Exploring the Influence of Pulsed Electric Field and Temperature on Key Physical Attributes in Sustainable Hot-Air-Dried Apple Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Technological Methods
2.2.1. Application of a Pulsed Electric Field (PEF)
2.2.2. Drying in a Convection/Hot-Air Dryer
2.3. Analytical Methods
2.3.1. Determination of Dry Matter Content
2.3.2. Color Measurement in the CIE System L*a*b*
2.3.3. Determination of Rehydration Properties
2.3.4. Determination of Hygroscopic Properties
2.3.5. Thermogravimetric Analysis (TGA)
2.3.6. Determination of Textural Properties
2.4. Statistical Analysis
3. Results
3.1. The Influence of PEF on the Drying Process and Dry Matter Content of Dried Apples
3.2. The Influence of PEF on the Color Change of Dried Apples
3.3. The Influence of PEF on the Rehydration Properties of Dried Apple
3.4. The Influence of PEF on the Hygroscopic Properties of Dried Apple
3.5. The Influence of PEF on the Thermochemical Properties of Dried Apples (TGA)
3.6. The Influence of PEF on the Textural Properties of Dried Apples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of Pulsed Electric Fields Treatment on Vacuum Drying of Potato Tissue. LWT 2018, 95, 289–294. [Google Scholar] [CrossRef]
- Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach. LWT 2021, 15, 112892. [Google Scholar] [CrossRef]
- Ammelt, D.; Lammerskitten, A.; Wiktor, A.; Barba, F.J.; Töpfl, S.; Parniakov, O. The impact of pulsed electric fields on quality parameters of freeze-dried red beets and pineapples. Int. J. Food Sci. Technol. 2020, 56, 1777–1787. [Google Scholar] [CrossRef]
- Mello, R.E.; Fontana, A.; Mulet, A.; Correa, J.L.G.; Caler, J.A. PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. Innov. Food Sci. Emerg. Technol. 2021, 72, 102753. [Google Scholar] [CrossRef]
- Kanduser, M.; Miklavcic, D. Electroporation in biological cell and tissue: An overview. In Electrotechnologies for Extraction from Food Plants and Biomaterials; Vorobiev, E., Lebovka, N., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2009; pp. 1–37. [Google Scholar]
- Aoude, C.; Lammerskitten, A.; Parniakov, O.; Zhang, R.; Grimi, N.; El Zakhem, H.; Vorobiev, E. Chapter 7—Equipment and recent advances in pulsed electric fields. In Innovative and Emerging Technologies in the Bio-Marine Food Sector; Garcia-Vaquero, M., Rajauria, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 149–172. ISBN 9780128200964. [Google Scholar] [CrossRef]
- Oziembłowski, M.; Dróżdż, T.; Wrona, P. Oddziaływanie pulsacyjnych pól elektrycznych (PEF) na mikroorganizmy w kontekście technologii żywności. Przegląd Elektrotechniczny 2013, 89, 222–225. (In Polish) [Google Scholar]
- Lammerskitten, A.; Shorstkii, I.; Parniakov, O.; Mykhailyk, V.; Toepfl, S.; Rybak, K.; Dadan, M.; Nowacka, M.; Wiktor, A. The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. J. Food Process Preserv. 2020, 44, 14973. [Google Scholar] [CrossRef]
- Yamakage, K.; Yamada, T.; Takahashi, K.; Takaki, K.; Komuro, M.; Sasaki, K.; Aoki, H.; Kamagata, J.; Koide, S.; Orikasa, T. Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innov. Food Sci. Emerg. Technol. 2021, 68, 102615. [Google Scholar] [CrossRef]
- Zhang, C.; Lyu, X.; Arshad, R.N.; Aadil, R.M.; Tong, Y.; Zhao, W.; Yang, R. Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem. 2023, 403, 134367. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. Effect of pulsed electric field pre-treatment and the freezing methods on the kinetics of the freeze-drying process of apple and its selected physical properties. Foods 2022, 11, 2407. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, D. Pulsed electric field enhanced freeze-drying of apple tissue. Czech J. Food Sci. 2019, 37, 432–438. [Google Scholar] [CrossRef]
- Ostermeier, R.; Parniakov, O.; Töpfl, S.; Jäger, H. Applicability of Pulsed Electric Field (PEF) Pre-Treatment for a Convective Two-Step Drying Process. Foods 2020, 9, 512. [Google Scholar] [CrossRef] [PubMed]
- Castagnini, J.M.; Iaccheri, E.; Tylewicz, U.; Dalla Rosa, M.; Rocculi, P. Pulsed electric fields effect on mechanical and sorption properties of dried apple tissue. Innov. Food Sci. Emerg. Technol. 2020, 65, 102442. [Google Scholar] [CrossRef]
- Matys, A.; Witrowa-Rajchert, D.; Parniakov, O.; Wiktor, A. Application of pulsed electric field prior to vacuum drying: Effect on drying time and quality of apple tissue. Res. Agric. Eng. 2022, 68, 1–9. [Google Scholar] [CrossRef]
- Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The effect of pulsed electric field (PEF) on drying kinetics, color and microstructure of carrot. Dry. Technol. 2016, 34, 1286–1296. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Trusinska, M.; Rybak, K.; Wiktor, A.; Nowacka, M. The influence of pulsed electric field and air temperature on the course of hot-air drying and bioactive compounds of apple tissue. Molecules 2023, 28, 2970. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Smith, G.N. Total Color change (ΔE∗) is a poor estimator of total carotenoids lost during post-harvest storage of biofortified maize grains. Heliyon 2020, 6, e05173. [Google Scholar]
- Lewicki, P.P. Some remarks on rehydration of dried foods. J. Food Eng. 1998, 36, 81–87. [Google Scholar] [CrossRef]
- Liu, C.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot. Food Bioprocess Technol. 2020, 13, 45–52. [Google Scholar] [CrossRef]
- Zlatanović, S.; Ostojić, S.; Micić, D.; Rankov, S.; Dodevska, M.; Vukosavljević, P.; Gorjanović, S. Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta 2019, 673, 17–25. [Google Scholar] [CrossRef]
- Dłużewska, E.; Marcianiak-Łukasiak, K. Textural features of gluten free breads. Acta Agrophys. 2014, 21, 433–443. (In Polish) [Google Scholar]
- Onwude, D.I.; Iranshahi, K.; Rubinetti, D.; Schudel, S.; Schemminger, J.; Martynenkoe, A.; Defraeye, T. How much do process parameters affect the residual quality attributes of dried fruits and vegetables for convective drying? Food Bioprocess Proc. 2022, 131, 176–190. [Google Scholar] [CrossRef]
- Senadeera, W.; Adiletta, G.; Önal, B.; Di Matteo, M.; Russo, P. Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods 2020, 9, 101. [Google Scholar] [CrossRef]
- Briki, S.B.; Zitouni, B.; Bechaa, B.; Amiali, M. Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat Mass Transf. 2019, 55, 3189–3199. [Google Scholar] [CrossRef]
- Calín-Sánchez, A.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, A.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Alam, R.; Lyng, J.G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J. Food Sci. 2018, 83, 2159–2166. [Google Scholar] [CrossRef]
- Fauster, T.; Giancaterino, M.; Pittia, P.; Jaeger, H. Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. Food Sci. Technol. 2020, 121, 108937. [Google Scholar] [CrossRef]
- Caballero-Cerón, C.; Serment-Moreno, V.; Velazquez GTorres, J.A.; Welti-Chanes, J. Hygroscopic properties and glass transition of dehydrated mango, apple and banana. J. Food Sci. Technol. 2018, 55, 540–549. [Google Scholar] [CrossRef]
- Cheng, X.-C.; Cui, X.-Y.; Qin, Z.; Liu, H.-M.; Wang, X.-D.; Liu, Y.-L. Effect of drying pretreatment methods on structural features and antioxidant activities of brauns native lignin extracted from Chinese quince fruit. Process Biochem. 2021, 106, 70–77. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Zhao, Z.; Yi, S.; Mu, J. Influence of ultrasound-assisted extraction on the phyrolysis characteristics and kinetic parametrers of eucalyptus. Ultrasonifics Sonochem. 2017, 37, 47–55. [Google Scholar] [CrossRef]
- Guerrero, M.R.B.; da Silva Paula, M.M.; Zaragoza, M.M.; Gutiérrez, J.S.; Velderrain, V.G.; Ortiz, A.L.; Collins-Martínez, V. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int. J. Hydrogen Energy 2024, 39, 16619–16627. [Google Scholar] [CrossRef]
- Marzec, A.; Kowalska, H.; Kowalska, J.; Domian, E.; Lenart, A. Influence of pear variety and drying methods on the quality of dried fruit. Molecules 2020, 25, 5146. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Y. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT 2008, 41, 1575–1585. [Google Scholar] [CrossRef]
Symbols | Process Parameters | Drying Time to MR = 0.01 | |
---|---|---|---|
Temperature [°C] | PEF Energy [kJ/kg] | [min] | |
Control 60 °C | 60 | - | 220 |
PEF 1, 60 °C | 60 | 1 | 195 |
PEF 3.5, 60 °C | 60 | 3.5 | 175 |
PEF 6, 60 °C | 60 | 6 | 185 |
Control 70 °C | 70 | - | 175 |
PEF 1, 70 °C | 70 | 1 | 185 |
PEF 3.5, 70 °C | 70 | 3.5 | 168 |
PEF 6, 70 °C | 70 | 6 | 110 |
Control 80 °C | 80 | - | 130 |
PEF 1, 80 °C | 80 | 1 | 120 |
PEF 3.5, 80 °C | 80 | 3.5 | 135 |
PEF 6, 80 °C | 80 | 6 | 120 |
Properties | Effect (η2) | |
---|---|---|
Temperature [°C] | PEF Energy [kJ/kg] | |
Dry matter content [%] | 0.939 (p < 0.05) | 0.354 (p > 0.05) |
ΔE [-] total color change | 0.706 (p < 0.05) | 0.399 (p < 0.05) |
RR [-] rehydration coefficient | 0.222 (p > 0.05) | 0.048 (p > 0.05) |
SSL [-] relative dry matter loss | 0.519 (p < 0.05) | 0.385 (p < 0.05) |
Hygroscopic properties [g H2O/100 g d.m.] | 0.677 (p < 0.05) | 0.336 (p < 0.05) |
Fmax [N] maximum force | 0.611 (p < 0.05) | 0.001 (p > 0.05) |
Symbols | RR [-] ± SD | SSL [-] ± SD |
---|---|---|
Control 60 °C | 2.73 0.10 a | 0.68 0.02 abc |
PEF 1, 60 °C | 2.60 0.06 a | 0.72 0.02 cde |
PEF 3.5, 60 °C | 2.60 0.06 a | 0.69 0.02 bcde |
PEF 6, 60 °C | 2.59 0.09 a | 0.70 0.03 abcde |
Control 70 °C | 2.73 0.06 a | 0.68 0.01 abcd |
PEF 1, 70 °C | 2.56 0.06 a | 0.71 0.02 de |
PEF 3.5, 70 °C | 2.67 0.06 a | 0.71 0.01 e |
PEF 6, 70 °C | 2.77 0.09 a | 0.67 0.02 e |
Control 80 °C | 2.84 0.04 a | 0.61 0.01 a |
PEF 1, 80 °C | 2.73 0.10 a | 0.68 0.02 cde |
PEF 3.5, 80 °C | 2.62 0.16 a | 0.73 0.04 abcde |
PEF 6, 80 °C | 2.73 0.19 a | 0.70 0.05 ab |
Symbols | Fmax [N] | SD |
---|---|---|
Control 60 °C | 7.88 abc | 4.67 |
PEF 1, 60 °C | 6.21 ab | 2.01 |
PEF 3.5, 60 °C | 5.44 a | 1.94 |
PEF 6, 60 °C | 3.95 a | 1.17 |
Control 70 °C | 7.88 a | 4.67 |
PEF 1, 70 °C | 12.66 bcde | 3.69 |
PEF 3.5, 70 °C | 13.30 de | 4.88 |
PEF 6, 70 °C | 9.15 abcd | 1.64 |
Control 80 °C | 17.20 ef | 10.78 |
PEF 1, 80 °C | 14.52 cdef | 4.15 |
PEF 3.5, 80 °C | 13.86 cde | 2.01 |
PEF 6, 80 °C | 21.33 f | 8.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurzyńska, A.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Exploring the Influence of Pulsed Electric Field and Temperature on Key Physical Attributes in Sustainable Hot-Air-Dried Apple Tissue. Sustainability 2024, 16, 7699. https://doi.org/10.3390/su16177699
Ciurzyńska A, Rybak K, Witrowa-Rajchert D, Nowacka M. Exploring the Influence of Pulsed Electric Field and Temperature on Key Physical Attributes in Sustainable Hot-Air-Dried Apple Tissue. Sustainability. 2024; 16(17):7699. https://doi.org/10.3390/su16177699
Chicago/Turabian StyleCiurzyńska, Agnieszka, Katarzyna Rybak, Dorota Witrowa-Rajchert, and Małgorzata Nowacka. 2024. "Exploring the Influence of Pulsed Electric Field and Temperature on Key Physical Attributes in Sustainable Hot-Air-Dried Apple Tissue" Sustainability 16, no. 17: 7699. https://doi.org/10.3390/su16177699
APA StyleCiurzyńska, A., Rybak, K., Witrowa-Rajchert, D., & Nowacka, M. (2024). Exploring the Influence of Pulsed Electric Field and Temperature on Key Physical Attributes in Sustainable Hot-Air-Dried Apple Tissue. Sustainability, 16(17), 7699. https://doi.org/10.3390/su16177699