit du Capitalisme; NRF Essais; Gallimard: Paris, France, 1999. [Google Scholar]
- Kerschner, C.; Wächter, P.; Nierling, L.; Ehlers, M.-H. Degrowth and Technology: Towards feasible, viable, appropriate and convivial imaginaries. J. Clean. Prod. 2018, 197, 1619–1636. [Google Scholar] [CrossRef]
- Saltelli, A. Ethics of quantification or quantification of ethics? Futures 2020, 116, 102509. [Google Scholar]
- Schad, J.; Bansal, P. Seeing the forest and the trees: How a systems perspective informs paradox research. J. Manag. Stud. 2018, 55, 1490–1506. [Google Scholar] [CrossRef]
- Smith, W.K.; Lewis, M.W. Toward a theory of paradox: A dynamic equilibrium model of organizing. Acad. Manag. Rev. 2011, 36, 381–403. [Google Scholar]
- Schulte, M.N.; Paris, C.M. Working the system—An empirical analysis of the relationship between systems thinking, paradoxical cognition, and sustainability practices. Corp. Soc. Responsib. Environ. Manag. 2024; early view. [Google Scholar] [CrossRef]
- Gligoric, N.; Krco, S.; Hakola, L.; Vehmas, K.; De, S.; Moessner, K.; Jansson, K.; Polenz, I.; Van Kranenburg, R. Smarttags: IoT product passport for circular economy based on printed sensors and unique item-level identifiers. Sensors 2019, 19, 586. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.; Assunção, M.D.; Barbosa, J.; Blanco, V.; Brandic, I.; Da Costa, G.; Dolz, M.F.; Elster, A.C.; Jarus, M.; Karatza, H.D.; et al. Energy monitoring as an essential building block towards sustainable ultrascale systems. Sustain. Comput. Inform. Syst. 2018, 17, 27–42. [Google Scholar] [CrossRef]
- Maibach, E.; Leiserowitz, A.; Cobb, S.; Shank, M.; Cobb, K.M.; Gulledge, J. The legacy of climategate: Undermining or revitalizing climate science and policy? Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 289–295. [Google Scholar]
- Raman, S.; Pearce, W. Learning the lessons of Climategate: A cosmopolitan moment in the public life of climate science. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e672. [Google Scholar]
- Langley, A. Strategies for theorizing from process data. Acad. Manag. Rev. 1999, 24, 691–710. [Google Scholar]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Widmer, R.; Oswald-Krapf, H.; Sinha-Khetriwal, D.; Schnellmann, M.; Böni, H. Global perspectives on e-waste. Environ. Impact Assess. Rev. 2005, 25, 436–458. [Google Scholar] [CrossRef]
- Pickren, G. Political Ecologies of Electronic Waste: Uncertainty and Legitimacy in the Governance of E-Waste Geographies. Environ. Plan. Econ. Space 2014, 46, 26–45. [Google Scholar] [CrossRef]
- Baldé, C.P.; Kuehr, R.; Yamamoto, T.; McDonald, R.; D’Angelo, E.; Althaf, S.; Bel, G.; Deubzer, O.; Fernandez-Cubillo, E.; Forti, V.; et al. International Telecommunication Union (ITU) and United Nations Institute for Training and Research (UNITAR). 2024. Global E-waste Monitor 2024. Geneva/Bonn. Pdf Version: 978-92-61-38781-5. 2024. Available online: https://www.unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling (accessed on 24 April 2024).
- United Nations Environment Program (UNEP). Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal; United Nations Environment Program (UNEP): Gigiri Nairobi, Kenya, 1989; Available online: https://www.basel.int/Portals/4/download.aspx?d=UNEP-CHW-IMPL-CONVTEXT.English.pdf (accessed on 23 July 2024).
- Colding, J.; Barthel, S.; Sörqvist, P. Wicked Problems of Smart Cities. Smart Cities 2019, 2, 512–521. [Google Scholar] [CrossRef]
- Taddeo, M.; Floridi, L. How AI can be a force for good. Science 2018, 361, 751–752. [Google Scholar] [CrossRef]
- Clark, L.A.; Clark, W.R. Global E-waste: Unintended Consequences of Marketing Strategies Necessitates A Plan for Change. J. Manag. Issues 2019, 31, 331–347. [Google Scholar]
- Bhaskar, K.; Kumar, B. Electronic waste management and sustainable development goals. J. Indian Bus. Res. 2019, 11, 120–137. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event, 3–10 March 2021; pp. 610–623. [Google Scholar]
- Oduque de Jesus, J.; Oliveira-Esquerre, K.; Lima Medeiros, D. Integration of Artificial Intelligence and Life Cycle Assessment Methods. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1196, 012028. [Google Scholar] [CrossRef]
- Matthess, M.; Kunkel, S. Structural change and digitalization in developing countries: Conceptually linking the two transformations. Technol. Soc. 2020, 63, 101428. [Google Scholar] [CrossRef]
- Santarius, T.; Pohl, J.; Lange, S. Digitalization and the decoupling debate: Can ICT help to reduce environmental impacts while the economy keeps growing? Sustainability 2020, 12, 7496. [Google Scholar] [CrossRef]
- Evans, O. Digital politics: Internet and democracy in Africa. J. Econ. Stud. 2019, 46, 169–191. [Google Scholar] [CrossRef]
- Fuchs, C.; Horak, E. Africa and the digital divide. Telemat. Inform. 2008, 25, 99–116. [Google Scholar] [CrossRef]
- De Lannoy, A. Youth, Deprivation and the Internet in Africa; Policy Paper 4, Series 5; RIA—Research ICT Africa: Cape Town, South Africa, 2018. [Google Scholar]
- Scheerder, A.; Van Deursen, A.; Van Dijk, J. Determinants of Internet skills, uses and outcomes. A systematic review of the second-and third-level digital divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Robinson, L.; Cotten, S.R.; Ono, H.; Quan-Haase, A.; Mesch, G.; Chen, W.; Schulz, J.; Hale, T.M.; Stern, M.J. Digital inequalities and why they matter. Inf. Commun. Soc. 2015, 18, 569–582. [Google Scholar] [CrossRef]
- Asante, K.A.; Amoyaw-Osei, Y.; Agusa, T. E-waste recycling in Africa: Risks and opportunities. Curr. Opin. Green Sustain. Chem. 2019, 18, 109–117. [Google Scholar] [CrossRef]
- Grant, R.; Oteng-Ababio, M. Mapping the invisible and real “African” economy: Urban e-waste circuitry. Urban Geogr. 2012, 33, 1–21. [Google Scholar] [CrossRef]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association: Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020. [Google Scholar]
- Lifset, R.; Atasu, A.; Tojo, N. Extended producer responsibility: National, international, and practical perspectives. J. Ind. Ecol. 2013, 17, 162–166. [Google Scholar] [CrossRef]
- Thapa, K.; Vermeulen, W.J.V.; Deutz, P.; Olayide, O. Ultimate producer responsibility for e-waste management–A proposal for just transition in the circular economy based on the case of used European electronic equipment exported to Nigeria. Bus. Strategy Dev. 2023, 6, 33–52. [Google Scholar] [CrossRef]
- WEEE Forum. Legally Binding Quality Standards for WEEE Treatment—Action Needed! Available online: https://weee-forum.org/ws_news/news-2/ (accessed on 15 November 2021).
- Leclerc, S.H.; Badami, M.G. Informal E-Waste Flows in Montréal: Implications for Extended Producer Responsibility and Circularity. Environ. Manag. 2023, 72, 1032–1049. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, J.-P. The Precautionary Principle and Enlightened Doomsaying. Rev. Métaphys. Morale 2012, 76, 577. [Google Scholar] [CrossRef]
- Binder, A. For Love and Money: Organizations’ Creative Responses to Multiple Environmental Logics. Theory Soc. 2007, 36, 547–571. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; 1 Online Resource; CRC Press: Boca Raton, FL, USA, 2016; 454p, Available online: https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4771740 (accessed on 23 July 2024).
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Resource Demand Scenarios for the Major Metals. Environ. Sci. Technol. 2018, 52, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Schröder, P.; Bengtsson, M.; Cohen, M.; Dewick, P.; Hofstetter, J.; Sarkis, J. Degrowth within–Aligning circular economy and strong sustainability narratives. Resour. Conserv. Recycl. 2019, 146, 190–191. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H. Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach. J. Educ. Bus. 2011, 86, 208. [Google Scholar] [CrossRef]
- Groen, E.; Heijungs, R. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: What is the risk? Environ. Impact Assess. Rev. 2017, 62, 98–109. [Google Scholar] [CrossRef]
- Hayek, F.A. Droit, Législation et Liberté: Une Nouvelle Formulation des Principes Libéraux de Justice et d”Économie Politique. Volume 3, L’ordre Politique D’un Peuple Libre, 2nd ed.; Libre Échange, 0292-7020; Presses Universitaires de France: Paris, France, 1989. [Google Scholar]
- Giddens, A. Les Conséquences de la Modernité; Torrossa: Fiesole, Italy, 1985; pp. 1–186. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arpin, M.-L.; Leclerc, S.H.; Lonca, G. The Circular Economy (CE) Rebound as a Paradox of Knowledge: Forecasting the Future of the CE–IoT Nexus through the Global E-Waste Crisis. Sustainability 2024, 16, 6364. https://doi.org/10.3390/su16156364
Arpin M-L, Leclerc SH, Lonca G. The Circular Economy (CE) Rebound as a Paradox of Knowledge: Forecasting the Future of the CE–IoT Nexus through the Global E-Waste Crisis. Sustainability. 2024; 16(15):6364. https://doi.org/10.3390/su16156364
Chicago/Turabian StyleArpin, Marie-Luc, Stéphanie H. Leclerc, and Geoffrey Lonca. 2024. "The Circular Economy (CE) Rebound as a Paradox of Knowledge: Forecasting the Future of the CE–IoT Nexus through the Global E-Waste Crisis" Sustainability 16, no. 15: 6364. https://doi.org/10.3390/su16156364
APA StyleArpin, M. -L., Leclerc, S. H., & Lonca, G. (2024). The Circular Economy (CE) Rebound as a Paradox of Knowledge: Forecasting the Future of the CE–IoT Nexus through the Global E-Waste Crisis. Sustainability, 16(15), 6364. https://doi.org/10.3390/su16156364