Dynamic Calculation Method for Zonal Carbon Emissions in Power Systems Based on the Theory of Production Simulation and Carbon Emission Flow Theory
Abstract
:1. Introduction
2. Calculation Method of Power Flow and Carbon Emission Flow Based on Chain Matrix
3. Simulation Models for New-Generation Power Systems Operation
3.1. Establishment of the Target Function
3.1.1. System’s Maintenance Costs
3.1.2. Annual Carbon Emission Cost of System
3.1.3. The Cost of Power Shortage Loss
3.2. Constraint Conditions
3.2.1. Power Balance Constraint
- (1)
- Branch Power Flow Distribution Matrix
- (2)
- Unit Injection Distribution Matrix
- (3)
- Load Distribution Matrix
- (4)
- Demand-side Response Distribution Matrix
- (5)
- Load Power Shortage Distribution Matrix
- (6)
- Renewable energy curtailment distribution matrix
3.2.2. System Power Flow Constraints
3.2.3. System Spinning Reserve Constraints
3.2.4. Constraints on Power Generation Technology
3.2.5. Constraints of an Energy Storage System
3.2.6. System Generation Adequacy Constraint
3.2.7. System Reliability Constraint
4. Instance Application Results
4.1. IEEE 14-Bus System
4.1.1. Verification of Optimal Power Flow Accuracy Based on Node Connectivity Matrix
4.1.2. Verification of Carbon Emission Accuracy Based on Node Linkage Matrix
4.1.3. Verification of Carbon Emission Conservation Based on Node Linkage Matrix
4.2. Actual Provincial System
4.2.1. Analysis of Generating Unit Output Combination Characteristics
4.2.2. Impact of Renewable Energy on Regional Carbon Emissions
4.2.3. Analysis of the Rationality of Carbon Emissions Calculated on the Load Side
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Description |
Carbon emission factor of unit k at node i | |
Power flow from node n to node i | |
Average carbon potential at node n | |
System operation cost | |
System carbon emission cost | |
Deficiency loss cost | |
Fixed operation and maintenance (O&M) cost | |
Unit generation cost | |
Unit start–stop cost | |
Demand-side response (DSR) operation cost | |
Energy storage operation cost | |
, | Conventional unit and DSR unit capacity O&M cost |
, | Energy storage unit power and unit capacity O&M cost |
System main body operation duration | |
, , | Generation cost coefficient of conventional units |
Generation power of conventional units at time t | |
Unit start–stop status | |
, | Unit capacity start and stop costs at time t |
, | Unit start and stop actions at time t |
DSR unit power O&M cost at time t | |
Adjusted power of DSR at time t | |
Energy storage unit power cost at time t | |
Discharge power of energy storage at time t | |
Charge and discharge efficiency of energy storage | |
Penalty cost per unit of carbon emission | |
Penalty cost per unit of power supply deficiency | |
Power deficiency of load m at node i at time t | |
Inflow power from node n to node i | |
Generation power of unit k connected at node i | |
Adjustable depth of unit k connected at node i | |
Response power of DSR m connected at node i | |
Power deficiency of load m connected at node i | |
Power consumption of load m connected at node i | |
Outflow power from node i to node n | |
Abandoned power of renewable energy l connected at node i | |
System load reserve rate | |
, | Minimum and maximum technical output levels of units |
, | Maximum upward and downward ramping capabilities of units |
, | Minimum continuous on and off times of units |
Forecast energy factor of renewable energy units | |
Energy state of energy storage | |
Credible capacity coefficient of generators | |
Credible capacity coefficient of energy storage | |
System generation adequacy coefficient | |
Remaining energy of energy storage s at time t | |
Important load quantity at node i | |
Power supply guarantee coefficient for important loads |
Appendix A
Node | Coal-Fired Powe | Gas-Fired Powe | Energy Storage | Photovoltaic | Pumped Storage | Hydropower | Offshore Wind Power | Nuclear Power |
---|---|---|---|---|---|---|---|---|
1 | 4580 | 10 | 2.4 | 1201.5 | ||||
2 | 3130 | |||||||
3 | 5000 | 1200 | 3500 | 6516 | ||||
4 | 1140 | 15.23 | ||||||
5 | 700 | 1712 | ||||||
6 | 2900 | 1340.8 | 2.5 | |||||
7 | 6020 | 906 | 778 | 3500 | ||||
8 | 3680 | 4276.6 | 2400 | |||||
9 | 1003.2 | 220 | 1280 | 266 | ||||
10 | 3860 | 257.8 | 132 | |||||
11 | 2660 | 2550 | 2400 | 250 | ||||
12 | 3200 | 515 | ||||||
13 | 2790 | 1200 | 144 | |||||
14 | 3200 | 207.64 | 824.5 | |||||
15 | 5272 | 245 | ||||||
16 | 3260 | |||||||
17 | 4520 | 1400 | ||||||
18 | 2640 | 5071.4 | 10 | |||||
19 | 600 | 4618 | ||||||
20 | 2600 | 2990 | 370.75 | |||||
21 | 4060 | 3097.6 | 1200 | 6120 |
Node | 5 | 6 | 7 | 8 | 9 | 11 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | |||||||||||
1 | 304 | 329.9 | 303 | 441 | 336.6 | 390 | 475 | 390 | 465 | 390 | |
2 | 304 | 329.9 | 303 | 441 | 336.6 | 390 | 475 | 390 | 465 | 390 | |
3 | 273 | 160.5 | 150 | 423 | 165 | 390 | 336.6 | 340 | 320 | 390 | |
4 | 273 | 160.5 | 150 | 423 | 165 | 310 | 336.6 | 340 | 320 | 390 | |
5 | 143 | 120 | 0 | 390 | 0 | 310 | 336.6 | 340 | 270 | 390 | |
6 | 143 | 120 | 0 | 390 | 0 | 310 | 336.6 | 320 | 270 | 390 | |
7 | 136 | 60 | 0 | 320 | 0 | 150 | 326.85 | 320 | 140 | 336.6 | |
8 | 136 | 60 | 0 | 320 | 0 | 150 | 326.85 | 320 | 140 | 180 | |
9 | 0 | 0 | 0 | 228.3 | 0 | 150 | 325 | 181 | 120 | 161 | |
10 | 0 | 0 | 0 | 228.3 | 0 | 0 | 325 | 181 | 120 | 80 | |
11 | 0 | 0 | 0 | 140 | 0 | 0 | 165 | 140 | 120 | 0 | |
12 | 0 | 0 | 0 | 140 | 0 | 0 | 160 | 140 | 120 | 0 | |
13 | 0 | 0 | 0 | 136 | 0 | 0 | 150 | 140 | 60 | 0 | |
14 | 0 | 0 | 0 | 136 | 0 | 0 | 145.65 | 120 | 60 | 0 | |
15 | 0 | 0 | 0 | 60 | 0 | 0 | 145.65 | 120 | 0 | 0 | |
16 | 0 | 0 | 0 | 60 | 0 | 0 | 145 | 120 | 0 | 0 | |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 145 | 120 | 0 | 0 | |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 120 | 0 | 0 | |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 120 | 0 | 0 | |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 88 | 0 | 0 | |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 88 | 0 | 0 | |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 60 | 0 | 0 | |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 | |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | ||||||||||||||||||||||
1 | 1000 | 1000 | 1240 | 300 | 350 | 600 | 1000 | 330 | 0 | 600 | 1000 | 1000 | 600 | 1000 | 1036 | 1000 | 1000 | 660 | 300 | 700 | 1050 | |
2 | 1000 | 1000 | 1240 | 300 | 350 | 600 | 1000 | 330 | 0 | 600 | 1000 | 1000 | 600 | 1000 | 1036 | 1000 | 1000 | 660 | 300 | 700 | 1050 | |
3 | 600 | 600 | 660 | 135 | 0 | 330 | 150 | 330 | 0 | 350 | 330 | 600 | 300 | 600 | 1000 | 630 | 660 | 660 | 0 | 600 | 330 | |
4 | 600 | 330 | 660 | 135 | 0 | 330 | 150 | 330 | 0 | 350 | 330 | 600 | 300 | 600 | 1000 | 600 | 660 | 330 | 0 | 600 | 330 | |
5 | 330 | 200 | 600 | 135 | 0 | 320 | 600 | 330 | 0 | 350 | 0 | 0 | 300 | 0 | 600 | 30 | 600 | 330 | 0 | 0 | 330 | |
6 | 330 | 0 | 600 | 135 | 0 | 320 | 630 | 330 | 0 | 350 | 0 | 0 | 300 | 0 | 300 | 0 | 600 | 0 | 0 | 0 | 330 | |
7 | 330 | 0 | 0 | 0 | 0 | 200 | 630 | 320 | 0 | 330 | 0 | 0 | 135 | 0 | 300 | 0 | 0 | 0 | 0 | 0 | 320 | |
8 | 330 | 0 | 0 | 0 | 0 | 200 | 630 | 320 | 0 | 330 | 0 | 0 | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 320 | |
9 | 30 | 0 | 0 | 0 | 0 | 0 | 600 | 320 | 0 | 300 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10 | 30 | 0 | 0 | 0 | 0 | 0 | 630 | 320 | 0 | 300 | 0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; pp. 3–24. [Google Scholar] [CrossRef]
- State Grid Energy Research Institute Co., Ltd. China Energy & Electricity Outlook; China Electricity Power Press: Beijing, China, 2021. [Google Scholar]
- National Energy Administration. National Power Industry Statistics in 2023. Available online: https://www.nea.gov.cn/2024-01/26/c_1310762246.htm (accessed on 26 January 2024).
- China Electricity Council. Annual Development Report of China Power Industry. 2023. Available online: https://www.cec.org.cn/detail/index.html?3-322625 (accessed on 30 January 2024).
- Zhang, Z.; Kang, C. Challenges and prospects for constructing the new-type system towards a carbon neutrality power future. Proc. CESS 2022, 42, 2806–2818. [Google Scholar] [CrossRef]
- Chen, Y.; Jing, L.; Ye, P.; Deng, S.; Han, Z. Research on Low-Carbon Assessment and Carbon Reduction Measures for New Distribution Network. Northeast Electr. Power Technol. 2024, 45, 26–31+35. [Google Scholar]
- Xu, Q. Discussion on Carbon Accounting of Steam Boilers based on Emission Factor Method. Ind. Boil. 2023, 4, 12–15+35. [Google Scholar] [CrossRef]
- Ran, P.; Wang, J.; Li, Z.; Liu, X.; Zeng, Q.; Li, W. General Matrix Model of Carbon Emissions and Carbon Sensitivity of Thermal Power Units. J. Chin. Soc. Power Eng. 2024, 44, 947–955. [Google Scholar] [CrossRef]
- Yao, S.; Zhi, J.; Fu, J.; Li, Z.; Lu, Z.; Zhuo, J. Research Progress of Online Carbon Emission Monitoring Technology for Thermal Power Enterprises. J. South China Univ. Technol. (Nat. Sci. Ed.) 2023, 51, 97–108. [Google Scholar] [CrossRef]
- Xu, X.; Ji, X.; Wang, H. Research on Optimization of Combined Cooling, Heating and Power System Based on Full Life Cycle Evaluation. Acta Energiae Solaris Sin. 2024, 45, 360–368. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zhou, C.; Song, J.; Deng, H.; Du, E.; Zhang, N.; Kang, C. A Review of Carbon Emission Measurement and Analysis Methods in Power Systems. Proc. Chin. Soc. Electr. Eng. 2024, 44, 2220–2236. [Google Scholar] [CrossRef]
- Kang, C.; Du, E.; Li, Y.; Zhang, N.; Chen, Q.; Guo, H.; Wang, P. Key Scientific Problems and Research Framework for Carbon Perspective Research of New Power Systems. Power Syst. Technol. 2022, 46, 821–833. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Huang, J.; Li, Y.; Du, E.; Li, M.; Liu, Y.; Kang, C. Carbon Measurement Method and Carbon Meter System for Whole Chain of Power System. Autom. Electr. Power Syst. 2023, 47, 2–12. [Google Scholar]
- Zhou, T.; Kang, C.; Xu, Q.; Chen, Q. Preliminary theoretical investigation on power system carbon emission flow. Autom. Electr. Power Syst. 2012, 36, 38–43+85. [Google Scholar] [CrossRef]
- Ou, Z.; Yang, K.; Lou, Y.; Peng, S.; Li, P.; Zhou, Q. Consider Carbon Emission Flow Analysis of Power System with Regards to Power Loss and Wind Power Uncertainty. J. Phys. Conf. Ser. 2023, 2584, 012107. [Google Scholar] [CrossRef]
- Zhou, T.; Kang, C.; Xu, Q.; Chen, Q. Preliminary investigation on a method for carbon emission flow calculation of power system. Autom. Electr. Power Syst. 2012, 36, 44–49. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, X.; Su, L.; Gao, H.; Xiao, X.; Zhang, L.; Qi, Y. Low-carbon economic operation control strategy of integrated energy system under carbon emission trading mechanism. Electr. Eng. 2023, 14, 10–15+20. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Z.; Zhang, X.; Dou, M.; Liu, X.; Lu, Y.; Lv, X.; Wang, L. Operation optimization strategy of distribution area considering renewable energy output uncertainty and carbon emission cost. Renew. Energy 2024, 42, 407–419. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Liu, W.; Sun, S.; Yu, P.; Zhang, N. Multi-objective optimization allocation method for cloud energy storage in microgrid clusters considering economy, low carbon, and reliability. Autom. Electr. Power Syst. 2024, 48, 21–30. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, L.; Zhao, B.; Xu, J.; Liao, S.; Pang, X. Low-carbon economic dispatch method for distribution network-microgrid cluster considering flexible grouping. Autom. Electr. Power Syst. 2024, 1–23. [Google Scholar] [CrossRef]
- Motalleb, M.; Reihani, E.; Ghorbani, R. Optimal placement and sizing of the storage supporting transmission and distribution networks. Renew. Energy 2016, 94, 651–659. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Chi, C.; Tao, Y.; Li, X.; Jiang, X. Calculation Method of Power System Carbon Emission Flow Based on Power Flow Distribution Matrix. Sci. Technol. Eng. 2022, 22, 4835–4842. [Google Scholar]
- Zhao, J.; Ye, J.; Deng, Y. Comparative analysis on DC power flow and AC power flow. Power Syst. Technol. 2012, 36, 147–152. [Google Scholar]
- Zhu, J.; Shi, K.; Li, Q.; Yu, R.Y.; Xia, J.R.; Yuan, Y. Time series production simulation and renewable energy accommodation capacity evaluation considering transmission network power flow constraints. Power Syst. Technol. 2022, 46, 1947–1955. [Google Scholar] [CrossRef]
- Bo, L. Research on New Power System Optimization Planning Method Considering Operation Simulation under Low Carbon Targets. Ph.D. Thesis, Chongqing University, Chongqing, China, 2022. [Google Scholar]
- Liu, R.; Bao, Z.; Lin, Z. Distributed Low-Carbon Economic Dispatching Coordination of Source, Grid and Load Considering Dual Layer Ladder-Type Carbon Price Mechanism with Reward and Punishment. Autom. Electr. Power Syst. 2024, 9, 11–20. [Google Scholar]
- Cui, Y.; Jiang, S.; Zhao, Y.; Xu, Y.; Zhang, J.; Wang, M.; Wang, Z. Comprehensive energy system low-carbon optimization dispatch considering ultra-carbon demand response. Power Syst. Technol. 2024, 48, 1863–1872. [Google Scholar] [CrossRef]
- Liu, K.; Li, L.; Lin, Z.; Zhao, Q.; Yang, F.; Wang, X. Low-carbon economic dispatch of electricity-gas interconnected system considering carbon emission flow. Electr. Power Autom. Equip. 2024, 44, 1–10. [Google Scholar] [CrossRef]
- Qiao, W.; Han, Y.; Si, F.; Li, K.; Wang, J.; Zhao, Q. Optimal Economic-Emission Scheduling of Coupled Transportation and Power Distribution Networks with Multi-Objective Optimization. IEEE Trans. Ind. Appl. 2023, 59, 4808–4820. [Google Scholar] [CrossRef]
- Ma, M.; Li, Y.; Du, E.; Jiang, H.; Zhang, N.; Wang, W.; Wang, M. Calculating Probabilistic Carbon Emission Flow: An Adaptive Regression-Based Framework. IEEE Trans. Sustain. Energy 2024, 15, 1576–1588. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wu, C. Enable a Carbon Efficient Power Grid via Minimal Uplift Payments. IEEE Trans. Sustain. Energy 2022, 13, 1329–1343. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, J.; Zhang, C. Distribution Network Planning Towards a Low-Carbon Transition: A Spatial-Temporal Carbon Response Method. IEEE Trans. Sustain. Energy 2024, 15, 429–442. [Google Scholar] [CrossRef]
- Zhang, J.; Sang, L.; Xu, Y.; Sun, H. Networked Multiagent-Based Safe Reinforcement Learning for Low-Carbon Demand Management in Distribution Networks. IEEE Trans. Sustain. Energy 2024, 15, 1528–15452024. [Google Scholar] [CrossRef]
- Radovanović, A.; Koningstein, R.; Schneider, I.; Chen, B.; Duarte, A.; Roy, B.; Xiao, D.; Haridasan, M.; Hung, P.; Care, N.; et al. Carbon-Aware Computing for Datacenters. IEEE Trans. Power Syst. 2023, 38, 1270–1280. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Tao, Y. Optimal Power Scheduling Using Data-Driven Carbon Emission Flow Modelling for Carbon Intensity Control. IEEE Trans. Power Syst. 2022, 37, 2894–2905. [Google Scholar] [CrossRef]
- Yang, L.; Luo, J.; Xu, Y.; Zhang, Z.; Dong, Z. A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading. IEEE Trans. Ind. Inform. 2020, 16, 1858–1872. [Google Scholar] [CrossRef]
- Akbari-Dibavar, A.; Mohammadi-Ivatloo, B.; Zare, K.; Khalili, T.; Bidram, A. Economic-Emission Dispatch Problem in Power Systems with Carbon Capture Power Plants. IEEE Trans. Ind. Appl. 2021, 57, 3341–3351. [Google Scholar] [CrossRef]
- Li, J.; Zou, N.; Wu, J.; Yang, Q. Low carbon optimal dispatching of power system considering carbon emission flow theory. In Proceedings of the 2022 9th International Forum on Electrical Engineering and Automation (IFEEA), Zhuhai, China, 4–6 November 2022; pp. 532–536. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Xu, X.; Xie, K. Two-Stage Low-Carbon Optimal Scheduling of Power System Based on Carbon Flow Theory and Demand Response. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 27–30 April 2023; pp. 1030–1034. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, L.; Wu, H.; Liu, H.; Liao, P.; Chen, Y. Optimal Scheduling of Load Aggregators Participating in Demand Response Market under Low-Carbon Power System. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–24 October 2021; pp. 4034–4040. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yang, X.; He, W.; Fang, Y.; Du, E.; Zhang, N.; Li, J. Electricity Carbon Metering Method Considering Electricity Transaction Information. Proc. Chin. Soc. Electr. Eng. 2024, 44, 439–451. [Google Scholar] [CrossRef]
- Jacobson, M.Z. 100% Clean, Renewable Energy and Storage for Everything; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Li, M.; Fan, Y.; Wang, Y.; Wang, W.; Niu, S.; Wei, W. Coordinated optimization of wind and solar power storage in new energy bases. Electr. Power Autom. Equip. 2024, 44, 18. [Google Scholar] [CrossRef]
- Li, B.; Chen, M.; Zhong, H.; Ma, Z.; Liu, D.; He, G. A Review of Long-term Planning of New Power Systems with Large Share of Renewable Energy. Proc. Chin. Soc. Electr. Eng. 2023, 43, 555–581. [Google Scholar] [CrossRef]
- Ding, K.; Sun, Y.; Wang, X.; Yang, C.; Li, H. Configuration method of concentrating solar power plant in renewable energy base considering confidence capacity and peak shaving capacity. Guangdong Electr. Power 2024, 37, 25–34. [Google Scholar] [CrossRef]
- Denholm, P.; Nunemaker, J.; Gagnon, P.; Cole, W. The potential for battery energy storage to provide peaking capacity in the United States. Renew. Energy 2020, 151, 1269–1277. [Google Scholar] [CrossRef]
Literature | Simulation Object | Simulation Method | Merits | Deficiencies |
---|---|---|---|---|
[29] | Coupled transportation and power distribution networks | Multi-objective optimization | Achieve an optimal balance between economic efficiency and emission reduction | Without considering the carbon emission flow |
[30] | Consumer-driven carbon intensities in power system | Carbon emission flow calculation method | Adaptive regression-based calculation framework | Unable to coordinate the output of various power sources |
[31] | Carbon efficient power grid | The uplift payment scheme. | Enjoy the advantage of maximal flexibility | Lack of constraints on the actual output status of power generation units |
[32] | Demand-side distribution networks | A spatial-temporal carbon response model based on geographically dispatchable loads | Emission target is embedded in the objective function via the exterior point method | Unable to coordinate the output of various power sources |
[33] | Distribution networks considering the carbon emission allowance on the demand side | A multiagent-based bi-level operation framework | Transfer the responsibility for carbon emissions from generation to demand | Without considering the carbon emission flow |
[34] | All datacenter clusters across Google’s fleet | A suite of analytical pipelines used to gather the next day’s carbon intensity forecasts | Minimizes electricity-based carbon footprint and by delaying temporally flexible workloads | Unable to coordinate the output of various power sources |
[35] | A low-carbon optimal scheduling model with demand response-based carbon intensity control | The carbon emission flow model | The storage emission and relevant dynamic impacts on the system are fully considered. | Without considering the renewable energy |
[36] | The direct current transmission system | Direct current dynamic optimal power flow with carbon emission trading | Presents a distributed alternating direction method of multipliers approach | Without considering the renewable energy |
[37] | Combined renewable and coal power system | Multi-objective optimization framework | Consider the carbon capture systems | Without considering the carbon emission flow |
[38] | Power system from source–grid–load–storage | Bi-level alternating optimal scheduling model | Integrate the carbon emission flow with the power flow | Unable to coordinate the output of various power sources |
[39] | Power system and demand-side response | Two-stage low-carbon optimization scheduling model | Stimulate the change in electricity consumption behavior on the demand side to reduce the carbon emissions. | Unable to coordinate the output of various power sources |
[40] | Power system and demand-side response | Load aggregators participate in the demand response market framework | Meet the target of minimum carbon emissions with the lowest cost of power grid operation and best sharpening effect | Without considering the carbon emission flow |
Types of Power Generation | (tCO2/MWh) |
---|---|
Ultra-Supercritical 1000 MW Coal-Fired Power Unit | 0.7938 |
Ultra-Supercritical 600 MW Coal-Fired Power Unit | 0.8067 |
Supercritical 600 MW Coal-Fired Power Unit | 0.8385 |
Subcritical 300 MW Coal-Fired Power Unit | 0.8875 |
Subcritical 300 MW Circulating Fluidized Bed Coal-Fired Power Unit | 0.9171 |
Ultra-High Voltage and Below Units | 0.9363 |
Gas Turbine Unit | 0.3789 |
Biogas Power Generation | 0.23 |
Hydro Power Generating Units | 0.0021 |
Nuclear Power Units | 0.0065 |
Start Node i | Termination Node j | Branch Real Power Flow/MW | ||
---|---|---|---|---|
Results | References | Deviation/% | ||
1 | 2 | 77.949 | 77.949 | 0.00 |
2 | 3 | 32.982 | 32.980 | 0.01 |
2 | 4 | 35.852 | 35.848 | 0.01 |
3 | 4 | −1.217 | −1.219 | 0.23 |
1 | 5 | 42.051 | 42.051 | 0.00 |
2 | 5 | 27.414 | 27.409 | 0.02 |
4 | 5 | −36.919 | −36.919 | 0.00 |
5 | 6 | 24.946 | 24.941 | 0.02 |
4 | 7 | 12.422 | 12.420 | 0.02 |
7 | 8 | −20.000 | −20.000 | 0.00 |
4 | 9 | 11.332 | 11.330 | 0.02 |
7 | 9 | 32.422 | 32.419 | 0.01 |
9 | 10 | 5.074 | 5.078 | 0.07 |
6 | 11 | 7.426 | 7.422 | 0.05 |
10 | 11 | −3.926 | −3.930 | 0.09 |
6 | 12 | 7.710 | 7.710 | 0.00 |
6 | 13 | 17.610 | 17.610 | 0.00 |
12 | 13 | 1.610 | 1.610 | 0.01 |
9 | 14 | 9.180 | 9.18 | 0.00 |
13 | 14 | 5.720 | 5.720 | 0.00 |
Node | Active Power Flux | Nodal Carbon Intensity | ||||
---|---|---|---|---|---|---|
Results | References | Deviation/% | Results | References | Deviation/% | |
1 | 120.000 | 120.000 | 0 | 875.000 | 875.000 | 0.00 |
2 | 117.949 | 117.949 | 0 | 756.305 | 756.305 | 0.00 |
3 | 94.200 | 94.200 | 0 | 275.053 | 275.053 | 0.00 |
4 | 72.771 | 72.771 | 0 | 792.758 | 792.758 | 0.00 |
5 | 69.465 | 69.465 | 0 | 828.157 | 828.157 | 0.00 |
6 | 43.946 | 43.946 | 0 | 694.926 | 694.926 | 0.00 |
7 | 32.422 | 32.422 | 0 | 303.731 | 303.700 | 0.01 |
8 | 20.000 | 20.000 | 0 | 0 | 0 | 0.00 |
9 | 43.754 | 43.754 | 0 | 430.386 | 430.343 | 0.01 |
10 | 9.000 | 9.000 | 0 | 545.794 | 545.903 | 0.02 |
11 | 7.426 | 7.426 | 0 | 694.926 | 694.926 | 0.00 |
12 | 7.710 | 7.710 | 0 | 694.926 | 694.926 | 0.00 |
13 | 19.220 | 19.220 | 0 | 694.926 | 694.926 | 0.00 |
14 | 14.900 | 14.900 | 0 | 531.938 | 531.938 | 0.00 |
Node | Load Carbon Emission Rate/tCO2/h | ||
---|---|---|---|
Results | References | Deviation/% | |
2 | 16.412 | 16.410 | 0.01 |
3 | 25.910 | 25.910 | 0.00 |
4 | 37.894 | 37.890 | 0.01 |
5 | 6.294 | 6.290 | 0.06 |
6 | 7.783 | 7.782 | 0.04 |
9 | 12.696 | 12.700 | −0.03 |
10 | 4.912 | 4.910 | 0.04 |
11 | 2.432 | 2.430 | 0.09 |
12 | 4.239 | 4.240 | −0.02 |
13 | 9.381 | 9.379 | 0.02 |
14 | 7.926 | 7.930 | −0.05 |
Total | 135.879 | 135.871 | 0.01 |
System Boundary | Node | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | Total |
Total Load/10,000 MWh | 3.24 | 2.42 | 2.79 | 1.66 | 3.77 | 11.81 | 5.13 | 17.43 | 4.62 | 2.94 | 7.70 | 2.36 | 2.38 | 3.57 | 4.53 | 2.33 | 1.38 | 12.05 | 4.64 | 3.56 | 16.08 | 116.38 | |
Photovoltaic Output/10,000 MWh | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.31 | 0.00 | 0.09 | 0.10 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60 | |
Wind Power Output/10,000 MWh | 1.13 | 0.23 | 1.72 | 0.06 | 0.09 | 0.00 | 0.16 | 0.00 | 0.67 | 0.42 | 0.16 | 0.07 | 0.04 | 0.46 | 0.23 | 0.14 | 0.71 | 0.00 | 0.00 | 0.23 | 0.00 | 6.51 | |
Imported Electricity/10,000 MWh | 0.00 | 2.08 | 0.00 | 0.00 | 1.65 | 0.58 | 3.58 | 1.39 | 0.81 | 0.00 | 5.55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 15.63 | |
Renewable energy Output Ratio | 34.81% | 9.46% | 61.75% | 3.92% | 2.29% | 0.01% | 9.16% | 0.00% | 16.44% | 17.88% | 2.11% | 3.18% | 1.52% | 15.17% | 4.97% | 5.99% | 51.40% | 0.00% | 0.00% | 6.47% | 0.00% | 6.10% | |
Excluding Renewable energy Sources | Coal Power Output/10,000 MWh | 5.56 | 3.52 | 3.47 | 2.06 | 0.80 | 3.60 | 4.82 | 4.77 | 0.00 | 4.37 | 2.18 | 2.28 | 3.41 | 2.28 | 4.34 | 2.37 | 3.19 | 3.55 | 0.79 | 1.91 | 3.61 | 62.87 |
Gas Power Output/10,000 MWh | 0.00 | 0.17 | 0.00 | 0.00 | 0.75 | 1.21 | 0.63 | 2.39 | 0.42 | 0.00 | 1.29 | 0.00 | 0.00 | 0.20 | 0.00 | 0.13 | 0.00 | 3.31 | 2.15 | 1.46 | 2.88 | 17.01 | |
Hydropower Output/10,000 MWh | 0.00 | 0.02 | 0.10 | 0.00 | 0.14 | 0.00 | 0.01 | 0.03 | 0.35 | 0.32 | 0.06 | 0.38 | 0.36 | 0.02 | 0.00 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 1.86 | |
Nuclear Power Output/10,000 MWh | 0.00 | 0.00 | 15.64 | 0.00 | 0.00 | 0.00 | 8.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.69 | 38.73 | |
Waste-to-Energy Power Output/10,000 MWh | 0.39 | 0.20 | 0.08 | 0.00 | 0.10 | 0.56 | 0.03 | 1.94 | 0.17 | 0.78 | 0.50 | 0.00 | 0.04 | 0.07 | 0.30 | 0.14 | 0.17 | 0.46 | 0.42 | 0.20 | 1.13 | 7.68 | |
Energy Storage Discharge/10,000 MWh | 0.02 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.05 | 0.00 | 0.10 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.57 | |
Energy Storage Charge/10,000 MWh | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
Wasted Electricity/10,000 WMh | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Carbon Emissions/10,000 tons | 3.41 | 1.80 | 0.85 | 1.47 | 1.95 | 4.51 | 1.67 | 8.45 | 1.72 | 2.90 | 3.04 | 1.72 | 2.29 | 3.89 | 4.17 | 2.56 | 1.72 | 7.86 | 2.29 | 2.80 | 3.45 | 64.52 | |
Carbon Emissions per Unit Load (t/MWh) | 1.05 | 0.74 | 0.31 | 0.88 | 0.52 | 0.38 | 0.33 | 0.49 | 0.37 | 0.99 | 0.40 | 0.73 | 0.96 | 1.09 | 0.92 | 1.10 | 1.25 | 0.65 | 0.49 | 0.79 | 0.21 | 0.55 | |
Inter-node Incoming Electricity Volume (10,000 MWh) | −0.78 | −2.29 | −15.36 | 0.32 | 0.87 | 7.55 | −10.44 | 9.31 | 2.96 | −1.00 | −0.76 | 0.50 | −0.32 | 1.87 | 1.41 | 0.52 | −0.89 | 7.12 | 2.31 | 1.15 | −4.07 | 0.00 | |
Power Supply-Side Calculated Carbon Emissions/10,000 tons | 4.94 | 3.49 | 3.08 | 1.83 | 1.23 | 3.74 | 5.04 | 5.34 | 0.28 | 3.88 | 3.23 | 2.02 | 3.03 | 2.10 | 3.85 | 2.15 | 2.83 | 4.40 | 1.52 | 2.25 | 4.29 | 64.52 | |
Including Renewable energy Sources | Coal Power Output/10,000 MWh | 5.59 | 3.51 | 3.17 | 2.05 | 0.81 | 3.63 | 4.86 | 4.84 | 0.00 | 4.42 | 2.19 | 2.28 | 3.42 | 2.22 | 4.12 | 2.31 | 3.16 | 3.55 | 0.81 | 1.92 | 3.56 | 62.42 |
Gas Power Output/10,000 MWh | 0.00 | 0.18 | 0.00 | 0.00 | 0.51 | 1.04 | 0.49 | 1.75 | 0.26 | 0.00 | 0.88 | 0.00 | 0.00 | 0.20 | 0.00 | 0.12 | 0.00 | 2.53 | 1.55 | 1.06 | 2.29 | 12.85 | |
Hydropower Output/10,000 MWh | 0.00 | 0.02 | 0.10 | 0.00 | 0.14 | 0.00 | 0.01 | 0.03 | 0.35 | 0.32 | 0.06 | 0.38 | 0.36 | 0.02 | 0.00 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 1.86 | |
Nuclear Power Output/10,000 MWh | 0.00 | 0.00 | 15.64 | 0.00 | 0.00 | 0.00 | 8.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 14.69 | 38.73 | |
Waste-to-Energy Power Output/10,000 MWh | 0.17 | 0.10 | 0.03 | 0.00 | 0.05 | 0.31 | 0.01 | 1.13 | 0.08 | 0.45 | 0.28 | 0.00 | 0.02 | 0.03 | 0.17 | 0.07 | 0.09 | 0.25 | 0.23 | 0.11 | 0.66 | 4.24 | |
Energy Storage Discharge/10,000 MWh | 0.03 | 0.00 | 0.20 | 0.00 | 0.00 | 0.01 | 0.00 | 0.30 | 0.16 | 0.01 | 0.22 | 0.00 | 0.11 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.17 | 1.24 | |
Energy Storage Charge/10,000 MWh | 0.02 | 0.00 | 0.14 | 0.00 | 0.00 | 0.01 | 0.00 | 0.28 | 0.15 | 0.01 | 0.16 | 0.00 | 0.08 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.14 | 1.01 | |
Wasted Electricity/10,000 WMh | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | |
Comparison | Carbon Emissions/10,000 tons | 2.96 | 1.75 | 0.80 | 1.41 | 1.91 | 4.29 | 1.63 | 8.45 | 1.40 | 2.79 | 3.20 | 1.87 | 2.44 | 3.49 | 4.07 | 2.49 | 1.35 | 7.92 | 2.22 | 2.70 | 3.40 | 62.55 |
Carbon Emissions per Unit Load (t/MWh) | 0.91 | 0.72 | 0.29 | 0.85 | 0.51 | 0.36 | 0.32 | 0.48 | 0.30 | 0.95 | 0.42 | 0.79 | 1.02 | 0.98 | 0.90 | 1.07 | 0.99 | 0.66 | 0.48 | 0.76 | 0.21 | 0.54 | |
Inter-node Incoming Electricity Volume (10,000 MWh) | −1.70 | −2.41 | −16.83 | 0.27 | 0.98 | 7.89 | −10.82 | 10.57 | 2.44 | −1.23 | −0.40 | 0.76 | −0.29 | 1.40 | 1.46 | 0.49 | −1.50 | 7.84 | 2.88 | 1.28 | −3.10 | 0.00 | |
Degree of Reduction in Carbon Emissions per Unit | 13.27% | 2.80% | 5.67% | 4.03% | 2.13% | 4.98% | 2.49% | 0.02% | 18.68% | 3.73% | −5.24% | −9.00% | −6.63% | 10.27% | 2.34% | 2.89% | 21.23% | −0.77% | 2.97% | 3.68% | 1.33% | 3.06% | |
Power Supply Side Calculated Carbon Emissions/10,000 tons | 4.96 | 3.49 | 2.81 | 1.82 | 1.15 | 3.70 | 5.02 | 5.16 | 0.21 | 3.92 | 3.08 | 2.03 | 3.03 | 2.05 | 3.66 | 2.10 | 2.80 | 4.11 | 1.30 | 2.10 | 4.03 | 62.55 | |
Power Supply Side Degree of Reduction in Carbon Emissions per Unit | −0.53% | 0.17% | 8.67% | 0.70% | 6.21% | 1.18% | 0.48% | 3.36% | 22.62% | −1.25% | 4.45% | −0.13% | −0.25% | 2.36% | 5.00% | 2.54% | 0.95% | 6.64% | 14.20% | 6.57% | 6.18% | 3.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Jiang, K.; Luo, S.; Li, H.; Lu, Z. Dynamic Calculation Method for Zonal Carbon Emissions in Power Systems Based on the Theory of Production Simulation and Carbon Emission Flow Theory. Sustainability 2024, 16, 6483. https://doi.org/10.3390/su16156483
Huang X, Jiang K, Luo S, Li H, Lu Z. Dynamic Calculation Method for Zonal Carbon Emissions in Power Systems Based on the Theory of Production Simulation and Carbon Emission Flow Theory. Sustainability. 2024; 16(15):6483. https://doi.org/10.3390/su16156483
Chicago/Turabian StyleHuang, Xin, Keteng Jiang, Shuxin Luo, Haibo Li, and Zongxiang Lu. 2024. "Dynamic Calculation Method for Zonal Carbon Emissions in Power Systems Based on the Theory of Production Simulation and Carbon Emission Flow Theory" Sustainability 16, no. 15: 6483. https://doi.org/10.3390/su16156483
APA StyleHuang, X., Jiang, K., Luo, S., Li, H., & Lu, Z. (2024). Dynamic Calculation Method for Zonal Carbon Emissions in Power Systems Based on the Theory of Production Simulation and Carbon Emission Flow Theory. Sustainability, 16(15), 6483. https://doi.org/10.3390/su16156483