Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Model
2.2. Governing Equations
2.2.1. Surface Water Flow
2.2.2. Groundwater Flow
2.2.3. Multicomponent Reactive Transport
- is the concentration of species in the liquid phase (mol/m3), is the amount of species adsorbed on the solid particles [mol/( g)], and is the concentration of species in the gas phase (mol/m3);
- , , and are the transient concentration changes of the matter in the liquid, solid, and gas phases, respectively;
- indicates the convective transfer of matter under the action of the velocity field of the solvent; describes three modes of mass transfer-mechanical diffusion, molecular diffusion, and volatilization in the gas phase, wherein is the diffusion tensor (m2/s), and is the effective diffusion coefficient (m2/s);
- is the source term and can describe the inflow or outflow of the species within a liquid; and is an expression of the rate of reaction that can represent the chemical reactions of the species in the three phases [mol/(m3·s)].
- , , and denote the concentrations of DOC, NH4+, and DO, respectively;
- The terms and correspond to the reaction rate constants for DOC and NH4+, respectively;
- The fractions and reflect the proportions of electrons consumed in the reduction of O2 and NO3−, respectively;
- is defined as the ratio of moles of electrons transferred per mole of DOC oxidized to the moles of electrons per mole of reducing agent in the aerobic respiration (AR) reaction;
- And represents the ratio of moles of electrons transferred per mole of DOC oxidized to moles of electrons per mole of reducing agent in the NI reaction.
2.3. Response of Reaction Rate to Temperature
2.4. Evaluated Indicators of Nitrogen Removal
2.5. Field Tracer Experiment and Model Validation
3. Results
3.1. Effect of DO Concentration on Nitrogen Transport and Reaction
3.2. Effect of Temperature on Nitrogen Transport and Reaction
4. Discussion
4.1. Effect of DO in Nitrogen Removal
4.2. Effect of Temperature in Nitrogen Removal
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardenas, M.B. The effect of river bend morphology on flow and timescales of surface water–groundwater exchange across pointbars. J. Hydrol. 2008, 362, 134–141. [Google Scholar] [CrossRef]
- Storey, R.G.; Howard, K.W.; Williams, D.D. Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model. Water Resour. Res. 2003, 39, 1034. [Google Scholar] [CrossRef]
- Hall, R.J.O.; Baker, M.A.; Arp, C.D.; Koch, B.J. Hydrologic control of nitrogen removal, storage, and export in a mountain stream. Limnol. Oceanogr. 2009, 54, 2128–2142. [Google Scholar] [CrossRef]
- Kasahara, T.; Hill, A.R. Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. Hydrol. Process. Int. J. 2006, 20, 4287–4305. [Google Scholar] [CrossRef]
- Marzadri, A.; Tonina, D.; Bellin, A.; Vignoli, G.; Tubino, M. Semianalytical analysis of hyporheic flow induced by alternate bars. Water Resour. Res. 2010, 46, W07531. [Google Scholar] [CrossRef]
- Lowell, J.L.; Gordon, N.; Engstrom, D.; Stanford, J.A.; Holben, W.E.; Gannon, J.E. Habitat heterogeneity and associated microbial community structure in a small-scale floodplain hyporheic flow path. Microb. Ecol. 2009, 58, 611–620. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.; Bouwman, A.; Lowrance, R.; Peterson, B.; Tobias, C.; Drecht, G.V. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef]
- Khan, N.; Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Raj, A.; Yadav, S.K. Riparian conservation and restoration for ecological sustainability. In Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–216. [Google Scholar]
- Seavy, N.E.; Gardali, T.; Golet, G.H.; Griggs, F.T.; Howell, C.A.; Kelsey, R.; Small, S.L.; Viers, J.H.; Weigand, J.F. Why climate change makes riparian restoration more important than ever: Recommendations for practice and research. Ecol. Restor. 2009, 27, 330–338. [Google Scholar] [CrossRef]
- Urbanič, G.; Politti, E.; Rodríguez-González, P.M.; Payne, R.; Schook, D.; Alves, M.H.; Anđelković, A.; Bruno, D.; Chilikova-Lubomirova, M.; Di Lonardo, S. Riparian zones—From policy neglected to policy integrated. Front. Environ. Sci. 2022, 10, 868527. [Google Scholar] [CrossRef]
- Hao, Z.-L.; Ali, A.; Ren, Y.; Su, J.-F.; Wang, Z. A mechanistic review on aerobic denitrification for nitrogen removal in water treatment. Sci. Total Environ. 2022, 847, 157452. [Google Scholar] [CrossRef]
- Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 2009, 93, 91–116. [Google Scholar] [CrossRef]
- Grischek, T.; Hiscock, K.; Metschies, T.; Dennis, P.; Nestler, W. Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony, Germany. Water Res. 1998, 32, 450–460. [Google Scholar] [CrossRef]
- Burgin, A.J.; Groffman, P.M.; Lewis, D.N. Factors regulating denitrification in a riparian wetland. Soil Sci. Soc. Am. J. 2010, 74, 1826–1833. [Google Scholar] [CrossRef]
- O’Connor, B.L.; Hondzo, M. Enhancement and inhibition of denitrification by fluid-flow and dissolved oxygen flux to stream sediments. Environ. Sci. Technol. 2008, 42, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Klocker, C.A.; Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Morgan, R.P. Nitrogen uptake and denitrification in restored and unrestored streams in urban Maryland, USA. Aquat. Sci. 2009, 71, 411–424. [Google Scholar] [CrossRef]
- Veraart, A.J.; Audet, J.; Dimitrov, M.R.; Hoffmann, C.C.; Gillissen, F.; de Klein, J.J. Denitrification in restored and unrestored Danish streams. Ecol. Eng. 2014, 66, 129–140. [Google Scholar] [CrossRef]
- Her, J.-J.; Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 1995, 54, 45–51. [Google Scholar] [CrossRef]
- Ge, S.; Peng, Y.; Wang, S.; Lu, C.; Cao, X.; Zhu, Y. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N. Bioresour. Technol. 2012, 114, 137–143. [Google Scholar] [CrossRef]
- Alldred, M.; Baines, S.B. Effects of wetland plants on denitrification rates: A meta-analysis. Ecol. Appl. 2016, 26, 676–685. [Google Scholar] [CrossRef]
- Šimek, M.; Cooper, J. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
- Saleh-Lakha, S.; Shannon, K.E.; Henderson, S.L.; Goyer, C.; Trevors, J.T.; Zebarth, B.J.; Burton, D.L. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl. Environ. Microbiol. 2009, 75, 3903–3911. [Google Scholar] [CrossRef]
- Baeseman, J.; Smith, R.; Silverstein, J. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron. Microb. Ecol. 2006, 51, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Seitzinger, S.P. Denitrification in aquatic sediments. In Denitrification in Soil and Sediment; Springer: Berlin/Heidelberg, Germany, 1990; pp. 301–322. [Google Scholar]
- Deutsch, B.; Forster, S.; Wilhelm, M.; Dippner, J.; Voss, M. Denitrification in sediments as a major nitrogen sink in the Baltic Sea: An extrapolation using sediment characteristics. Biogeosciences 2010, 7, 3259–3271. [Google Scholar] [CrossRef]
- Saunders, D.; Kalff, J. Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Res. 2001, 35, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Boynton, W.R.; Kemp, W.M. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar. Ecol. Prog. Ser. Oldendorf 1985, 23, 45–55. [Google Scholar] [CrossRef]
- Cornwell, J.C.; Kemp, W.M.; Kana, T.M. Denitrification in coastal ecosystems: Methods, environmental controls, and ecosystem level controls, a review. Aquat. Ecol. 1999, 33, 41–54. [Google Scholar] [CrossRef]
- Bu, X.; Dai, H.; Yuan, S.; Zhu, Q.; Li, X.; Zhu, Y.; Li, Y.; Wen, Z. Model-based analysis of dissolved oxygen supply to aquifers within riparian zones during river level fluctuations: Dynamics and influencing factors. J. Hydrol. 2021, 598, 126460. [Google Scholar] [CrossRef]
- Reeder, W.J.; Quick, A.M.; Farrell, T.B.; Benner, S.G.; Feris, K.P.; Tonina, D. Spatial and temporal dynamics of dissolved oxygen concentrations and bioactivity in the hyporheic zone. Water Resour. Res. 2018, 54, 2112–2128. [Google Scholar] [CrossRef]
- Greig, S.; Sear, D.; Carling, P. A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos. Hydrol. Process. Int. J. 2007, 21, 323–334. [Google Scholar] [CrossRef]
- Tonina, D.; Buffington, J.M. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat. Can. J. Fish. Aquat. Sci. 2009, 66, 2157–2173. [Google Scholar] [CrossRef]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Baker, M.A. Labile dissolved organic carbon supply limits hyporheic denitrification. J. Geophys. Res. 2011, 116, G04036. [Google Scholar] [CrossRef]
- Stanford, G.; Dzienia, S.; Vander Pol, R.A. Effect of temperature on denitrification rate in soils. Soil Sci. Soc. Am. J. 1975, 39, 867–870. [Google Scholar] [CrossRef]
- Pfenning, K.; McMahon, P. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J. Hydrol. 1997, 187, 283–295. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, K.; Huang, T.; Li, N.; Si, F.; Feng, J.; Huang, X.; Miao, Y. Effect of thermal stratification on denitrifying bacterial community in a deep drinking water reservoir. J. Hydrol. 2021, 596, 126090. [Google Scholar] [CrossRef]
- Jayakumar, A.; O’mullan, G.; Naqvi, S.; Ward, B.B. Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones. Microb. Ecol. 2009, 58, 350–362. [Google Scholar] [CrossRef]
- Tall, L.; Caraco, N.; Maranger, R. Denitrification hot spots: Dominant role of invasive macrophyte Trapa natans in removing nitrogen from a tidal river. Ecol. Appl. 2011, 21, 3104–3114. [Google Scholar] [CrossRef]
- Martin, T.L.; Kaushik, N.; Trevors, J.; Whiteley, H. Denitrification in temperate climate riparian zones. Water Air Soil Pollut. 1999, 111, 171–186. [Google Scholar] [CrossRef]
- Nimick, D.A.; Gammons, C.H.; Cleasby, T.E.; Madison, J.P.; Skaar, D.; Brick, C.M. Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes. Water Resour. Res. 2003, 39, 1247. [Google Scholar] [CrossRef]
- Herrman, K.S.; Bouchard, V.; Moore, R.H. Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 2008, 598, 305–314. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Luo, W.; Wu, H.; Liu, X.; Chen, W.; Tang, J.; Zhang, L. Effects of temperature on the characteristics of nitrogen removal and microbial community in post solid-phase denitrification biofilter process. Int. J. Environ. Res. Public Health 2019, 16, 4466. [Google Scholar] [CrossRef]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Seitzinger, S.P. Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 1994, 25, 19–39. [Google Scholar] [CrossRef]
- Thamdrup, B.; Fleischer, S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquat. Microb. Ecol. 1998, 15, 191–199. [Google Scholar] [CrossRef]
- Bardini, L.; Boano, F.; Cardenas, M.; Revelli, R.; Ridolfi, L. Nutrient cycling in bedform induced hyporheic zones. Geochim. Et Cosmochim. Acta 2012, 84, 47–61. [Google Scholar] [CrossRef]
- Zheng, L.; Cardenas, M.B.; Wang, L. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J. Geophys. Res. Biogeosciences 2016, 121, 1086–1103. [Google Scholar] [CrossRef]
- Zheng, L.; Bayani Cardenas, M. Diel stream temperature effects on nitrogen cycling in hyporheic zones. J. Geophys. Res. Biogeosciences 2018, 123, 2743–2760. [Google Scholar] [CrossRef]
- Shuai, P.; Cardenas, M.B.; Knappett, P.S.; Bennett, P.C.; Neilson, B.T. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resour. Res. 2017, 53, 7951–7967. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Liu, D.; Feng, J.; Li, L.; Guo, Y.; Luo, J.; Jiang, W. Influence of point bars on nitrogen transport and reaction in riparian zones. J. Hydrol. 2024, 637, 131388. [Google Scholar] [CrossRef]
- Zhou, T.; Endreny, T. The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services. Water 2020, 12, 1680. [Google Scholar] [CrossRef]
- Birnir, B. Turbulent rivers. Q. Appl. Math. 2008, 66, 565–594. [Google Scholar] [CrossRef]
- Myong, H.K.; Kasagi, N. A new approach to the improvement of k-ε turbulence model for wall-bounded shear flows. JSME Int. J. Ser. 2 Fluids Eng. Heat Transf. Power Combust. Thermophys. Prop. 1990, 33, 63–72. [Google Scholar] [CrossRef]
- Mohammadi, B.; Pironneau, O. Analysis of The k-Epsilon Turbulence Model. 1993. Available online: https://www.ljll.fr/pironneau/publi/publications/bookBMOPke.pdf (accessed on 24 July 2024).
- Janssen, F.; Cardenas, M.B.; Sawyer, A.H.; Dammrich, T.; Krietsch, J.; Beer, D.J.D. A comparative experimental and multiphysics computational fluid dynamics study of coupled surface–subsurface flow in bed forms. Water Resour. Res. 2012, 48, W08514. [Google Scholar] [CrossRef]
- Dagan, G. The generalization of Darcy’s law for nonuniform flows. Water Resour. Res. 1979, 15, 1–7. [Google Scholar] [CrossRef]
- Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1986, 1, 3–25. [Google Scholar] [CrossRef]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Bokil, V.A.; González-Pinzón, R. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resour. Res. 2012, 48, W11508. [Google Scholar]
- Wang, C.; Cheng, P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I. Model development. Int. J. Heat Mass Transf. 1996, 39, 3607–3618. [Google Scholar] [CrossRef]
- Trauth, N.; Fleckenstein, J.H. Single discharge events increase reactive efficiency of the hyporheic zone. Water Resour. Res. 2017, 53, 779–798. [Google Scholar] [CrossRef]
- Millington, R.; Quirk, J. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Winzor, D.J.; Jackson, C.M. Interpretation of the temperature dependence of equilibrium and rate constants. J. Mol. Recognit. Interdiscip. J. 2006, 19, 389–407. [Google Scholar] [CrossRef]
- Shah, D.B.; Coulman, G.A. Kinetics of nitrification and denitrification reactions. Biotechnol. Bioeng. 1978, 20, 43–72. [Google Scholar] [CrossRef]
- Ping, X.; Jin, M.; Xian, Y. Effect of bioclogging on the nitrate source and sink function of a hyporheic zone. J. Hydrol. 2020, 590, 125425. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Y.; Ti, C.; Shan, J.; Li, B.; Xia, L.; Yan, X. Nitrogen removal capacity of the river network in a high nitrogen loading region. Environ. Sci. Technol. 2015, 49, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.S.; Palmer, M.A.; Richardson, D.C.; Filoso, S.; Bernhardt, E.S.; Bledsoe, B.P.; Doyle, M.W.; Groffman, P.M.; Hassett, B.A.; Kaushal, S.S. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ. 2008, 6, 529–538. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Huang, G.; Zhang, X.; Yu, H.; Rong, X. Nitrification in natural waters with high suspended-solid content––A study for the Yellow River. Chemosphere 2004, 57, 1017–1029. [Google Scholar] [CrossRef]
- Prosser, J.I. Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 1990, 30, 125–181. [Google Scholar]
- Dai, M.; Wang, L.; Guo, X.; Zhai, W.; Li, Q.; He, B.; Kao, S.-J. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: The Pearl River Estuary, China. Biogeosciences 2008, 5, 1227–1244. [Google Scholar] [CrossRef]
- Hsiao, S.-Y.; Hsu, T.-C.; Liu, J.-W.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y.; Hsu, S.-C.; Dai, M. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume. Biogeosciences 2014, 11, 2083–2098. [Google Scholar] [CrossRef]
- Gowda, T.H. Modelling nitrification effects on the dissolved oxygen regime of the Speed River. Water Res. 1983, 17, 1917–1927. [Google Scholar] [CrossRef]
- Delwiche, C.; Bryan, B.A. Denitrification. Annu. Rev. Microbiol. 1976, 30, 241–262. [Google Scholar] [CrossRef]
- Zhou, S.; Borjigin, S.; Riya, S.; Terada, A.; Hosomi, M. The relationship between anammox and denitrification in the sediment of an inland river. Sci. Total Environ. 2014, 490, 1029–1036. [Google Scholar] [CrossRef]
- Hill, A. Denitrification in the nitrogen budget of a river ecosystem. Nature 1979, 281, 291–292. [Google Scholar] [CrossRef]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar]
- Hellemann, D.; Tallberg, P.; Bartl, I.; Voss, M.; Hietanen, S. Denitrification in an oligotrophic estuary: A delayed sink for riverine nitrate. Mar. Ecol. Prog. Ser. 2017, 583, 63–80. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, S.; Li, S.; Zhang, L.; Wang, G.; Zhang, L.; Wang, J.; Li, Z. The cycle of nitrogen in river systems: Sources, transformation, and flux. Environ. Sci. Process. Impacts 2018, 20, 863–891. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.L.; Baker, K.K. Effects of temperature and current discharge on the concentration and photosynthetic activity of the phytoplankton in the upper Mississippi River. Freshw. Biol. 1979, 9, 191–198. [Google Scholar] [CrossRef]
- Peng, B.; Liang, H.; Wang, S.; Gao, D. Effects of DO on N2O emission during biological nitrogen removal using aerobic granular sludge via shortcut simultaneous nitrification and denitrification. Environ. Technol. 2018, 41, 251–259. [Google Scholar] [CrossRef]
- Rysgaard, S.; Risgaard-Petersen, N.; Niels Peter, S.; Kim, J.; Lars Peter, N. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr. 1994, 39, 1643–1652. [Google Scholar] [CrossRef]
- Pina-Ochoa, E.; Álvarez-Cobelas, M. Denitrification in aquatic environments: A cross-system analysis. Biogeochemistry 2006, 81, 111–130. [Google Scholar] [CrossRef]
- Pinay, G.; Gumiero, B.; Tabacchi, E.; Gimenez, O.; Tabacchi-Planty, A.M.; Hefting, M.M.; Burt, T.P.; Black, V.A.; Nilsson, C.; Iordache, V. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshw. Biol. 2007, 52, 252–266. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Pattinson, S.N.; Whitton, B.A. Denitrification and nitrous oxide production in sediments of the Wiske, a lowland eutrophic river. Sci. Total Environ. 1998, 210, 307–320. [Google Scholar] [CrossRef]
- Braker, G.; Schwarz, J.; Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 2010, 73, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Saad, O.A.; Conrad, R. Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol. Fertil. Soils 1993, 15, 21–27. [Google Scholar]
- Pribyl, A.L.; Mccutchan, J.H.; Lewis, W.M.; Saunders Iii, J.F. Whole-system estimation of denitrification in a plains river: A comparison of two methods. Biogeochemistry 2005, 73, 439–455. [Google Scholar] [CrossRef]
- Xie, Y.; Tilstone, G.H.; Widdicombe, C.; Woodward, E.M.S.; Harris, C.; Barnes, M.K. Effect of increases in temperature and nutrients on phytoplankton community structure and photosynthesis in the western English Channel. Mar. Ecol. Prog. Ser. 2015, 519, 61–73. [Google Scholar] [CrossRef]
- Bonnett, S.; Blackwell, M.; Leah, R.; Cook, V.; O’connor, M.; Maltby, E. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils. Geobiology 2013, 11, 252–267. [Google Scholar] [CrossRef]
- Pattinson, S.N.; García-Ruiz, R.; Whitton, B.A. Spatial and seasonal variation in denitrification in the Swale–Ouse system, a river continuum. Sci. Total Environ. 1998, 210, 289–305. [Google Scholar] [CrossRef]
- Kohfahl, C.; Massmann, G.; Pekdeger, A. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany. Hydrogeol. J 2009, 17, 571–578. [Google Scholar] [CrossRef]
- Berlin, M.; Kumar, G.S.; Nambi, I.M. Numerical modeling on the effect of dissolved oxygen on nitrogen transformation and transport in unsaturated porous system. Environ. Model. Assess. 2014, 19, 283–299. [Google Scholar] [CrossRef]
- Malard, F.; Hervant, F. Oxygen supply and the adaptations of animals in groundwater. Freshw. Biol. 1999, 41, 1–30. [Google Scholar] [CrossRef]
- Haberer, C.M.; Rolle, M.; Cirpka, O.A.; Grathwohl, P. Oxygen transfer in a fluctuating capillary fringe. Vadose Zone J. 2012, 11, vzj2011.0056. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Hannah, D.M.; Malcolm, I.A. River temperature modelling: A review of process-based approaches and future directions. Earth-Sci. Rev. 2017, 175, 97–113. [Google Scholar] [CrossRef]
- Holmes, R.M.; Jones, J.B.; Fisher, S.G.; Grimm, N.B. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 1996, 33, 125–146. [Google Scholar] [CrossRef]
- Veraart, A.J.; De Klein, J.J.; Scheffer, M. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS ONE 2011, 6, e18508. [Google Scholar] [CrossRef] [PubMed]
- De Klein, J.J.; Overbeek, C.C.; Juncher Jørgensen, C.; Veraart, A.J. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments. Wetlands 2017, 37, 975–983. [Google Scholar] [CrossRef]
- Rajesh, M.; Rehana, S. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Sci. Rep. 2022, 12, 9222. [Google Scholar] [CrossRef]
Reaction Type | Expression |
---|---|
Aerobic respiration (AR) | |
Nitrification (NI) | |
Denitrification (DN) |
Parameters | Size | Unit | Ref. |
---|---|---|---|
Porosity | 0.4 | [50] | |
Hydraulic conductivity | 30 | m/d | [50] |
Dispersity of longitude | 0.1 | m | [60] |
Dispersity of transverse | 0.01 | m | [60] |
Diffusion coefficient | 10−9 | m2/s | [61] |
DO concentration in river | 0.1, 0.2, 0.4 | mol/m3 | |
NO3− concentration in river | 0.16 | mol/m3 | [50] |
NH4+ concentration in river | 0.083 | mol/m3 | [50] |
DOC concentration in river | 0.2 | mol/m3 | [50] |
Oxygen inhibition constant | 0.03 | mol/m3 | [47] |
Point bar temperature | 5, 15, 25 | °C |
Case | Species | Ain (mol/m) | Aout (mol/m) | A (mol/m) | NDN (mol/m) |
---|---|---|---|---|---|
CDO = 0.1 mol/m3 | DO | 0.220 | 0.020 | 0.200 | 0.022 |
NO3− | 0.320 | 0.042 | 0.278 | ||
NH4+ | 0.170 | 0.022 | 0.148 | ||
DOC | 0.420 | 0.045 | 0.375 | ||
CDO = 0.2 mol/m3 | DO | 0.430 | 0.042 | 0.178 | 0.0064 |
NO3− | 0.320 | 0.045 | 0.275 | ||
NH4+ | 0.170 | 0.021 | 0.149 | ||
DOC | 0.420 | 0.045 | 0.375 | ||
CDO = 0.4 mol/m3 | DO | 0.840 | 0.097 | 0.123 | 0.0019 |
NO3− | 0.320 | 0.046 | 0.274 | ||
NH4+ | 0.170 | 0.020 | 0.150 | ||
DOC | 0.420 | 0.045 | 0.375 |
Case | Species | Ain (mol/m) | Aout (mol/m) | A (mol/m) | NDN (mol/m) |
---|---|---|---|---|---|
T = 5 °C | DO | 0.220 | 0.022 | 0.198 | 0.012 |
NO3− | 0.320 | 0.043 | 0.277 | ||
NH4+ | 0.170 | 0.022 | 0.148 | ||
DOC | 0.420 | 0.048 | 0.372 | ||
T = 15 °C | DO | 0.220 | 0.043 | 0.177 | 0.041 |
NO3− | 0.320 | 0.016 | 0.304 | ||
NH4+ | 0.170 | 0.021 | 0.149 | ||
DOC | 0.420 | 0.041 | 0.379 | ||
T = 25 °C | DO | 0.220 | 0.017 | 0.203 | 0.160 |
NO3− | 0.320 | 0.048 | 0.272 | ||
NH4+ | 0.170 | 0.017 | 0.153 | ||
DOC | 0.420 | 0.029 | 0.391 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Liu, Y.; Feng, J.; Liu, D.; Yang, Q.; Lu, Z.; Xiao, H. Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River. Sustainability 2024, 16, 8208. https://doi.org/10.3390/su16188208
Song X, Liu Y, Feng J, Liu D, Yang Q, Lu Z, Xiao H. Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River. Sustainability. 2024; 16(18):8208. https://doi.org/10.3390/su16188208
Chicago/Turabian StyleSong, Xunchuan, Ying Liu, Jinghong Feng, Defu Liu, Qilin Yang, Ziyan Lu, and Huazhen Xiao. 2024. "Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River" Sustainability 16, no. 18: 8208. https://doi.org/10.3390/su16188208
APA StyleSong, X., Liu, Y., Feng, J., Liu, D., Yang, Q., Lu, Z., & Xiao, H. (2024). Influence of Dissolved Oxygen and Temperature on Nitrogen Transport and Reaction in Point Bars of River. Sustainability, 16(18), 8208. https://doi.org/10.3390/su16188208