Speed Limits in São Paulo and the Actions for Road Safety and Air Quality
Abstract
:1. Introduction
2. Material and Methods
2.1. Traffic Accidents
2.2. Interactions between Traffic Parameters, Accidents and Air Quality
3. Results and Discussion
3.1. Accident Trends
3.2. Accident Modeling
3.3. Pinheiros Marginal Case Study
3.4. Study Comparison and Research Needs
Ref. | Transport Policy Study/ Measures and Highlights | Time Span | Speed Reduction | Traffic Variation | Accident Variation | Pollution Variation | Pollutant Type |
---|---|---|---|---|---|---|---|
[7] | Speed reduction and pollution in Madrid (Spain) | 2011–2017 | from 120 to 110 km/h on rural roads | −15% | −20% | −18% | Fuel consumption and CO |
from 90 to 70 km/h on urban roads | −20% | ||||||
[9] | Speed reduction policy on car-crash accidents | 2006 | from 60 to 46 km/h on urban roads | −60% | |||
from 100 to 76 km/h on rural roads | −20% | ||||||
[20] | Speed reduction policy on car-crash accidents | 2015–2016 | from 90 to 70 km/h | −22% | −23% | PM2.5 | |
−35% | CO | ||||||
[40] | Influence of traffic on PM in Madrid | 1999–2001 | −30% | −20% | PM2.5–PM10 | ||
[21] | Speed reduction policy in Barcelona | 2008–2009 | from 100–120 to 80 km/h | −6% | −7% | −5.6% | PM10 |
−2.5% | NOX | ||||||
[27] | Relationship between speed and traffic fatalities in US | 1987–1995 | from 100 to 85 km/h on rural interstate roads | no traffic variation | −21% | ||
[41] | Weather, air pollution and traffic accidents in Taipei (Taiwan) | 2018 | −28% | −13% | PM2.5 | ||
[42] | Mitigation measures, PM2.5 in Beijing (Olympics) | 2007-2011 | −50% | −16% | PM2.5 | ||
[43] | Emission-reduction measures during red air-pollution alert in Beijing (China) | 2015 | Emission-reduction measures and traffic restrictions | −28% | −15% | PM2.5 | |
[28] | Impact of speed variations on freeway crashes in UK | 2017 | from 80 to 60 km/h | −10% | −8% | ||
−25% | −20% | ||||||
[13] | Relationship between speeding and crashes in British Columbia (Canada) | 1985–1990 | speed reduction from maximum speed limits | −22% | −31% | ||
−37% | |||||||
[44] | Weather effect on air pollution and traffic in Khuzestan State (Iran) | 2008–2015 | _ | −65.4% | −25% | NOX | |
_ | −5.0% | −25% | NO2 | ||||
[12] | Optimal speed limits to reduce car accidents in Australia | 2000–2014 | from 80 to 50 km/h from 110 to 80 km/h | −38% −27% | −90% −64% | _ | |
[11] | Speed reduction policy and Metanalyses in Oslo (Norway) | 2004–2005 | from 80 to 60 km/h from 90 to 40 km/h | −25% −56% | −67% −94% | ||
[45] | Teleworking effects on cities in Switzerland | 2002–2013 | −3% | −3% | NO2 | ||
−3% | −4% | CO | |||||
[46] | Air pollution alerts and respiratory diseases in South Korea | 2015–2019 | −8% | PM2.5 | |||
[8] | Speed optimization to reduce road accidents and pollution in Shiraz (Iran) | 2011 | from 82 to 72 km/h | −10% | −4% | Several pollutants | |
[47] | Traffic-related pollution in Danish cities (Copenhagen/Roskilde) | 2005 | from 80 to 40 km/h | −36% | −19% | NO2 | |
−6% | dB | ||||||
[10] | Accident analyses worldwide | 2009–2011 | from 70 to 50 km/h | −25% | −62% | ||
from 40 to 36 km/h | -15% | −30% | |||||
[48] | Weather effect on air pollution and traffic in Madrid (Spain) | 2006 | −27% | −6% | PM10 | ||
[33] | Traffic and pollution relationships in São Paulo (Brazil) during COVID-19 lockdown | 2019–2020 | −39% | −15% | PM2.5 | ||
−39% | −23% | CO | |||||
−39% | −15% | NO2 | |||||
[49] | Influence of road traffic emissions on air quality in Barcelona (Spain) | 1999–2007 | −14% | −42% | PM1 | ||
[26] | Speed reduction effect on car accidents in Sweden | 2014–2015 | from 50 to 40 km/h | −4% | −11% | ||
[50] | Reduction in residential speed limits and traffic behavior in Edmonton (Canada) | 2004–2009 | from 50 to 40 km/h | −9% | −14% | ||
[51] | Health effects for PM2.5 emission reductions in Beijing | 2017 | −26% | −32% | PM2.5 | ||
[52] | War conflict, reduction in traffic volumes and urban pollution in Israel | 2005–2006 | traffic reduction due to socioeconomic conditions | −40% | −38.5 | NO2 | |
[31] | Risk factors in urban accidents in Zagreb (Croatia) | 1999–2000 | increase from upper speed limits | _ | 65% | ||
[53] | Air pollution in Beijing | 1998–2013 | -37% | PM10 | |||
This study | Reduction in speed limits at marginal roads in São Paulo | 2015–2019 | from 90 to 70 km/h | −7% | −27% | −24% | NOX |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IRTAD. Research Report. Speed and Crash Risk. OECD/ITF. 2018. Available online: https://www.itf-oecd.org/speed-crash-risk (accessed on 1 June 2022).
- AASHTO. American Association of State Highway and Transportation Officials. The Green Book: A Policy on Geometric Design of Highways and Streets; AASHTO: Washington, DC, USA, 2018. [Google Scholar]
- WHO. Resolution Adopted by the General Assembly. 64/255: Improving Global Road Safety. 2010. Available online: https://digitallibrary.un.org/record/684031 (accessed on 2 October 2020).
- WHO. Resolution Adopted by the General Assembly. 74/299: Improving Global Road Safety. 2020. Available online: https://undocs.org/en/A/RES/74/299 (accessed on 5 January 2021).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- de Albornoz, V.A.C.; Millán, J.M.; Galera, A.L.; Medina, B.M. Road speed limit matters—Are politicians doing the right thing? Socioecon. Plann. Sci. 2022, 79, 101106. [Google Scholar] [CrossRef]
- Hosseinlou, M.H.; Kheyrabadi, S.A.; Zolfaghari, A. Determining optimal speed limits in traffic networks. IATSS Res. 2015, 39, 36–41. [Google Scholar] [CrossRef]
- Aarts, L.; Van Schagen, I. Driving speed and the risk of road crashes: A review. Accid. Anal. Prev. 2006, 38, 215–224. [Google Scholar] [CrossRef]
- Kröyer, H.R.G.; Jonsson, T.; Várhelyi, A. Relative fatality risk curve to describe the effect of change in the impact speed on fatality risk of pedestrians struck by a motor vehicle. Accid. Anal. Prev. 2014, 62, 143–152. [Google Scholar] [CrossRef]
- Elvik, R.; Vadeby, A.; Hels, T.; van Schagen, I. Updated estimates of the relationship between speed and road safety at the aggregate and individual levels. Accid. Anal. Prev. 2019, 123, 114–122. [Google Scholar] [CrossRef]
- Doecke, S.D.; Kloeden, C.N.; Dutschke, J.K.; Baldock, M.R.J. Safe speed limits for a safe system: The relationship between speed limit and fatal crash rate for different crash types. Traffic Inj. Prev. 2018, 19, 404–408. [Google Scholar] [CrossRef]
- Cooper, P.J. The relationship between speeding behaviour (as measured by violation convictions) and crash involvement. J. Saf. Res. 1997, 28, 83–95. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018; Licence: CC BYNC-SA 3.0 IGO. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 2 April 2020).
- CET. Companhia de Engenharia de Tráfego. Redução de Velocidades Máximas Nas Marginais Tietê e Pinheiros: Nota Técnica 247. São Paulo: CET-SP. 2016; 3p. [Google Scholar]
- de Leitão, P.A.; Bezerra, I.M.P.; de Santos, E.F.S.; de Ribeiro, S.L.; Takasu, J.M.; Carlesso, J.S.; Campos, M.F.; de Abreu, L.C. Mortality due to traffic accidents, before and after the reduction of the average speed of motor vehicles in the city of São Paulo, Brazil, from 2010 to 2016. J. Hum. Growth Dev. 2019, 29, 83–92. [Google Scholar] [CrossRef]
- CETESB. Relatório de Qualidade do ar no Estado de São Paulo, 2021. 2022. Available online: https://cetesb.sp.gov.br/ar/publicacoes-relatorios/ (accessed on 2 April 2020).
- CET. Companhia de Engenharia de Tráfego (CET). Acidentes de Trânsito: Relatório Anual; São Paulo: CET-SP, 2020. 2020; 69p. [Google Scholar]
- CET. Companhia de Engenharia de Tráfego (CET). Acidentes de Trânsito: Relatório Anual; São Paulo: CET-SP, 2017. 2017; 69p. [Google Scholar]
- Ang, A.; Christensen, P.; Vieira, R. Should congested cities reduce their speed limits? Evidence from São Paulo, Brazil. J. Public Econ. 2020, 184, 104155. [Google Scholar] [CrossRef]
- Bel, G.; Rosell, J. Effects of the 80 km/h and variable speed limits on air pollution in the metropolitan area of Barcelona. Transp. Res. Part D Transp. Environ. 2013, 23, 90–97. [Google Scholar] [CrossRef]
- CET. Companhia de Engenharia de Tráfego (CET). Acidentes de Trânsito: Relatório Anual. São Paulo; São Paulo: CET-SP, 2015, 2016, 2017, 2018, 2019. 2015, 2016, 2017, 2018, 2019. 76p.
- CET. Novas Velocidades Regulamentadas Nas Vias Marginais Tietê e Pinheiros e ações Para Melhoria Na Segurança Viária: Nota Técnica 253; São Paulo: CET-SP. 2017. 34p.
- DER. Departamento de Estradas de Rodagem do Estado de São Paulo. Manual Básico de Estradas e Rodovias Vicinais. Volume 1: Planejamento, Projeto, Construção e Operação; São Paulo: DER-SP. 2012. [Google Scholar]
- Charlton, S.G.; Starkey, N.J. Transitions within a safe road system. Accid. Anal. Prev. 2018, 121, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Silvano, A.P.; Bang, K.L. Impact of speed limits and road characteristics on free-flow speed in urban areas. J. Transp. Eng. 2016, 142, 04015039. [Google Scholar] [CrossRef]
- Castillo-Manzano, J.I.; Castro-Nuño, M.; López-Valpuesta, L.; Vassallo, F.V. The complex relationship between increases to speed limits and traffic fatalities: Evidence from a meta-analysis. Saf. Sci. 2019, 111, 287–297. [Google Scholar] [CrossRef]
- Choudhary, P.; Imprialou, M.; Velaga, N.R.; Choudhary, A. Impacts of speed variations on freeway crashes by severity and vehicle type. Accid. Anal. Prev. 2018, 121, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Elvik, R. A before-after study of the effects on safety of environmental speed limits in the city of Oslo, Norway. Saf. Sci. 2013, 55, 10–16. [Google Scholar] [CrossRef]
- Naik, B.; Tung, L.W.; Zhao, S.; Khattak, A.J. Weather impacts on single-vehicle truck crash injury severity. J. Saf. Res. 2016, 58, 57–65. [Google Scholar] [CrossRef]
- Vorko-Jović, A.; Kern, J.; Biloglav, Z. Risk factors in urban road traffic accidents. J. Saf. Res. 2006, 37, 93–98. [Google Scholar] [CrossRef]
- METRO-SP. Pesquisa Origem e Destino 1967, 1977, 1987, 1997, 2007, 2017: Região Metropolitana de São Paulo-Síntese das informações da Pesquisa Domiciliar. Governo do Estado de São Paulo, Secretaria dos Transportes Metropolitanos, São Paulo. 2019. Available online: https://transparencia.metrosp.com.br/sites/default/files/SÍNTESE_OD2017_ago19.pdf (accessed on 1 June 2022).
- Pérez-Martínez, P.J.; Magalhães, T.; Maciel, I.; de Miranda, R.M.; Kumar, P. Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City. Atmosphere 2022, 13, 52. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J.; Andrade, M.F.; de Miranda, R.M. Traffic-related air quality trends in São Paulo, Brazil. J. Geophys. Res. Atmos. 2015, 120, 6290–6304. [Google Scholar] [CrossRef]
- Owais, M.; Alshehri, A.; Gyani, J.; Aljarbou, M.H.; Alsulamy, S. Prioritizing rear-end crash explanatory factors for injury severity level using deep learning and global sensitivity analysis. Expert Syst. Appl. 2024, 245, 123114. [Google Scholar] [CrossRef]
- Moussa, G.S.; Owais, M.; Dabbour, E. Variance-based global sensitivity analysis for rear-end crash investigation using deep learning. Accid. Anal. Prev. 2022, 165, 106514. [Google Scholar] [CrossRef] [PubMed]
- Owais, M. Location Strategy for Traffic Emission Remote Sensing Monitors to Capture the Violated Emissions. J. Adv. Transp. 2019, 2019, 6520818. [Google Scholar] [CrossRef]
- Owais, M.; El deeb, M.; Abbas, Y.A. Distributing Portable Excess Speed Detectors in AL Riyadh City. Int. J. Civ. Eng. 2020, 18, 1301–1314. [Google Scholar] [CrossRef]
- Mannering, F.; Washburn, S.S. Principles of Highway Engineering and Traffic Analysis, 7th ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Artíñano, B.; Salvador, P.; Alonso, D.G.; Querol, X.; Alastuey, A. Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). Sci. Total Environ. 2004, 334–335, 111–123. [Google Scholar] [CrossRef]
- Chan, T.C.; Pai, C.W.; Wu, C.C.; Hsu, J.C.; Chen, R.J.; Chiu, W.T.; Lam, C. Association of Air Pollution and Weather Factors with Traffic Injury Severity: A Study in Taiwan. Int. J. Environ. Res. Public Health 2022, 19, 7442. [Google Scholar] [CrossRef]
- Chen, Y.; Schleicher, N.; Chen, Y.; Chai, F.; Norra, S. The influence of governmental mitigation measures on contamination characteristics of PM2.5 in Beijing. Sci. Total Environ. 2014, 490, 647–658. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, D.; Li, Y.; Xie, X.; Chen, Z.; Meng, F.; Gao, B.; He, B. Spatio-temporal variations of PM2.5 concentrations and the evaluation of emission reduction measures during two red air pollution alerts in Beijing. Sci. Rep. 2017, 7, 8220. [Google Scholar] [CrossRef]
- Dastoorpoor, M.; Idani, E.; Khanjani, N.; Goudarzi, G. Relationship Between Air Pollution, Weather, Traffic, and Traffic-Related Mortality. Trauma Mon. 2016, 21, e37585. [Google Scholar] [CrossRef]
- Giovanis, E. The relationship between teleworking, traffic and air pollution. Atmos. Pollut. Res. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Hahm, Y.; Yoon, H. The impact of air pollution alert services on respiratory diseases: Generalized additive modeling study in South Korea. Environ. Res. Lett. 2021, 16, 064048. [Google Scholar] [CrossRef]
- Khan, J.; Kakosimos, K.; Jensen, S.S.; Hertel, O.; Sørensen, M.; Gulliver, J.; Ketzel, M. The spatial relationship between traffic-related air pollution and noise in two Danish cities: Implications for health-related studies. Sci. Total Environ. 2020, 726, 138577. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.J.; Miranda, R.M. Temporal distribution of air quality related to meteorology and road traffic in Madrid. Environ. Monit. Assess. 2015, 187, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pérez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of particle number, black carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of road traffic emissions on urban air quality. Aerosol Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Islam, M.T.; El-Basyouny, K.; Ibrahim, S.E. The impact of lowered residential speed limits on vehicle speed behavior. Saf. Sci. 2014, 62, 483–494. [Google Scholar] [CrossRef]
- Tong, R.; Liu, J.; Wang, W.; Fang, Y. Health effects of PM2.5 emissions from on-road vehicles during weekdays and weekends in Beijing, China. Atmos. Environ. 2020, 223, 117258. [Google Scholar] [CrossRef]
- Yuval; Flicstein, B.; Broday, D.M. The impact of a forced reduction in traffic volumes on urban air pollution. Atmos. Environ. 2008, 42, 428–440. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016, 112, 1519–1527. [Google Scholar] [CrossRef]
- CET. Companhia de Engenharia de Tráfego (CET). Acidentes de Trânsito: Relatório Anual; São Paulo: CET-SP, 2021. 2021; 52p. Available online: https://www.cetsp.com.br/media/1347066/Relatorioanual2021.pdf (accessed on 1 July 2024).
Lane Types | Light-Duty Vehicles | Heavy-Duty Vehicles | Light-Duty Vehicles | Heavy-Duty Vehicles | Light-Duty Vehicles | Heavy-Duty Vehicles |
---|---|---|---|---|---|---|
Until 19 July 2015 | From 20 July 2015 to 24 January 2017 | Since 25 January 2017 | ||||
FT 1 | 90 km/h | 70 km/h | 70 km/h | 60 km/h | 90 km/h | 60 km/h |
C 2 | 70 km/h | 70 km/h | 60 km/h | 60 km/h | 70 km/h | 60 km/h |
A 3 | 70 km/h | 70 km/h | 50 km/h | 50 km/h | 60 km/h | 60-50 km/h |
Year | Mean Fatalities (±sd) 1 | Sum of Fatalities 2 | Difference in Fatalities (%) 3 | Mean Injuries (±sd) 1 | Sum of Injuries 2 | Difference in Injuries (%) 3 |
---|---|---|---|---|---|---|
Pinheiros marginal | ||||||
2010 | 0.03 ± 0.18 | 20 | – | 1.22 ± 0.56 | 764 | – |
2011 | 0.06 ± 0.28 | 28 | 40 | 1.21 ± 0.58 | 607 | −20.55 |
2012 | 0.04 ± 0.20 | 25 | −10.71 | 1.21 ± 0.58 | 762 | 25.54 |
2013 | 0.04 ± 0.19 | 23 | −8 | 1.18 ± 0.50 | 725 | −4.86 |
2014 | 0.05 ± 0.23 | 30 | 30.43 | 1.21 ± 1.80 | 755 | 4.13 |
2015 | 0.05 ± 0.23 | 18 | −40 | 1.15 ± 0.56 | 435 | −42.38 |
2016 | 0.04 ± 0.20 | 11 | −38.89 | 1.11 ± 0.45 | 281 | −35.4 |
2017 | 0.06 ± 0.24 | 14 | 27.27 | 1.19 ± 0.63 | 270 | −3.91 |
2018 | 0.09 ± 0.33 | 22 | 57.14 | 1.21 ± 1.08 | 297 | 10 |
2019 | 0.06 ± 0.24 | 13 | −40.91 | 1.12 ± 0.62 | 230 | −22.56 |
2020 | 0.13 ± 0.34 | 16 | 23.08 | 1.09 ± 0.67 | 132 | −42.61 |
Total | 220 | 5258 | ||||
Tiete marginal | ||||||
2010 | 0.08 ± 0.30 | 53 | – | 1.19 ± 0.69 | 744 | – |
2011 | 0.08 ± 0.29 | 54 | 1.89 | 1.25 ± 0.92 | 808 | 8.6 |
2012 | 0.07 ± 0.27 | 47 | −12.96 | 1.19 ± 0.71 | 785 | −2.85 |
2013 | 0.06 ± 0.26 | 38 | −19.15 | 1.18 ± 0.64 | 774 | −1.4 |
2014 | 0.07 ± 0.26 | 38 | 0 | 1.16 ± 0.64 | 645 | −16.67 |
2015 | 0.07 ± 0.29 | 28 | −26.32 | 1.15 ± 0.60 | 441 | −31.63 |
2016 | 0.07 ± 0.27 | 15 | −46.43 | 1.19 ± 0.72 | 259 | −41.27 |
2017 | 0.09 ± 0.32 | 20 | 33.33 | 1.12 ± 0.87 | 264 | 1.93 |
2018 | 0.06 ± 0.24 | 14 | −30 | 1.12 ± 0.54 | 250 | −5.3 |
2019 | 0.08 ± 0.28 | 21 | 50 | 1.17 ± 0.68 | 297 | 18.8 |
2020 | 0.12 ± 0.32 | 17 | −19.05 | 1.07 ± 0.68 | 158 | −46.8 |
Total | 345 | 5425 | ||||
Other forty roads | ||||||
2010 | 0.06 ± 0.26 | 262 | – | 1.30 ± 0.93 | 5750 | – |
2011 | 0.06 ± 0.27 | 276 | 5.34 | 1.26 ± 0.85 | 5415 | −5.83 |
2012 | 0.05 ± 0.24 | 244 | −11.59 | 1.26 ± 0.83 | 5846 | 7.96 |
2013 | 0.05 ± 0.22 | 211 | −13.52 | 1.21 ± 0.70 | 5270 | −9.85 |
2014 | 0.06 ± 0.27 | 263 | 24.64 | 1.20 ± 0.83 | 4870 | −7.59 |
2015 | 0.04 ± 0.20 | 142 | −46 | 1.19 ± 0.67 | 4070 | −16.43 |
2016 | 0.06 ± 0.25 | 160 | 12.68 | 1.17 ± 0.67 | 3035 | −25.43 |
2017 | 0.07 ± 0.27 | 150 | −6.25 | 1.20 ± 0.70 | 2598 | −14.4 |
2018 | 0.08 ± 0.28 | 155 | 3.33 | 1.17 ± 0.65 | 2348 | −9.62 |
2019 | 0.09 ± 0.32 | 213 | 37.41 | 1.14 ± 0.68 | 2595 | 10.52 |
2020 | 0.08 ± 0.29 | 137 | −64.32 | 1.22 ± 0.73 | 2088 | −19.54 |
Total | 2213 | 43,885 |
Var (Uni.) | Injuries (#/Month) | Fatalities (#/Month) | Var (Uni.) | Injuries (#/Month) | Fatalities (#/Month) | Var (Uni.) | Injuries (#/Month) | Fatalities (#/Month) |
---|---|---|---|---|---|---|---|---|
Pinheiros Marginal | Tietê Marginal | Other Roads | ||||||
Speed reduction policy 2 | Speed reduction policy 2 | Speed reduction policy 2 | ||||||
–14.1 ± 5.7 * | −0.5 ± 0.7 | –5.7 ± 4.4 | –0.1 ± 0.8 | –43.4 ± 22.7 * | –2.5 ± 2.8 | |||
Time trend | Time trend | Time trend | ||||||
2010 | 52.7 ± 4.6 * | 0.3 ± 0.6 | 2010 | 48.8 ± 3.6 * | 3.0 ± 0.6 * | 2010 | 261.8 ± 27.0 * | 7.9 ± 3.3 * |
2011 | 39.6 ± 4.6 * | 1.0 ± 0.6 | 2011 | 54.2 ± 3.6 * | 3.1 ± 0.6 * | 2011 | 233.9 ± 27.0 * | 9.1 ± 3.3 * |
2012 | 52.5 ± 4.6 * | 0.7 ± 0.6 | 2012 | 52.2 ± 3.6 * | 2.5 ± 0.6 * | 2012 | 269.8 ± 27.0 * | 6.4 ± 3.3 |
2013 | 49.4 ± 4.6 * | 0.6 ± 0.6 | 2013 | 51.3 ± 3.6 * | 1.7 ± 0.6 * | 2013 | 221.8 ± 27.0 * | 3.6 ± 3.3 |
2014 | 51.9 ± 4.6 * | 1.2 ± 0.6 * | 2014 | 40.6 ± 3.6 * | 1.8 ± 0.6 * | 2014 | 188.5 ± 27.0 * | 8.0 ± 3.3 * |
2015 | 32.3 ± 5.4 * | 0.4 ± 0.7 | 2015 | 25.9 ± 4.0 * | 0.9 ± 0.7 | 2015 | 136.3 ± 21.1 * | −1.3 ± 2.6 |
2016 | 26.5 ± 7.3 * | 0.1 ± 0.9 | 2016 | 14.1 ± 5.7 * | −0.1 ± 1.0 | 2016 | 78.9 ± 14.7 * | 1.9 ± 1.8 |
2017 | 12.7 ± 4.6 * | −0.1 ± 0.6 | 2017 | 9.3 ± 3.6 * | 0.3 ± 0.7 | 2017 | 42.5 ± 14.7 * | 1.1 ± 1.8 |
2018 | 13.7 ± 4.6 * | 0.5 ± 0.6 | 2018 | 7.7 ± 3.6 * | −0.2 ± 0.6 | 2018 | 21.7 ± 14.7 | 1.5 ± 1.8 |
2019 | 8.2 ± 4.6 | −0.3 ± 0.6 | 2019 | 11.6 ± 3.6 * | 0.3 ± 0.6 | 2019 | 42.2 ± 14.7 * | 6.3 ± 1.8 * |
2020 | - | - | 2020 | - | - | 2020 | − | - |
Regression 3 | Regression 3 | Regression 3 | ||||||
R2 | 0.79 | - | R2 | 0.84 | - | R2 | 0.92 | - |
Mean | 34.8 | 1.5 | Mean | 39.0 | 2.6 | Mean | 331.8 | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, D.; de Miranda, R.M.; Daroncho, C.; de Oliveira Dias da Silva, J.; Rodrigues Teixeira, F.; Dunck Dalosto, J.A.; Pérez-Martínez, P.J. Speed Limits in São Paulo and the Actions for Road Safety and Air Quality. Sustainability 2024, 16, 8065. https://doi.org/10.3390/su16188065
Gonçalves D, de Miranda RM, Daroncho C, de Oliveira Dias da Silva J, Rodrigues Teixeira F, Dunck Dalosto JA, Pérez-Martínez PJ. Speed Limits in São Paulo and the Actions for Road Safety and Air Quality. Sustainability. 2024; 16(18):8065. https://doi.org/10.3390/su16188065
Chicago/Turabian StyleGonçalves, Douglas, Regina Maura de Miranda, Celio Daroncho, Janini de Oliveira Dias da Silva, Fabrício Rodrigues Teixeira, João Augusto Dunck Dalosto, and Pedro José Pérez-Martínez. 2024. "Speed Limits in São Paulo and the Actions for Road Safety and Air Quality" Sustainability 16, no. 18: 8065. https://doi.org/10.3390/su16188065
APA StyleGonçalves, D., de Miranda, R. M., Daroncho, C., de Oliveira Dias da Silva, J., Rodrigues Teixeira, F., Dunck Dalosto, J. A., & Pérez-Martínez, P. J. (2024). Speed Limits in São Paulo and the Actions for Road Safety and Air Quality. Sustainability, 16(18), 8065. https://doi.org/10.3390/su16188065