Evaluating the Digital Transformation Potential in Pre-Construction for Sustainable Practices Using Structural Equation Modeling
Abstract
:1. Introduction
2. Literature Review
2.1. The Principle of Digital Transformation in the Construction Industry in the Pre-Construction Phase
2.2. Selection of Success Factors Affecting Buildings at the Pre-Construction Stage
2.2.1. Technology
2.2.2. Policy
2.2.3. Design
2.2.4. Management
3. Digital Transformation Readiness SEM Model in the Pre-Construction of Buildings
4. Research Methodology
4.1. Data Collection
4.2. Checking the Identified Variables for Validity
4.3. The Questionnaire for the Latent Variable Expert Survey
4.4. The Distribution Mechanism
4.5. The Sample Size Calculation and Determination
4.6. Examine the Multivariate and Normality Distributions
5. The Structural Equation Model
5.1. Model Specification, Classification, and Estimation
5.2. Assessment of Goodness of Fit Indices (GOF)
5.3. Reliability and Validity of the Measurement Model
5.4. Testing Convergent Validity
5.5. DTRPC Model
6. Analysis and Discussion of the Results
6.1. The Data Survey Validation
6.2. Respondents Demographics
6.3. Comparisons Amongst Respondents’ Construct Rankings
7. Analysis of the SEM Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Pre-Construction Digital Transformation Critical Success Factors
Appendix B. Survey Questionnaire Used to Collect the Data
- 1-
- Which organization do you represent _____?
- Client
- Consultant
- Contractor
- Supplier
- 2-
- How many years of experience do you have in the construction industry?
- 0–5 years
- 6–10 years
- 11–15 years
- 16–20 years
- 20> years
- 3-
- Which sector do you represent?
- Public sector
- Private sector
- Semi-government
- Others (please specify)
- 4-
- How many years of digitalization (digital technologies) experience do you have in the construction industry?
- None
- 1–5 years
- 6–10 years
- 11–15 years
- 16–20 years
- 20> years
- 5-
- Which is your area of expertise? (you can choose more than one item below)
- Civil Engineering
- Mechanical Engineering
- Electrical Engineering
- Project/Construction Management
- Program Engineer
- Environmental Engineer
- Quality and Safety Engineer
- Research & Development
- IT Engineer
- Design/Contract Engineer
- Facility Management
- Other (please specify)
- 6-
- In which phase(s) does your organization implement Digital transformation?
- Initiation phase
- Planning phase
- Implementation phase
- Hand-over phase
- Others (please specify)
- 7-
- What is your position at your company?
- Executive manager
- Department manager
- Project manager
- Senior engineer
- Quantity surveyor
- Engineer or supervisor
- Others (please specify)
- 8-
- Have you had special training on digital transformation?
- Yes
- No
- Group 1—Management
- Group 2—Policy
- Group 3—Technology
- Group 4—Design
|
1: Not important at all |
2: Slightly important |
3: Moderately important |
4: Very important |
5: Extremely important |
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
- Not important at all
- Slightly important
- Moderately important
- Very important
- Extremely important
- I don’t know, I prefer not to answer this question.
References
- Sawhney, A.; Riley, M.; Irizarry, J.; Pérez, C.T. A proposed framework for construction 4.0 based on a review of literature. EPiC Ser. Built Environ. 2020, 1, 301–309. [Google Scholar] [CrossRef]
- Musarat, M.A.; Hameed, N.; Altaf, M.; Alaloul, W.S.; Al Salaheen, M.; Alawag, A.M. Digital Transformation of the Construction Industry: A Review. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7–8 December 2021; pp. 897–902. [Google Scholar] [CrossRef]
- Nisa Lau, S.E.; Zakaria, R.; Aminudin, E.; Saar, C.C.; Yusof, A.; Wahid, C.M.F.H.C. A review of Application Building Information Modeling (BIM) during pre-construction stage: Retrospective and Future Directions. IOP Conf. Ser. Earth Environ. Sci. 2018, 143, 012050. [Google Scholar] [CrossRef]
- Xu, J.; Lu, W.; Xue, F.; Chen, K. ‘Cognitive facility management’: Definition, system architecture, and example scenario. Autom. Constr. 2019, 107, 102922. [Google Scholar] [CrossRef]
- Rivera, F.M.-L.; Mora-Serrano, J.; Valero, I.; Oñate, E. Methodological-Technological Framework for Construction 4.0. Arch. Comput. Methods Eng. 2020, 28, 689–711. [Google Scholar] [CrossRef]
- Sherratt, F.; Dowsett, R.; Sherratt, S. Construction 4.0 and its potential impact on people working in the construction industry. Proc. Inst. Civ. Eng.-Manag. Procure. Law 2020, 173, 145–152. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Hossain, L. Communications and coordination in construction projects. Constr. Manag. Econ. 2009, 27, 25–39. [Google Scholar] [CrossRef]
- Finkel, G. The Economics of the Construction Industry; Taylor & Francis: London, UK, 2015. [Google Scholar] [CrossRef]
- Jha, K.N.; Iyer, K.C. Critical Factors Affecting Quality Performance in Construction Projects. Total Qual. Manag. Bus. Excell. 2006, 17, 1155–1170. [Google Scholar] [CrossRef]
- O’brien, W.J.; Fischer, M.A.; Jucker, J.V. An economic view of project coordination. Constr. Manag. Econ. 1995, 13, 393–400. [Google Scholar] [CrossRef]
- Rahman, I.A.; Hameed Mem, A.; Abd Karim, A.T. Significant Factors Causing Cost Overruns in Large Construction Projects in Malaysia. J. Appl. Sci. 2013, 13, 286–293. [Google Scholar] [CrossRef]
- Chang, A.S.; Shen, F.-Y. Coordination Needs and Supply of Construction Projects. Eng. Manag. J. 2009, 21, 44–57. [Google Scholar] [CrossRef]
- Lu, Y.; Cui, P.; Li, D. Carbon emissions and policies in China’s building and construction industry: Evidence from 1994 to 2012. Build. Environ. 2016, 95, 94–103. [Google Scholar] [CrossRef]
- de Soto, B.G.; Rosarius, A.; Rieger, J.; Chen, Q.; Adey, B.T. Using a Tabu-Search Algorithm and 4D Models to Improve Construction Project Schedules. Procedia Eng. 2017, 196, 698–705. [Google Scholar] [CrossRef]
- Perrier, N.; Bled, A.; Bourgault, M.; Cousin, N.; Danjou, C.; Pellerin, R.; Roland, T. Construction 4.0: A survey of research trends. J. Inf. Technol. Constr. 2020, 25, 416–437. [Google Scholar] [CrossRef]
- Gnecco, V.M.; Vittori, F.; Pisello, A.L. Digital twins for decoding human-building interaction in multi-domain test-rooms for environmental comfort and energy saving via graph representation. Energy Build. 2023, 279, 112652. [Google Scholar] [CrossRef]
- Wong JK, W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Gan, V.J.; Deng, M.; Tse, K.; Chan, C.; Lo, I.M.; Cheng, J.C. Holistic BIM framework for sustainable low carbon design of high-rise buildings. J. Clean. Prod. 2018, 195, 1091–1104. [Google Scholar] [CrossRef]
- Mirpanahi, M.V.; Noorzai, E. Modeling the relationship between critical BIM attributes and environmental sustainability criteria using PLS-SEM technique. J. Archit. Eng. 2021, 27, 04021037. [Google Scholar] [CrossRef]
- Motalebi, M.; Rashidi, A.; Nasiri, M.M. Optimization and BIM-based lifecycle assessment integration for energy efficiency retrofit of buildings. J. Build. Eng. 2022, 49, 104022. [Google Scholar] [CrossRef]
- Almujibah, H. Assessment of Building Information Modeling (BIM) as a Time and Cost-Saving Construction Management Tool: Evidence from Two-Story Villas in Jeddah. Sustainability 2023, 15, 7354. [Google Scholar] [CrossRef]
- Hajirasouli, A.; Banihashemi, S.; Drogemuller, R.; Fazeli, A.; Mohandes, S.R. Augmented reality in design and construction: Thematic analysis and conceptual frameworks. Constr. Innov. 2022, 22, 412–443. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Alsakka, F.; Haddad, A.; Ezzedine, F.; Salami, G.; Dabaghi, M.; Hamzeh, F. Generative design for more economical and environmentally sustainable reinforced concrete structures. J. Clean. Prod. 2023, 387, 135829. [Google Scholar] [CrossRef]
- Caldas, L. Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system. Adv. Eng. Inform. 2008, 22, 59–70. [Google Scholar] [CrossRef]
- Aron, R.; Abraham, A. Resource Scheduling Methods for Cloud Computing Environment: The Role of Meta-Heuristics and Artificial Intelligence. Eng. Appl. Artif. Intell. 2022, 116, 105345. [Google Scholar] [CrossRef]
- Sopi, J.M.; Hanafi, M.H. Digital Transformation In Industry 4.0: A Bibliometric Analysis. Int. J. Innov. Ind. Revolut. 2024, 6, 20–37. [Google Scholar]
- Honic, M.; Kovacic, I.; Sibenik, G.; Rechberger, H. Data- and Stakeholder Management Framework for the Implementation of BIM-Based Material Passports. J. Build. Eng. 2019, 23, 341–350. [Google Scholar] [CrossRef]
- Memon, A.H.; Memon, A.Q.; Khahro, S.H.; Javed, Y. Investigation of Project Delays: Towards a Sustainable Construction Industry. Sustainability 2023, 15, 1457. [Google Scholar] [CrossRef]
- Mahajan, G. Applications of Drone Technology in Construction Industry: A Study 2012–2021. Int. J. Eng. Adv. Technol. 2021, 11, 224–239. [Google Scholar] [CrossRef]
- Zavari, M.; Shahhosseini, V.; Ardeshir, A.; Sebt, M.H. Multi-objective optimization of dynamic construction site layout using BIM and GIS. J. Build. Eng. 2022, 52, 104518. [Google Scholar] [CrossRef]
- Arslan, G.; Kivrak, S.; Birgonul, M.T.; Dikmen, I. Improving sub-contractor selection process in construction projects: Web-based sub-contractor evaluation system (WEBSES). Autom. Constr. 2008, 17, 480–488. [Google Scholar] [CrossRef]
- Ahmadisheykhsarmast, S.; Senji, S.G.; Sonmez, R. Decentralized tendering of construction projects using blockchain-based smart contracts and storage systems. Autom. Constr. 2023, 151, 104900. [Google Scholar] [CrossRef]
- Moisa, M.B.; Negash, D.A.; Merga, B.B.; Gemeda, D.O. Impact of land-use and land-cover change on soil erosion using the RUSLE model and the Geographic Information System: A case of Temeji watershed, Western Ethiopia. J. Water Clim. Chang. 2021, 12, 3404–3420. [Google Scholar] [CrossRef]
- Ghobadi, M.; MESepasgozar, S. An Investigation of Virtual Reality Technology Adoption in the Construction Industry. In Smart Cities and Construction Technologies; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Mantha, B.R.K.; de Soto, B.G. Cyber security challenges and vulnerability assessment in the construction industry. In Proceedings of the Creative Construction Conference 2019, Budapest, Hungary, 29 June–2 July 2019. [Google Scholar] [CrossRef]
- Stoyanova, M. Good Practices and Recommendations for Success in Construction Digitalization. Available online: www.ceeol.com/search/article-detail?id=838205 (accessed on 2 September 2020).
- Osunsanmi, T.O.; Aigbavboa, C.O.; Oke, A.E.; Liphadzi, M. Appraisal of stakeholders’ willingness to adopt construction 4.0 technologies for construction projects. Built Environ. Proj. Asset Manag. 2020, 10, 547–565. [Google Scholar] [CrossRef]
- Lau, S.E.N.; Aminudin, E.; Zakaria, R.; Saar, C.C.; Roslan, A.F.; Hamid, Z.A.; Zain, M.Z.M.; Maaz, Z.N.; Ahamad, A.H. Talent as a Spearhead of Construction 4.0 Transformation: Analysis of Their Challenges. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1200, 012025. [Google Scholar] [CrossRef]
- Zong, J.; Chen, L.; Li, Q.; Liu, Z. The construction and management of Industrial Park Digitalization and its Application Services. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 032019. [Google Scholar] [CrossRef]
- Li, Y. Research on the Application of BIM Technology Integration Method in the Design and Construction of Intelligent Building. Adv. Educ. Humanit. Soc. Sci. Res. 2023, 1, 393. [Google Scholar] [CrossRef]
- Adjei-Kumi, T.; Retik, A. A library-based 4D visualization of construction processes. In Proceedings of the 1997 IEEE Conference on Information Visualization, (Cat. No.97TB100165), London, UK, 27–29 August 1997. [Google Scholar] [CrossRef]
- Khalid, C.M.L.; Mohamed, Z.; Fathi, M.S.; Zakiyudin, M.Z.; Rawai, N.; Abedi, M. The potential of augmented reality technology for Pre-Construction. Appl. Mech. Mater. 2013, 405, 3419–3422. [Google Scholar] [CrossRef]
- Di Giuda, G.M.; Pattini, G.; Seghezzi, E.; Schievano, M.; Paleari, F. The Construction Contract Execution Through the Integration of Blockchain Technology. In Digital Transformation of the Design, Construction and Management Processes of the Built Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 27–36. [Google Scholar] [CrossRef]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Sinesilassie, E.G.; Tripathi, K.K.; Tabish SZ, S.; Jha, K.N. Modeling success factors for public construction projects with the SEM approach: Engineer’s perspective. Eng. Constr. Archit. Manag. 2019, 26, 2410–2431. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 2012, 40, 8–34. [Google Scholar] [CrossRef]
- Antillon, E.I.; Garvin, M.J.; Molenaar, K.R.; Javernick-Will, A. Influence of interorganizational coordination on lifecycle design decision making: Comparative case study of public–private partnership highway projects. J. Manag. Eng. 2018, 34, 05018007. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology; Sage Publications: London, UK, 2018. [Google Scholar]
- Chan, A.P.; Chan, D.W.; Yeung, J.F. Overview of the application of “fuzzy techniques” in construction management research. J. Constr. Eng. Manag. 2009, 135, 1241–1252. [Google Scholar] [CrossRef]
- Cooper, D.R.; Schindler, P.S.; Cooper, D.R.; Schindler, P.S. Business Research Methods; Mcgraw-hill: New York, NY, USA, 2003. [Google Scholar]
- Taherdoost, H. Sampling methods in research methodology, how to choose a sampling technique for research. Int. J. Acad. Res. Manag. (IJARM) 2016, 5, 18–27. [Google Scholar] [CrossRef]
- Guarte, J.M.; Barrios, E.B. Estimation under purposive sampling. Commun. Stat.-Simul. Comput. 2006, 35, 277–284. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of Convenience Sampling and Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Hair Jr, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Gao, S.; Mokhtarian, P.L.; Johnston, R.A. Nonnormality of data in structural equation models. Transp. Res. Rec. 2008, 2082, 116–124. [Google Scholar] [CrossRef]
- Xiong, B.; Skitmore, M.; Xia, B.A. critical review of structural equation modeling applications in construction research. Autom. Constr. 2015, 49, 59–70. [Google Scholar] [CrossRef]
- Byrne, B.M.; van de Vijver, F.J.R. Testing for Measurement and Structural Equivalence in Large-Scale Cross-Cultural Studies: Addressing the Issue of Nonequivalence. Int. J. Test. 2010, 10, 107–132. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Ping Jr, R.A. On assuring valid measures for theoretical models using survey data. J. Bus. Res. 2004, 57, 125–141. [Google Scholar] [CrossRef]
- Molenaar, K.; Washington, S.; Diekmann, J. Structural Equation Model of Construction Contract Dispute Potential. J. Constr. Eng. Manag. 2000, 126, 268–277. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.C. Structural equation modelling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar]
- Zahoor, H.; Chan, A.P.; Utama, W.P.; Gao, R.; Memon, S.A. Determinants of safety climate for building projects: SEM-based cross-validation study. J. Constr. Eng. Manag. 2017, 143, 05017005. [Google Scholar] [CrossRef]
- Malhotra, N.; Hall, J.; Shaw, M.; Oppenheim, P. Marketing Research: An Applied Orientation; Deakin University: Melbourne, VIC, Australia, 2020. [Google Scholar]
- Shih, T.H.; Fan, X. Comparing response rates from web and mail surveys: A meta-analysis. Field Methods 2008, 20, 249–271. [Google Scholar] [CrossRef]
- Bernold, L.E. Discussion of “Barriers of Implementing Modern Methods of Construction” by M. Motiar Rahman. J. Manag. Eng. 2016, 32, 07015002. [Google Scholar] [CrossRef]
- Haynes, B.; Price, I. Quantifying the complex adaptive workplace. Facilities 2004, 22, 8–18. [Google Scholar] [CrossRef]
- May, D.; Pinder, J. The impact of facilities management on patient outcomes. Facilities 2008, 26, 213–228. [Google Scholar] [CrossRef]
- Dixit, M.K.; Venkatraj, V.; Ostadalimakhmalbaf, M.; Pariafsai, F.; Lavy, S. Integration of facility management and building information 803 modeling (BIM): A review of key issues and challenges. Facilities 2019, 37, 455–483. [Google Scholar] [CrossRef]
- de Mattos Nascimento, D.L.; Quelhas OL, G.; Meiriño, M.J.; Caiado RG, G.; Barbosa, S.D.; Ivson, P. Facility Management using digital Obeya Room by integrating BIM-Lean approaches–an empirical study. J. Civ. Eng. Manag. 2018, 24, 581–591. [Google Scholar] [CrossRef]
- Kor, M.; Yitmen, I.; Alizadehsalehi, S. An investigation for integration of deep learning and digital twins towards Construction 4.0. Smart Sustain. Built Environ. 2022, 12, 461–487. [Google Scholar] [CrossRef]
- Lu, Q.; Won, J.; Cheng, J.C.P. A financial decision making framework for construction projects based on 5D Building Information Modeling (BIM). Int. J. Proj. Manag. 2016, 34, 3–21. [Google Scholar] [CrossRef]
- Li, L. Reskilling and Upskilling the Future-Ready Workforce for Industry 4.0 and Beyond. In Information Systems Frontiers; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Plevris, V.; Lagaros, N.D.; Zeytinci, A. Blockchain in Civil Engineering, Architecture and Construction Industry: State of the Art, Evolution. Challenges and Opportunities. Front. Built Environ. 2022, 8, 840303. [Google Scholar] [CrossRef]
- ISO 14040/44. Available online: https://www.iso.org/standard/37456.html (accessed on 23 March 2024).
- Kamath, A.; Sharma, R.K. Robotics in construction: Opportunities and challenges. Int. J. Recent Technol. Eng. 2019, 8, 2227–2230. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Bragança, L.; Mateus, R. A Systematic Review of the Role of BIM in Building Sustainability Assessment Methods. Appl. Sci. 2020, 10, 4444. [Google Scholar] [CrossRef]
- Gunduz, M.; Birgonul, M.T.; Ozdemir, M. Fuzzy Structural Equation Model to Assess Construction Site Safety Performance. J. Constr. Eng. Manag. 2017, 143, 04016112. [Google Scholar] [CrossRef]
- Qi, X.; Du, Q.; Zou, P.X.; Huang, N. Developing a weighted synergy network–based model for selecting prefabricated construction services. Eng. Constr. Arch. Manag. 2023, 31, 2306–2326. [Google Scholar] [CrossRef]
- Le AT, H.; Sutrisna, M. Project cost control system and enabling-factors model: PLS-SEM approach and importance-performance map analysis. Engineering. Constr. Archit. Manag. 2023, 31, 2513–2535. [Google Scholar]
- Lee, H.-Y.; Shiue, F.-J.; Zheng, M.-C.; Chang, Y.-C. Integrating Value Estimation and Simulation for Contractor Selection. Autom. Constr. 2020, 119, 103340. [Google Scholar] [CrossRef]
- Sheoraj, Y.; Sungkur, R.K. Using AI to Develop a Framework to Prevent Employees from Missing Project Deadlines in Software Projects—Case Study of a Global Human Capital Management (HCM) Software Company. Adv. Eng. Softw. 2022, 170, 103143. [Google Scholar] [CrossRef]
- Garrido, J.; Sáez, J. Integration of automatic generated simulation models, machine control projects and management tools to support whole life cycle of industrial digital twins. IFAC-PapersOnLine 2019, 52, 1814–1819. [Google Scholar] [CrossRef]
- Elmousalami, H.H. Data on Field Canals Improvement Projects for Cost Prediction Using Artificial Intelligence. Data Brief 2020, 31, 105688. [Google Scholar] [CrossRef]
- Ntshwene, K.; Ssegawa, J.; Rwelamila, P. Key Performance Indicators (Kpis) for Measuring PMOS Services in Selected Organisations in Botswana. Procedia Comput. Sci. 2022, 196, 964–972. [Google Scholar] [CrossRef]
- Haponava, T.; Al-Jibouri, S. Identifying key performance indicators for use in control of pre-project stage process in construction. Int. J. Prod. Perform. Manag. 2009, 58, 160–173. [Google Scholar] [CrossRef]
- Zenkovich, M.V.; Drevs, Y.G.; Inozemtseva, V.S.; Shevchenko, N.A. Industrial Plants Investment Projects Efficiency Estimation Based on Simulation and Artificial Intelligence Methods. Procedia Comput. Sci. 2021, 190, 852–862. [Google Scholar] [CrossRef]
- Farsi, M.; Ariansyah, D.; Erkoyuncu, J.A.; Harrison, A. A Digital Twin Architecture for Effective Product Lifecycle Cost Estimation. Procedia CIRP 2021, 100, 506–511. [Google Scholar] [CrossRef]
- Umar, U.A.; Shafiq, N.; Malakahmad, A.; Nuruddin, M.F.; Khamidi, M.F.; Farhan, S.A.; Gardezi, S.S.S. 4D BIM Application in AEC Industry: Impact on Integrated Project Delivery. Res. J. Appl. Sci. Eng. Technol. 2015, 10, 547–552. [Google Scholar] [CrossRef]
- Khan, A.I.; Al-Badi, A. Emerging Data Sources in Decision Making and AI. Procedia Comput. Sci. 2020, 177, 318–323. [Google Scholar] [CrossRef]
- Ahmed, R.; Shaheen, S.; Philbin, S.P. The Role of Big Data Analytics and Decision-Making in Achieving Project Success. J. Technol. Manag. 2022, 65, 101697. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Ouyang, Y.; Luo, X. Evaluating the impact of big data analytics usage on the decision-making quality of organizations. Technol. Forecast. Soc. Chang. 2022, 175, 121355. [Google Scholar] [CrossRef]
- Reza Hosseini, M.; Pärn, E.A.; Edwards, D.J.; Papadonikolaki, E.; Oraee, M. Roadmap to mature BIM use in Australian SMEs: Competitive Dynamics Perspective. J. Manag. Eng. 2018, 34, 05018008. [Google Scholar] [CrossRef]
- Awwad, R.; Ammoury, M. Surveying BIM in the Lebanese construction industry. In Proceedings of the 30th International Symposium on Automation and Robotics in Construction and Mining (ISARC 2013): Building the Future in Automation and Robotics, Byblos, Lebanon, 4 December 2017. [Google Scholar] [CrossRef]
- Dahanayake, K.C.; Sumanarathna, N. IoT-BIM-based digital transformation in Facilities Management: A conceptual model. J. Facil. Manag. 2021, 20, 437–451. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, S.P. Modelling Procurement Problems in the Environment of Blockchain Technology. Comput. Ind. Eng. 2022, 172, 108546. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.P. Heuristic Modeling for Sustainable Procurement and Logistics in a Supply Chain Using Big Data. Comput. Oper. Res. 2018, 98, 301–321. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Sui, F.-T. On the Information Management of Construction Project. J. Hebei Norm. Univ. Sci. Technol. 2012, 26, 53–56. [Google Scholar]
- Petrov, P.; Radev, M.; Dimitrov, G.; Pasat, A.; Buevich, A. A systematic design approach in building digitalization services supporting infrastructure. TEM J. 2021, 10, 31–37. [Google Scholar] [CrossRef]
- Sonkor, M.; Turk, Ž. Collaborative bim environments: Mitigating cybersecurity threats in the design phase. In Proceedings of the BIM A+ International Conference, Ljubljana, Slovenia, 30 September–1 October 2021. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Anumba, C.J.; Ogunseiju, O.O. Towards next generation cyber-physical systems and digital twins for construction. J. Inf. Technol. Constr. 2021, 26, 505–525. [Google Scholar] [CrossRef]
- Müller, J.M.; Veile, J.W.; Voigt, K.-I. Prerequisites and Incentives for Digital Information Sharing in Industry 4.0—An International Comparison across Data Types. Comput. Ind. Eng. 2020, 148, 106733. [Google Scholar] [CrossRef]
- Chen, R.; Meng, Q.; Yu, J.J. Optimal Government Incentives to Improve the New Technology Adoption: Subsidizing Infrastructure Investment or Usage? Omega 2023, 114, 102740. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Dey, P.K.; Albores, P.; Emrouznejad, A. Analysis of the Adoption of Emergent Technologies for Risk Management in the Era of Digital Manufacturing. Technol. Forecast. Soc. Chang. 2022, 178, 121562. [Google Scholar] [CrossRef]
- Yousefi, S.; Tosarkani, B.M. The Adoption of New Technologies for Sustainable Risk Management in Logistics Planning: A Sequential Dynamic Approach. Comput. Ind. Eng. 2022, 173, 108627. [Google Scholar] [CrossRef]
- Wang, C.; Ferrando, M.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. An Innovative Method to Predict the Thermal Parameters of Construction Assemblies for Urban Building Energy Models. Build. Environ. 2022, 224, 109541. [Google Scholar] [CrossRef]
- Chen, H.; Hou, L.; Zhang, G.; Moon, S. Development of BIM, IOT and AR/VR Technologies for Fire Safety and Upskilling. Autom. Constr. 2021, 125, 103631. [Google Scholar] [CrossRef]
- Adami, P.; Rodrigues, P.B.; Woods, P.J.; Becerik-Gerber, B.; Soibelman, L.; Copur-Gencturk, Y.; Lucas, G. Effectiveness of VR-Based Training on Improving Construction Workers’ Knowledge, Skills, and Safety Behavior in Robotic Teleoperation. Adv. Eng. Inform. 2021, 50, 101431. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A.; Kennedy, I.B. Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Eng. J. 2020, 11, 225–230. [Google Scholar] [CrossRef]
- Widén, K.; Olander, S.; Atkin, B. Links between Successful Innovation Diffusion and Stakeholder Engagement. J. Manag. Eng. 2014, 30, 04014018. [Google Scholar] [CrossRef]
- Sitek, P.; Wikarek, J.; Bocewicz, G.; Nielsen, I. A Decision Support Model for Handling Customer Orders in Business Chain. Neurocomputing 2022, 482, 298–309. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, J.C.; Anumba, C. Mapping between BIM and 3D GIS in Different Levels of Detail Using Schema Mediation and Instance Comparison. Autom. Constr. 2016, 67, 109541. [Google Scholar] [CrossRef]
- Fernández-Alvarado, J.; Fernández-Rodríguez, S. 3D Environmental Urban BIM Using LiDAR Data for Visualisation on Google Earth. Autom. Constr. 2022, 138, 104251. [Google Scholar] [CrossRef]
- Goonetillake, J.; Lark, R.; Li, H. A Proposal for the Integration of Information Requirements within Infrastructure Digital Construction. Available online: https://link.springer.com/chapter/10.1007/978-3-319-91638-5_21 (accessed on 11 October 2022).
- García de Soto, B.; Georgescu, A.; Mantha, B.; Turk, Ž.; Maciel, A.; Sonkor, M.S. Construction cybersecurity and critical infrastructure protection: New horizons for Construction 4.0. J. Inf. Technol. Constr. 2022, 27, 571–594. [Google Scholar] [CrossRef]
- Ouyang, M.; Fang, Y. A Mathematical Framework to Optimize Critical Infrastructure Resilience against Intentional Attacks. Comput. Civ. Infrastruct. Eng. 2017, 32, 909–929. [Google Scholar] [CrossRef]
- Urbanová, P.; Jurda, M.; Vojtíšek, T.; Krajsa, J. Using Drone-Mounted Cameras for on-Site Body Documentation: 3D Mapping and Active Survey. Forensic Sci. Int. 2017, 281, 52–62. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Banda, K.; Zimba, H.; Dondeyne, S.; Nyambe, I.; Spratley, S.; Winton, R.S. Drone Imagery to Create a Common Understanding of Landscapes. Landsc. Urban Plan. 2022, 228, 104571. [Google Scholar] [CrossRef]
- Elmakis, O.; Shaked, T.; Degani, A. Vision-Based UAV-UGV Collaboration for Autonomous Construction Site Preparation. IEEE Access 2022, 10, 51209–51220. [Google Scholar] [CrossRef]
- Paul, G.; Liu, D.; Kirchner, N.; Dissanayake, G. An effective exploration approach to simultaneous mapping and surface material–type identification of complex three-dimensional environments. J. Field Robot. 2009, 26, 915–933. [Google Scholar] [CrossRef]
- Sebt, M.; Karan, E.; Delavar, M. Potential Application of GIS to Layout of Construction Temporary Facilities. Int. J. Civ. Eng. 2008, 6, 235–245. [Google Scholar]
- Sánchez-Lozano, J.M.; Ramos-Escudero, A.; Gil-García, I.C.; García-Cascales, M.S.; Molina-García, A. A GIS-Based Offshore Wind Site Selection Model Using Fuzzy Multi-Criteria Decision-Making with Application to the Case of the Gulf of Maine. Expert Syst. Appl. 2022, 210, 118371. [Google Scholar] [CrossRef]
- Gbadamosi, A.-Q.; Oyedele, L.; Mahamadu, A.-M.; Kusimo, H.; Bilal, M.; Delgado, J.M.D.; Muhammed-Yakubu, N. Big Data for Design Options Repository: Towards a DFMA Approach for Offsite Construction. Autom. Constr. 2020, 120, 103388. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the Construction Industry: A Review of Present Status, Opportunities, and Future Trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Skibniewski, M.J.; Wooldridge, S.C. Robotic Materials Handling for Automated Building Construction Technology. Autom. Constr. 1992, 1, 251–266. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, G.; Jiao, Z.; Zhao, L. Intelligent Safety Assessment of Prestressed Steel Structures Based on Digital Twins. Symmetry 2021, 13, 1927. [Google Scholar] [CrossRef]
- Yang, B.; Lv, Z.; Wang, F. Digital Twins for Intelligent Green Buildings. Buildings 2022, 12, 856. [Google Scholar] [CrossRef]
- Reginato, J.M. Using Laser Scanning to Determine As-Is Building Conditions. Available online: http://ascpro0.ascweb.org/archives/cd/2014/paper/CPGT214002014.pdf (accessed on 28 January 2024).
- Abdul Shukor, S.A.; Wong, R.; Rushforth, E.; Basah, S.N.; Zakaria, A. 3D Terrestrial Laser Scanner for managing existing building. J. Teknol. 2015, 76. [Google Scholar] [CrossRef]
- Liu, X.; Eybpoosh, M.; Akinci, B. Developing As-Built Building Information Model Using Construction Process History Captured by a Laser Scanner and a Camera. In Construction Research Congress; ASCE Publications: Reston, VA, USA, 2012; pp. 1232–1241. [Google Scholar]
Number | Organization Type | Current Role | Education Level | Years of Experience |
1 | Contractor | General Manager | Master’s degree | 21 |
2 | Consultant | Project Director | Master’s degree | 19 |
3 | Client | Project Manager | Bachelor’s degree and PMP-certified | 20 |
4 | Client | Digitalization Specialist | Master’s degree | 18 |
Importance of Factor |
---|
|
Evaluation Tests | Calculated Indices | Symbol | Threshold | Reference | Result Acceptance |
---|---|---|---|---|---|
C-S | 878.19 | χ2 | - | - | - |
DOF | 399 | df | - | - | - |
C-S/DOF | 2.201 | Df/χ2 | Between 1 and 3 | Excellent | |
CFI | 0.921 | CFI | >0.90 | Excellent | |
RMSR | 0.061 | RMR | <0.07 | Excellent | |
RMSEA | 0.078 | RMSA | <0.08 | Excellent |
Construct | Cronbach | Composite Reliability (CR) |
---|---|---|
Management | 0.912 | 0.93 |
Policy | 0.792 | 0.86 |
Technology Design | 0.881 0.911 | 0.92 0.94 |
Evaluation Tests | Calculated Indices | Symbol | Threshold | Reference | Result Acceptance |
---|---|---|---|---|---|
C-S | 892.6 | χ2 | - | ||
DOF | 401 | df | - | ||
C-S/DOF | 2.22 | Df/χ2 | Between 1 and 3 | Excellent | |
CFI | 0.932 | CFI | >0.90 | Excellent | |
RMSR | 0.061 | RMR | <0.07 | Excellent | |
RMSEA | 0. 086 | RMSA | <0.08 | Excellent |
Factors | W | A | N | Rank | RII | Average Rank | Group Ranking |
---|---|---|---|---|---|---|---|
P01.01 | 768 | 5 | 180 | 0.83 | 16 | 16.333 | 2 |
P01.02 | 761 | 5 | 180 | 0.82 | 20 | ||
P01.03 | 773 | 5 | 180 | 0.84 | 11 | ||
P01.04 | 732 | 5 | 180 | 0.79 | 28 | ||
P01.05 | 746 | 5 | 180 | 0.81 | 26 | ||
P01.06 | 772 | 5 | 180 | 0.83 | 12 | ||
P01.07 | 717 | 5 | 180 | 0.78 | 29 | ||
P01.08 | 770 | 5 | 180 | 0.83 | 14 | ||
P01.09 | 772 | 5 | 180 | 0.83 | 13 | ||
P01.10 | 782 | 5 | 180 | 0.85 | 5 | ||
P01.11 | 758 | 5 | 180 | 0.82 | 21 | ||
P01.12 | 801 | 5 | 180 | 0.87 | 1 | ||
P02.01 | 766 | 5 | 180 | 0.83 | 17 | 23 | 4 |
P02.02 | 697 | 5 | 180 | 0.75 | 30 | ||
P02.03 | 750 | 5 | 180 | 0.81 | 23 | ||
P02.04 | 752 | 5 | 180 | 0.81 | 22 | ||
P03.01 | 792 | 5 | 180 | 0.86 | 2 | 12.66 | 3 |
P03.02 | 785 | 5 | 180 | 0.85 | 4 | ||
P03.03 | 769 | 5 | 180 | 0.83 | 15 | ||
P03.04 | 762 | 5 | 180 | 0.82 | 19 | ||
P03.05 | 740 | 5 | 180 | 0.80 | 27 | ||
P03.06 | 775 | 5 | 180 | 0.84 | 9 | ||
P04.01 | 789 | 5 | 180 | 0.85 | 3 | 12.65 | 1 |
P04.02 | 779 | 5 | 180 | 0.84 | 8 | ||
P04.03 | 765 | 5 | 180 | 0.83 | 18 | ||
P04.04 | 750 | 5 | 180 | 0.81 | 24 | ||
P04.05 | 749 | 5 | 180 | 0.81 | 25 | ||
P04.06 | 774 | 5 | 180 | 0.84 | 10 | ||
P04.07 | 781 | 5 | 180 | 0.84 | 6 | ||
P04.08 | 780 | 5 | 180 | 0.84 | 7 |
Client | Consultant | Contractor | Subcontractor | Supplier | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | Rank | CA | CR | Rank | CA | CR | Rank | CA | CR | Rank | CA | CR | Rank | CA | CR |
P01.01 | 17 | 12.08 | 1 | 16 | 13.9 | 2 | 7 | 16.1 | 3 | 10 | 18.8 | 3 | 24 | 19.7 | 4 |
P01.02 | 27 | 30 | 29 | 27 | 4 | ||||||||||
P01.03 | 4 | 11 | 2 | 19 | 19 | ||||||||||
P01.04 | 2 | 25 | 19 | 28 | 29 | ||||||||||
P01.05 | 19 | 26 | 20 | 25 | 27 | ||||||||||
P01.06 | 7 | 17 | 21 | 12 | 25 | ||||||||||
P01.07 | 22 | 4 | 15 | 29 | 30 | ||||||||||
P01.08 | 10 | 5 | 8 | 20 | 5 | ||||||||||
P01.09 | 13 | 6 | 9 | 15 | 20 | ||||||||||
P01.10 | 3 | 12 | 22 | 7 | 28 | ||||||||||
P01.11 | 20 | 7 | 25 | 22 | 12 | ||||||||||
P01.12 | 1 | 8 | 16 | 11 | 13 | ||||||||||
P02.01 | 23 | 16.75 | 3 | 18 | 16.5 | 3 | 3 | 18.3 | 4 | 9 | 20 | 4 | 21 | 10.5 | 2 |
P02.02 | 29 | 19 | 26 | 30 | 22 | ||||||||||
P02.03 | 24 | 20 | 17 | 24 | 14 | ||||||||||
P02.04 | 14 | 27 | 30 | 26 | 6 | ||||||||||
P03.01 | 5 | 18 | 4 | 1 | 10.2 | 1 | 10 | 15.5 | 2 | 1 | 9.17 | 1 | 7 | 6 | 1 |
P03.02 | 8 | 13 | 23 | 2 | 1 | ||||||||||
P03.03 | 18 | 14 | 4 | 16 | 8 | ||||||||||
P03.04 | 26 | 9 | 18 | 14 | 2 | ||||||||||
P03.05 | 30 | 22 | 11 | 17 | 15 | ||||||||||
P03.06 | 21 | 2 | 27 | 5 | 3 | ||||||||||
P04.01 | 11 | 15.25 | 2 | 3 | 19.1 | 4 | 12 | 12.9 | 1 | 3 | 12 | 2 | 9 | 16.3 | 3 |
P04.02 | 15 | 21 | 5 | 8 | 10 | ||||||||||
P04.03 | 12 | 10 | 28 | 23 | 16 | ||||||||||
P04.04 | 25 | 23 | 24 | 18 | 17 | ||||||||||
P04.05 | 28 | 28 | 1 | 21 | 11 | ||||||||||
P04.06 | 16 | 29 | 13 | 4 | 23 | ||||||||||
P04.07 | 9 | 24 | 6 | 6 | 26 | ||||||||||
P04.08 | 6 | 15 | 14 | 13 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naji, K.K.; Gunduz, M.; Al-Henzab, F. Evaluating the Digital Transformation Potential in Pre-Construction for Sustainable Practices Using Structural Equation Modeling. Sustainability 2024, 16, 7323. https://doi.org/10.3390/su16177323
Naji KK, Gunduz M, Al-Henzab F. Evaluating the Digital Transformation Potential in Pre-Construction for Sustainable Practices Using Structural Equation Modeling. Sustainability. 2024; 16(17):7323. https://doi.org/10.3390/su16177323
Chicago/Turabian StyleNaji, Khalid K., Murat Gunduz, and Fahid Al-Henzab. 2024. "Evaluating the Digital Transformation Potential in Pre-Construction for Sustainable Practices Using Structural Equation Modeling" Sustainability 16, no. 17: 7323. https://doi.org/10.3390/su16177323
APA StyleNaji, K. K., Gunduz, M., & Al-Henzab, F. (2024). Evaluating the Digital Transformation Potential in Pre-Construction for Sustainable Practices Using Structural Equation Modeling. Sustainability, 16(17), 7323. https://doi.org/10.3390/su16177323