Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Field Investigation and Sample Collection
2.3. Evaluation of Heavy Metals
2.4. Characteristics of Research Area
2.5. Preparation of Large-Sized Materials
2.6. Basic Physical and Chemical Properties of Soil
2.7. Passivation Experiment
2.8. Data Analysis
3. Results and Discussion
3.1. Analysis of Soil Samples
3.2. Plant Sample Analysis
3.3. Physical and Chemical Properties of Soil
3.4. Passivation Experiment
3.5. Desorption Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussaini, S.; Kursunoglu, S.; Top, S.; Ichlas, Z.T.; Kaya, M. Testing of 17-different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing. Miner. Eng. 2021, 168, 106935. [Google Scholar] [CrossRef]
- Li, L.; Wu, B.; Guo, S.; Hu, E.; Zhang, Y.; Sun, L.; Li, S. Multipath diffusion process and spatial accumulation simulation of Cd in lead-zinc mining areas. J. Hazard. Mater. 2024, 465, 133461. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G. Acid Mine Drainage from Coal Mining in the United States—An Overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Liu, K.; Li, C.; Tang, S.; Shang, G.; Yu, F.; Li, Y. Heavy Metal Concentration, Potential Ecological Risk Assessment and Enzyme Activity in Soils Affected by a Lead-Zinc Tailing Spill in Guangxi, China. Chemosphere 2020, 251, 126415. [Google Scholar] [CrossRef]
- Du, Y.; Tian, Z.; Zhao, Y.; Wang, X.; Ma, Z.; Yu, C. Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds. J. Environ. Manag. 2024, 351, 119838. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Zheng, L.; Zhang, Y.; Sun, L.; Feng, Y.; Du, J.; Lu, X.; Wang, G. Comprehensive assessment of health and ecological risk of cadmium in agricultural soils across China: A tiered framework. J. Hazard. Mater. 2024, 465, 133111. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Han, H.; Gao, C.; Wang, Y.; Dong, B.; Xu, Z. Organic Amendments for In Situ Immobilization of Heavy Metals in Soil: A Review. Chemosphere 2023, 335, 139088. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B.; Wang, J.X.; An, B.H. The Geochemical Behaviors of Potentially Toxic Elements in a Typical Lead/Zinc (Pb/Zn) Smelter Contaminated Soil with Quantitative Mineralogical Assessments. J. Hazard. Mater. 2022, 424 Pt A, 127127. [Google Scholar] [CrossRef]
- Huang, J.-L.; Li, Z.-Y.; Mao, J.-Y.; Chen, Z.-M.; Liu, H.-L.; Liang, G.-Y.; Zhang, D.-B.; Wen, P.-J.; Mo, Z.-Y.; Jiang, Y.-M. Contamination and health risks brought by arsenic, lead, and cadmium in a water-soil-plant system nearby a non-ferrous metal mining area. Ecotoxicol. Environ. Saf. 2024, 270, 115873. [Google Scholar] [CrossRef]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent Advances in Soil Remediation Technology for Heavy Metal Contaminated Sites: A Critical Review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, J.; Tan, Z. Adsorption Effect and the Removal Mechanism of Silicate Composite Biochar Particles on Cadmium in Soil. Chemosphere 2022, 303 Pt 1, 134970. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Li, J.; Chen, S.; uz Zaman, Q.; Sultan, K.; Rehman, M.; Saud, S.; El-Kahtany, K.; Fahad, S.; et al. Combined passivators regulate physiological, antioxidant potential and metals accumulation in potato grown in metals contaminated soil. Sci. Total Environ. 2024, 912, 168956. [Google Scholar] [CrossRef]
- Qiu, L.; Yan, C.; Munir, T.; Wang, Y.; Wang, E.; Li, R.; Wu, X.; Huang, Y.; Li, B. Comparing struvite, K-struvite and hydroxyapatite for the remediation of lead and cadmium contaminated soil. Sustain. Horiz. 2024, 10, 100084. [Google Scholar] [CrossRef]
- Lan, J.; Zhang, S.; Dong, Y.; Li, J.; Li, S.; Feng, L.; Hou, H. Stabilization and Passivation of Multiple Heavy Metals in Soil Facilitating by Pinecone-Based Biochar: Mechanisms and Microbial Community Evolution. J. Hazard. Mater. 2021, 420, 126588. [Google Scholar] [CrossRef]
- Hao, A.B.; Wei, C.D. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting. Bioresour Technol. 2019, 294, 122199. [Google Scholar] [CrossRef]
- Zhang, L.; Shang, Z.; Guo, K.; Chang, Z.; Liu, H.; Li, D. Speciation analysis and speciation transformation of heavy metal ions in passivation process with thiol-functionalized nano-silica. Chem. Eng. J. 2019, 369, 979–987. [Google Scholar] [CrossRef]
- Tan, X.; Deng, Y.; Shu, Z.; Zhang, C.; Ye, S.; Chen, Q.; Yang, H.; Yang, L. Phytoremediation Plants (Ramie) and Steel Smelting Wastes for Calcium Silicate Coated-nZVI/Biochar Production: Environmental Risk Assessment and Efficient As(V) Removal Mechanisms. Sci. Total Environ. 2022, 844, 156924. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Wu, F.; Huang, X.; Liu, F.; Wang, L.; Zhao, X.; Hu, X.; Gao, P.; Tang, B.; et al. A 3-year field study on lead immobilisation in paddy soil by a novel active silicate amendment. Environ Pollut. 2022, 292 Pt A, 118325. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Cai, K.; Huang, F.; Pan, B.; Wang, W. Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 2020, 242, 125128. [Google Scholar] [CrossRef]
- Lian, M.; Wang, L.; Feng, Q.; Niu, L.; Zhao, Z.; Wang, P.; Song, C.; Li, X.; Zhang, Z. Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment. Environ Pollut. 2021, 280, 116879. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Wang, Y.; Tsang, D.C.W.; Yang, X.; Beiyuan, J.; Yin, M.; Xiao, T.; Jiang, Y.; Lin, W.; et al. Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environ. Int. 2021, 146, 106207. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, W.; Zhao, Z.; Zhang, K.; Zhan, Y.; Wu, J.; Ding, G.; Wei, Y.; Li, J. Give priority to abiotic factor of phosphate additives for pig manure composting to reduce heavy metal risk rather than bacterial contribution. Bioresour Technol. 2021, 341, 125894. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, X.; Hong, W.; Khalid, Z.; Lv, G.; Jiang, X. Leaching behavior and comprehensive toxicity evaluation of heavy metals in MSWI fly ash from grate and fluidized bed incinerators using various leaching methods: A comparative study. Sci. Total Environ. 2024, 914, 169595. [Google Scholar] [CrossRef]
- Xie, L.J.; Li, P.Y.; Mu, D.W. Spatial distribution, source apportionment and potential ecological risk assessment of trace metals in surface soils in the upstream region of the Guanzhong Basin. Environ. Res. 2023, 234, 116527. [Google Scholar] [CrossRef]
- Hu, C.; Ma, Y.; Liu, Y.; Wang, J.; Li, B.; Sun, Y.; Shui, B. Trophodynamics and potential health risk assessment of heavy metals in the mangrove food web in Yanpu Bay, China. Sci. Total Environ. 2024, 920, 171028. [Google Scholar] [CrossRef]
- CNEMC. The Background Concentrations of Soil Elements of China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- GB 9834-88; Method for Determination of Soil Organic Matter. China Environmental Science Press: Beijing, China, 2015.
- Santos, R.A.; Reis, B.R.; Azevedo, A.C.; Sermarini, R.A. Potential Errors in Cation Exchange Capacity Measurement in Soils Amended with Rock Dust: Two Case Studies. Commun. Soil Sci. Plant Anal. 2024, 50, 329–342. [Google Scholar] [CrossRef]
- Wang, S.; Chang, H.; Dong, Z.; Ren, Y.; Tian, T.; Deng, H. Dephenolization pyrolysis fluid improved physicochemical properties and microbial community structure of saline-alkali soils. Environ. Sci. Pollut. Res. 2023, 30, 20223–20234. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 2023, 33, 385–406. [Google Scholar] [CrossRef]
- AL-Obaidi, M.A.J. The effect of soil burning on the chemical and physical properties of soil and potassium status in northern Iraq. East. J. Agric. Biol. Sci. 2023, 3, 17–29. [Google Scholar]
- Cui, H.; Ou, Y.; Wang, L.; Yan, B.; Li, Y.; Bao, M. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. J. Hazard. Mater. 2021, 406, 124313. [Google Scholar] [CrossRef]
- Li, D.; Lu, Q.; Cai, L.; Chen, L.; Wang, H. Characteristics of soil heavy metal pollution and health risk assessment in urban parks at a megacity of Central China. Toxics 2023, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.O.; Choi, K.; Ryu, J.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, bioaccumulation in plants, and risk assessment of metals in soils. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef]
- Chitimus, D.; Nedeff, V.; Mosnegutu, E.; Barsan, N.; Irimia, O.; Nedeff, F. Studies on the Accumulation, Translocation, and Enrichment Capacity of Soils and the Plant Species Phragmites Australis (Common Reed) with Heavy Metals. Sustainability 2023, 15, 8729. [Google Scholar] [CrossRef]
- Asgher, M.; Rehaman, A.; Islam, S.N.u.; Arshad, M.; Khan, N.A. Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants. Agriculture 2023, 13, 1083. [Google Scholar] [CrossRef]
- Cao, Z.; Wei, B.; Yang, L.; Yu, J.; Meng, M.; Chen, Q.; Li, F. Different crop rotation patterns vary heavy metals behavior in soils under plastic sheds: Evidence from field research. Process. Saf. Environ. Prot. 2022, 162, 543–552. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Liu, J.; Xiao, X.; Wan, Y.; An, H.; Luo, X.; Luo, S. Exceptional anti-toxic growth of water spinach in arsenic and cadmium co-contaminated soil remediated using biochar loaded with Bacillus aryabhattai. J. Hazard. Mater. 2024, 469, 133966. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, R.; Hou, L. Promotion effect of graphene on phytoremediation of Cd-contaminated soil. Environ. Sci. Pollut. Res. Int. 2022, 29, 74319–74334. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, H.; Feng, X.; Liang, Y.; Gao, P.; Song, Y. A novel iron-based composite modified by refinery sludge for fixing Pb, Zn, Cu, Cd, and As in heavy metal polluted soil: Preparation, remediation process and feasibility analysis. J. Environ. Chem. Eng. 2023, 11, 111233. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Baath, E.; Reischke, S.; Salinas, N.; Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 2019, 25, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Umeh, A.C.; Hassan, M.; Egbuatu, M.; Zeng, Z.; Al Amin, M.; Samarasinghe, C.; Naidu, R. Multicomponent PFASsorption and desorption in common commercial adsorbents: Kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects. Sci. Total Environ. 2023, 9, 166568. [Google Scholar] [CrossRef] [PubMed]
- Zhiyang, L.; Weijun, T.; Meile, C.; Surong, Z. A novel and thorough research into desorption behavior of PAHs from sediments to seawater: Aging process, thermodynamics, kinetics, influencing factors. Chem. Eng. J. 2024, 240, 148322. [Google Scholar]
Types | Cd | Pb | Zn | Cu | Cr | Ni |
---|---|---|---|---|---|---|
Soil background value in Sichuan Province | 0.08 | 30.9 | 86.5 | 31.1 | 79.0 | 32.6 |
Risk screening value (pH > 7.5) | 0.6 | 170 | 300 | 200 | 250 | 190 |
Risk control value (pH > 7.5) | 4.0 | 1000 | / | / | 1300 | / |
Types | Cd | Pb | Zn | Cu | Cr | Ni |
---|---|---|---|---|---|---|
Content (mg Kg−1) | 10.2 | 192.4 | 782.5 | 88.0 | 176.0 | 82.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Liu, J.; Huang, N.; Yu, A.; Li, J.; Li, Q.; Yang, Q.; Long, L. Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate. Sustainability 2024, 16, 7426. https://doi.org/10.3390/su16177426
Xu H, Liu J, Huang N, Yu A, Li J, Li Q, Yang Q, Long L. Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate. Sustainability. 2024; 16(17):7426. https://doi.org/10.3390/su16177426
Chicago/Turabian StyleXu, Han, Jie Liu, Na Huang, Anqing Yu, Jingyuan Li, Qiao Li, Qiunan Yang, and Lulu Long. 2024. "Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate" Sustainability 16, no. 17: 7426. https://doi.org/10.3390/su16177426
APA StyleXu, H., Liu, J., Huang, N., Yu, A., Li, J., Li, Q., Yang, Q., & Long, L. (2024). Precision Remediation of Mining Soils through On-Site Investigation and Large-Scale Synthesized Ferrosilicate. Sustainability, 16(17), 7426. https://doi.org/10.3390/su16177426