The Sustainable Remediation of Antimony(III)-Contaminated Water Using Iron and Manganese-Modified Graphene Oxide–Chitosan Composites: A Comparative Study of Kinetic and Isotherm Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Batch Adsorption Experiments
2.3. Analytical Techniques
3. Results
3.1. Sb(III) Removal by Different MnOx Decorated Fe-GOCS
3.2. Molar Ratio of Fe/Mn
3.3. Characterization
3.3.1. XRD
3.3.2. FTIR
3.3.3. SEM
3.3.4. XPS
3.4. Influencing Factors
3.4.1. Effect of Initial Sb(III) Concentration
3.4.2. Effect of pH
3.4.3. Effect of m/v
3.4.4. Effect of Adsorption Time
3.4.5. Effect of Coexisting Ions
3.5. Adsorption Kinetic Characteristics
3.5.1. Pseudo-First-Order and Pseudo-Second-Order Kinetic Models
3.5.2. Elovich Model
3.5.3. Weber–Morris Intra-Particle Diffusion Model
3.5.4. Boyd Model
3.6. Adsorption Isotherm Model
3.6.1. Langmuir Model and Freundlich Model
3.6.2. Sips Model
3.6.3. Dubinin–Radushkevich Model
3.6.4. Temkin Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, W.; Wang, H.; Liu, R.; Zhao, X.; Qu, J. The Mechanism of Antimony(III) Removal and Its Reactions on the Surfaces of Fe–Mn Binary Oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef]
- Xu, S.; Zhong, Z.; Liu, W.; Deng, H.; Lin, Z. Removal of Sb(III) from Wastewater by Magnesium Oxide and the Related Mechanisms. Environ. Res. 2020, 186, 109489. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Z.; Chen, Z.; Weng, X.; Owens, G.; Chen, Z. Simultaneous Removal of Sb(III) and Sb(V) from Mining Wastewater by Reduced Graphene Oxide/Bimetallic Nanoparticles. Sci. Total Environ. 2022, 836, 155704. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; He, M.; Wang, K.; Zhang, G. Adsorption of Antimony(III) on Goethite in the Presence of Competitive Anions. J. Geochem. Explor. 2013, 132, 201–208. [Google Scholar] [CrossRef]
- Xi, J.; He, M.; Lin, C. Adsorption of Antimony(III) and Antimony(V) on Bentonite: Kinetics, Thermodynamics and Anion Competition. Microchem. J. 2011, 97, 85–91. [Google Scholar] [CrossRef]
- He, Z.; Liu, R.; Liu, H.; Qu, J.; He, Z.; Liu, R.; Liu, H.; Qu, J. Adsorption of Sb(III) and Sb(V) on Freshly Prepared Ferric Hydroxide (FeOxHy). Environ. Eng. Sci. 2015, 32, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sarı, A.; Çıtak, D.; Tuzen, M. Equilibrium, Thermodynamic and Kinetic Studies on Adsorption of Sb(III) from Aqueous Solution Using Low-Cost Natural Diatomite. Chem. Eng. J. 2010, 162, 521–527. [Google Scholar] [CrossRef]
- Leuz, A.-K.; Mönch, H.; Johnson, C.A. Sorption of Sb(III) and Sb(V) to Goethite: Influence on Sb(III) Oxidation and Mobilization. Environ. Sci. Technol. 2006, 40, 7277–7282. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and Antimony in Water and Wastewater: Overview of Removal Techniques with Special Reference to Latest Advances in Adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef]
- Long, X.; Wang, X.; Guo, X.; He, M. A Review of Removal Technology for Antimony in Aqueous Solution. J. Environ. Sci. 2020, 90, 189–204. [Google Scholar] [CrossRef]
- Zou, J.-P.; Liu, H.-L.; Luo, J.; Xing, Q.-J.; Du, H.-M.; Jiang, X.-H.; Luo, X.-B.; Luo, S.-L.; Suib, S.L. Three-Dimensional Reduced Graphene Oxide Coupled with Mn3O4 for Highly Efficient Removal of Sb(III) and Sb(V) from Water. ACS Appl. Mater. Interfaces 2016, 8, 18140–18149. [Google Scholar] [CrossRef] [PubMed]
- Xiong, N.; Wan, P.; Zhu, G.; Xie, F.; Xu, S.; Zhu, C.; Hursthouse, A.S. Sb(III) Removal from Aqueous Solution by a Novel Nano-Modified Chitosan (NMCS). Sep. Purif. Technol. 2020, 236, 116266. [Google Scholar] [CrossRef]
- Yin, G.; Song, X.; Tao, L.; Sarkar, B.; Sarmah, A.K.; Zhang, W.; Lin, Q.; Xiao, R.; Liu, Q.; Wang, H. Novel Fe-Mn Binary Oxide-Biochar as an Adsorbent for Removing Cd(II) from Aqueous Solutions. Chem. Eng. J. 2020, 389, 124465. [Google Scholar] [CrossRef]
- Jawed, A.; Golder, A.K.; Pandey, L.M. Bio-Based Iron Oxide Nanoparticles Forming Bi-Functional Chitosan Composite Adsorbent for Cr(VI) Decontamination. Chem. Eng. J. 2024, 481, 148411. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, M.; Wang, Z.; Liu, Y. Novel Iron-Modified Chitosan for Effective Demulsification and Oil Recovery of Emulsified Oily Wastewater. Mater. Chem. Phys. 2023, 305, 127848. [Google Scholar] [CrossRef]
- Shan, H.; Zeng, C.; Zhao, C.; Zhan, H. Iron Oxides Decorated Graphene Oxide/Chitosan Composite Beads for Enhanced Cr(VI) Removal from Aqueous Solution. Int. J. Biol. Macromol. 2021, 172, 197–209. [Google Scholar] [CrossRef]
- Zeng, J.; Qi, P.; Shi, J.; Pichler, T.; Wang, F.; Wang, Y.; Sui, K. Chitosan Functionalized Iron Nanosheet for Enhanced Removal of As(III) and Sb(III): Synergistic Effect and Mechanism. Chem. Eng. J. 2020, 382, 122999. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, Q.; Zhou, T.; Xie, M.; He, J.; Guo, J.; Huang, Y. Recovery of Phosphorus from Aqueous Solution by Iron–Aluminum–Zirconium-Modified Anthracite: Performance and Mechanism. ACS Sustain. Chem. Eng. 2020, 8, 8577–8584. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide–MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Lin, L.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z.; Chau, H.W. Arsenic Removal in Aqueous Solution by a Novel Fe-Mn Modified Biochar Composite: Characterization and Mechanism. Ecotoxicol. Environ. Saf. 2017, 144, 514–521. [Google Scholar] [CrossRef]
- Shan, H.; Mo, H.; Liu, Y.; Zeng, C.; Peng, S.; Zhan, H. As(III) Removal by a Recyclable Granular Adsorbent through Dopping Fe-Mn Binary Oxides into Graphene Oxide Chitosan. Int. J. Biol. Macromol. 2023, 237, 124184. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Wang, Z.; He, C.; Lyu, W.; Yan, W.; Yang, L. Enhanced Antimonate (Sb(V)) Removal from Aqueous Solution by La-Doped Magnetic Biochars. Chem. Eng. J. 2018, 354, 623–632. [Google Scholar] [CrossRef]
- Luo, J.; Luo, X.; Crittenden, J.; Qu, J.; Bai, Y.; Peng, Y.; Li, J. Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO2). Environ. Sci. Technol. 2015, 49, 11115–11124. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Ren, B.; Hou, B.; Deng, X.; Deng, R.; Zhu, G.; Cheng, S. Adsorption of Sb(III) and Pb(II) in Wastewater by Magnetic γ-Fe2O3-Loaded Sludge Biochar: Performance and Mechanisms. Chemosphere 2024, 349, 140914. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Lin, Y.; Yu, P.; Luo, Y. Study of Aniline/ɛ-Caprolactam Mixture Adsorption from Aqueous Solution onto Granular Activated Carbon: Kinetics and Equilibrium. Chem. Eng. J. 2012, 187, 69–78. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M.Q. The Adsorption Kinetics and Modeling for Heavy Metals Removal from Wastewater by Moringa Pods. J. Environ. Chem. Eng. 2015, 3, 775–784. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Padmesh, T.; Palanivelu, K.; Velan, M. Biosorption of Nickel(II) Ions onto Sargassum Wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. J. Hazard. Mater. 2006, 133, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1, 111–117. [Google Scholar] [CrossRef]
- Chu, K.H.; Hashim, M.A.; Santos, Y.T.D.C.; Debord, J.; Harel, M.; Bollinger, J.-C. The Redlich–Peterson Isotherm for Aqueous Phase Adsorption: Pitfalls in Data Analysis and Interpretation. Chem. Eng. Sci. 2024, 285, 119573. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Rajapaksha, A.U.; Vithanage, M.; Zhang, M.; Cho, J.S.; Lee, S.-E.; Ok, Y.S. Trichloroethylene Adsorption by Pine Needle Biochars Produced at Various Pyrolysis Temperatures. Bioresour. Technol. 2013, 143, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Ohale, P.E.; Onu, C.E.; Ohale, N.J.; Oba, S.N. Adsorptive Kinetics, Isotherm and Thermodynamic Analysis of Fishpond Effluent Coagulation Using Chitin Derived Coagulant from Waste Brachyura Shell. Chem. Eng. J. Adv. 2020, 4, 100036. [Google Scholar] [CrossRef]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of Tetracycline by NaOH-Activated Carbon Produced from Macadamia Nut Shells: Kinetic and Equilibrium Studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Bi, X.; Meng, S.; Zhang, Y.; Wang, S.; Li, H.; Ma, L.; Zhang, X.; Zou, X. Study of Adsorption Capacity and Mechanism of Nano-Alumina for Arsenic Ion by Isothermal Adsorption Model Simulations. Environ. Technol. Innov. 2024, 34, 103560. [Google Scholar] [CrossRef]
- Chunya, Z.; Huimei, S.; Chaoran, Z.; Yunquan, L.I.U. Preparation and Mechanical Properties of Nano-Iron-Graphene Oxide/Chitosan Composites. Acta Mater. Compos. Sin. 2022, 39, 1739–1747. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Weng, X.; Chen, Z. The Removal of Sb from Mine Wastewater Using Biosynthesized Fe-Mn Nanoparticles: Function and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133973. [Google Scholar] [CrossRef]
- Wu, Z.; Su, X.; Lin, Z.; Khan, N.I.; Owens, G.; Chen, Z. Removal of As(V) by Iron-Based Nanoparticles Synthesized via the Complexation of Biomolecules in Green Tea Extracts and an Iron Salt. Sci. Total Environ. 2021, 764, 142883. [Google Scholar] [CrossRef]
- He, F.; Cai, W.; Lin, J.; Yu, B.; Owens, G.; Chen, Z. Reducing the Impact of Antibiotics in Wastewaters: Increased Removal of Mitoxantrone from Wastewater by Biosynthesized Manganese Nanoparticles. J. Clean. Prod. 2021, 293, 126207. [Google Scholar] [CrossRef]
- Li, W.; Fu, F.; Ding, Z.; Tang, B. Zero Valent Iron as an Electron Transfer Agent in a Reaction System Based on Zero Valent Iron/Magnetite Nanocomposites for Adsorption and Oxidation of Sb(III). J. Taiwan Inst. Chem. Eng. 2018, 85, 155–164. [Google Scholar] [CrossRef]
- Jia, X.; Ma, L.; Liu, J.; Liu, P.; Yu, L.; Zhou, J.; Li, W.; Zhou, W.; Dong, Z. Reduction of Antimony Mobility from Sb-Rich Smelting Slag by Shewanella Oneidensis: Integrated Biosorption and Precipitation. J. Hazard. Mater. 2022, 426, 127385. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Q.; Jin, X.; Khan, N.I.; Owens, G.; Chen, Z. Removal of Low Sb(V) Concentrations from Mining Wastewater Using Zeolitic Imidazolate Framework-8. J. Environ. Manag. 2021, 287, 112280. [Google Scholar] [CrossRef] [PubMed]
- Bhaumik, M.; Noubactep, C.; Gupta, V.K.; McCrindle, R.I.; Maity, A. Polyaniline/Fe0 Composite Nanofibers: An Excellent Adsorbent for the Removal of Arsenic from Aqueous Solutions. Chem. Eng. J. 2015, 271, 135–146. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Q.; Huang, X.; Li, X.; Wang, Y.; Liu, W.; Lin, Z. The High Efficient Sb(III) Removal by Cauliflower like Amorphous Nanoscale Zero-Valent Iron (A-nZVI). J. Hazard. Mater. 2022, 436, 129056. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gong, K.; Jin, X.; Owens, G.; Chen, Z. Mechanism for the Simultaneous Removal of Sb(III) and Sb(V) from Mining Wastewater by Phytosynthesized Iron Nanoparticles. Chemosphere 2022, 307, 135778. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Gu, Z.; Minale, M.; Xia, S.; Zhao, J.; Wang, X. Simultaneous Adsorption and Oxidation of Sb(III) from Water by the pH-Sensitive Superabsorbent Polymer Hydrogel Incorporated with Fe-Mn Binary Oxides Composite. J. Hazard. Mater. 2022, 423, 127013. [Google Scholar] [CrossRef]
- Subedi, N.; Lähde, A.; Abu-Danso, E.; Iqbal, J.; Bhatnagar, A. A Comparative Study of Magnetic Chitosan (Chi@Fe3O4) and Graphene Oxide Modified Magnetic Chitosan (Chi@Fe3O4GO) Nanocomposites for Efficient Removal of Cr(VI) from Water. Int. J. Biol. Macromol. 2019, 137, 948–959. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. Critical Review in Adsorption Kinetic Models. J. Zhejiang Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Milmile, S.N.; Pande, J.V.; Karmakar, S.; Bansiwal, A.; Chakrabarti, T.; Biniwale, R.B. Equilibrium Isotherm and Kinetic Modeling of the Adsorption of Nitrates by Anion Exchange Indion NSSR Resin. Desalination 2011, 276, 38–44. [Google Scholar] [CrossRef]
- Watkins, R.; Weiss, D.; Dubbin, W.; Peel, K.; Coles, B.; Arnold, T. Investigations into the Kinetics and Thermodynamics of Sb(III) Adsorption on Goethite (α-FeOOH). J. Colloid Interface Sci. 2006, 303, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Toor, M.; Jin, B. Adsorption Characteristics, Isotherm, Kinetics, and Diffusion of Modified Natural Bentonite for Removing Diazo Dye. Chem. Eng. J. 2012, 187, 79–88. [Google Scholar] [CrossRef]
- Mittal, J.; Mariyam, A.; Sakina, F.; Baker, R.T.; Sharma, A.K.; Mittal, A. Batch and Bulk Adsorptive Removal of Anionic Dye Using Metal/Halide-Free Ordered Mesoporous Carbon as Adsorbent. J. Clean. Prod. 2021, 321, 129060. [Google Scholar] [CrossRef]
- Basar, C. Applicability of the Various Adsorption Models of Three Dyes Adsorption onto Activated Carbon Prepared Waste Apricot. J. Hazard. Mater. 2006, 135, 232–241. [Google Scholar] [CrossRef]
Temperature °C | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | k1 | R2 | Qe (mg/g) | k2 | R2 | |
25 | 3.17 | 1.92 × 10−3 | 0.9839 | 4.40 | 1.48 × 10−3 | 0.9958 |
Temperature °C | Elovich Model | ||
---|---|---|---|
α | ꞵ | R2 | |
25 | 0.10 | 1.43 | 0.9481 |
Temperature °C | Weber-Morris Model of Intragranular Diffusion | ||||||||
---|---|---|---|---|---|---|---|---|---|
K1p | C1 (mg/g) | R2 | K2p | C2 (mg/g) | R2 | K3p | C3 (mg/g) | R2 | |
25 | 0.10 | 0.65 | 0.9789 | 4.88 × 10−2 | 2.14 | 0.91 | 3.39 × 10−3 | 4.02 | 0.8691 |
Temperature °C | Boyd Dynamic Model Parameters | ||
---|---|---|---|
Slope | Intercept | R2 | |
25 | 10−3 | −0.21 | 0.98392 |
Adsorption Isotherm Model | 25 °C | 35 °C | 45 °C | |
---|---|---|---|---|
Langmuir model | Qm (mg/g) | 57.69 | 79.36 | 81.35 |
KL | 5.19 × 10−3 | 1.52 × 10−2 | 3.55 × 10−2 | |
R2 | 0.99 | 0.96 | 0.96 | |
Freundlich model | KF | 1.17 | 7.47 | 9.29 |
1/n | 0.66 | 0.36 | 0.39 | |
R2 | 0.9884 | 0.9416 | 0.8563 | |
Sips model | Qm (mg/g) | 80.09 | 58.26 | 72.20 |
Ks | 4.34 × 10−3 | 4.10 × 10−2 | 0.97 | |
n | 0.96 | 1.48 | 14.07 | |
R2 | 0.9968 | 0.9682 | 0.9832 | |
Dubinin–Radushkevich model | Qm (mg/g) | 38.76 | 43.68 | 62.11 |
K | 2586.49 | 323.46 | 174.94 | |
E (kJ/mol) | 1.39 × 10−2 | 3.93 × 10−2 | 5.34 × 10−2 | |
R2 | 0.8856 | 0.8899 | 0.9458 | |
Temkin model | AT (L/mg) | 0.23 | 0.21 | 0.38 |
B1 (J/mol) | 9.91 | 11.84 | 16.54 | |
R2 | 0.8841 | 0.9447 | 0.9545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, H.; Shan, H.; Xu, Y.; Liao, H.; Lu, M.; Peng, S.; Zhao, Y. The Sustainable Remediation of Antimony(III)-Contaminated Water Using Iron and Manganese-Modified Graphene Oxide–Chitosan Composites: A Comparative Study of Kinetic and Isotherm Models. Sustainability 2024, 16, 7599. https://doi.org/10.3390/su16177599
Mo H, Shan H, Xu Y, Liao H, Lu M, Peng S, Zhao Y. The Sustainable Remediation of Antimony(III)-Contaminated Water Using Iron and Manganese-Modified Graphene Oxide–Chitosan Composites: A Comparative Study of Kinetic and Isotherm Models. Sustainability. 2024; 16(17):7599. https://doi.org/10.3390/su16177599
Chicago/Turabian StyleMo, Huinan, Huimei Shan, Yuqiao Xu, Haimin Liao, Meiyuan Lu, Sanxi Peng, and Yuqing Zhao. 2024. "The Sustainable Remediation of Antimony(III)-Contaminated Water Using Iron and Manganese-Modified Graphene Oxide–Chitosan Composites: A Comparative Study of Kinetic and Isotherm Models" Sustainability 16, no. 17: 7599. https://doi.org/10.3390/su16177599
APA StyleMo, H., Shan, H., Xu, Y., Liao, H., Lu, M., Peng, S., & Zhao, Y. (2024). The Sustainable Remediation of Antimony(III)-Contaminated Water Using Iron and Manganese-Modified Graphene Oxide–Chitosan Composites: A Comparative Study of Kinetic and Isotherm Models. Sustainability, 16(17), 7599. https://doi.org/10.3390/su16177599