Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors
Abstract
:1. Introduction
2. Research Methodology and Data Sources
2.1. Overview of the Study Area
2.2. Research Methods
2.2.1. InVEST Water Yield Modeling
2.2.2. Geographical Detectors
2.3. Data Sources and Processing
2.4. Localization Correction of Model Parameters
2.5. Validation of the Water Yield Model Results
3. Analysis of Results
3.1. Spatial and Temporal Distributions of Water Yield Services in the Yellow River Source Area
3.1.1. Characteristics of Temporal Changes in Water Yield
3.1.2. Spatial Distribution of Water Yield
3.1.3. Vertical Gradient Changes in Water Yield
3.2. Analysis of the Drivers of Water Yield Services
3.2.1. One-Way Attribution of Spatial Differences in Water Yield Services
3.2.2. Interaction of Factors Influencing the Spatial Differentiation of Water Yield Services
4. Conclusions and Discussion
4.1. Discussion
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.C. The Geography of Ecosystem Services; Science Press: Beijing, China, 2014. [Google Scholar] [CrossRef]
- Fu, B.J.; Lv, Y.H.; Gao, G.Y. Important Progress in Research on Major Terrestrial Ecosystem Services and Ecological Security in China. Chin. J. Nat. 2012, 34, 261–272. [Google Scholar]
- Niu, X.; Wang, B.; Liu, S.R.; Liu, C.J.; Wei, W.J.; Kauppi, P.E. Economical Assessment of Forest Ecosystem Services in China: Characteristics and Implications. Ecol. Complex. 2012, 11, 1–11. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C.L. Water Resources Constraint Force on Urbanization in Water Deficient Regions: A Case Study of the Hexi Corridor, Arid Area of NW China. Ecol. Econ. 2007, 62, 508–517. [Google Scholar] [CrossRef]
- Zhang, X. The Research on the Spatiotemporal Variation and Prediction of Water Yield Service in Yangtze River Basin. Master’s Dissertation, Huazhong University of Science and Technology, Wuhan, China, 2021. [Google Scholar]
- Liu, S. Land Desertification, Soil and Water Conservation, and Desertification Prevention and Control in the Northwest Region. Ecol. Environ. Prot. 2023, 6, 39–41. [Google Scholar] [CrossRef]
- Hu, P.; Fang, L. The Risk of Water Quality Deterioration with Urban Flood Control—A Case in Wuxi. Sustainability 2023, 16, 185. [Google Scholar] [CrossRef]
- Yang, T. The Development of the International Legal System of Climate Change Adaptation Policies and China’s Response. Master’s Dissertation, Shandong University, Jinan, China, 2020. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.F.; Ouyang, Z.Y. Progress and Perspectives of Ecosystem Services Management. Acta Ecol. Sin. 2013, 33, 702–710. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Wang, X.K.; Miao, H. A Primary Study on Chinese Terrestrial Ecosystem Services and Their Ecological-Economic Values. Acta Ecol. Sin. 1999, 19, 607–613. [Google Scholar]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological Assets Valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Shao, Q.; Cao, W.; Yang, F. The Ecosystem Services and Its Spatial Variation at Countyscale in the Southern Guizhou Based on Physical Assessment Method. Sci. Geogr. Sin. 2018, 38, 122–134. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Cheng, G.W.; Shi, P.L. Benefits of Forest Water Conservation and Its Economical Value Evaluation in Upper Reaches of Yangtze River. Sci. Soil Water Conserv. 2004, 2, 17–20. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiao, Y.; Ouyang, Z.Y.; Xu, W.; Xiang, S.; Li, Y.Z. Value Assessment of the Function of the Forest Ecosystem Services in Chongqing. Acta Ecol. Sin. 2014, 34, 216–223. [Google Scholar] [CrossRef]
- Meri, J.; Lian, L. A Mixed Methods Approach to Urban Ecosystem Services: Experienced Environmental Quality and its Role in Ecosystem Assessment within an Inner-City Estate. Landsc. Urban Plan. 2017, 161, 10–21. [Google Scholar] [CrossRef]
- Chang, Y.X.; Zou, T.H.; Yoshino, K. A New Public Appraisal Method for Valuating Ecosystem Services: A Case Study in the Wuyishan Area, China. J. Clean. Prod. 2021, 286, 10. [Google Scholar] [CrossRef]
- Farber, S.C.; Costanza, R.; Wilson, M.A. Economic and Ecological Concepts for Valuing Ecosystem Services. Ecol. Econ. 2002, 41, 375–392. [Google Scholar] [CrossRef]
- Hardaker, A.; Pagella, T.; Rayment, M. Integrated Assessment, Valuation and Mapping of Ecosystem Services and Dis-Services from Upland Land Use in Wales. Ecosyst. Serv. 2020, 43, 14. [Google Scholar] [CrossRef]
- Lin, F.; Chen, X.W.; Yao, W.Y.; Fang, Y.H. Multi-Time Scale Analysis of Water Conservation in a Discontinuous Forest Watershed Based on SWAT Model. Acta Geogr. Sin. 2020, 75, 1065–1078. [Google Scholar]
- Wang, D.D.; Jia, Y.W.; Jia, C.W.; Sui, Y.B.; Yan, X. Evaluation Method for Main Functions of Water Retention Based on WEP-L Model: A Case of Water Retention Area in Wei River. Acta Ecol. Sin. 2024, 44, 4342–4352. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, W.B.; Han, Y.; Li, S.C. Regionalization of Water Conservation Function of Beijing-Tianjin-Hebei Area based on SOFM Neural Network. Res. Environ. Sci. 2015, 28, 369–376. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Villa, F.; Johnson, G.W.; Voigt, B. ARIES—Artificial Intelligence for Ecosystem Services: A guide to Models and data, Version 1.0. Available online: https://unstats.un.org/unsd/envaccounting/seeaRev/meeting2013/EG13-BG-7.pdf (accessed on 3 July 2024).
- Sun, X.Y.; Guo, H.W.; Lian, L.S.; LIU, F.; LI, B.F. The Spatial Pattern of Water Yield and its Driving Factors in Nansi Lake Basin. J. Nat. Resour. 2017, 32, 669–679. [Google Scholar] [CrossRef]
- Zhang, W.X.; Yu, Y.; Wu, X.Q.; Pereira, P.; Borja, M.E.L. Integrating Preferences and Social Values for Ecosystem Services in Local Ecological Management: A Framework Applied in Xiaojiang Basin Yunnan Province, China. Land Use Policy 2020, 91, 12. [Google Scholar] [CrossRef]
- Shoyama, K.; Yamagata, Y. Predicting Land-Use Change for Biodiversity Conservation and Climate-Change Mitigation and its Effect on Ecosystem Services in a Watershed in Japan. Ecosyst. Serv. 2014, 8, 25–34. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, T.T.; Qiang, W. Differentiation Characteristics and Driving Factors of Ecosystem Services Relationships in Karst Mountainous Area Based on Geographic Detector Modeling: A Case Study of Guizhou Province. Acta Ecol. Sin. 2024, 42, 6959–6972. [Google Scholar]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.M. Modeling Soil Water Content and Reference Evapotranspiration From Climate Data Using Deep Learning Method. Appl. Sci. 2021, 11, 5029. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, W.P.; Zhang, H.; Song, Y. Research Progress on the Principle and Application of InVEST Model. Ecol. Sci. 2015, 34, 204–208. [Google Scholar] [CrossRef]
- Yin, G.L.; Shao, J.A.; Guo, Y.; Dang, Y.F. Effects of Forest Resource Changes on Ecosystem Function: A Case Study of Xichuan County, the Main Source of Water for South-to-North Water Transfer in China. Acta Ecol. Sin. 2017, 37, 6973–6985. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.h.; Huang, L.Y.; Lu, Z.; Yu, D.; Zhou, L.; Dai, L. Spatiotemporal Variation of Water Yield and its Driving Factors in Northeast China. Chin. J. Ecol. 2017, 36, 3216–3223. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Armindo, R.A.; Prevedello, C.L. Splintex 2. 0: A Physically-Based Model to Estimate Water Retention and Hydraulic Conductivity Parameters from Soil Physical Data. Comput. Electron. Agric. 2020, 169, 10. [Google Scholar] [CrossRef]
- Marquès, M.; Bangash, R.F.; Kumar, V.; Sharp, R.; Schuhmacher, M. The Impact of Climate Change on Water Provision Under a Low Flow Regime: A Case Study of the Ecosystems Services in the Francoli River Basin. J. Hazard. Mater. 2013, 263, 224–232. [Google Scholar] [CrossRef]
- Huang, X.; Peng, S.Y.; Wang, Z.; Huang, B.M.; Liu, J. Spatial Heterogeneity and Driving Factors of Ecosystem Eater Yield Service in Yunnan Province, China Based on Geodetector. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2022, 33, 2813–2821. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.P.; Wang, Y.; Han, X.J.; Wen, S.Q. Ecological Migration Process and the Evaluation of its Ecosystem Service Value in Loess Hilly and Gully Region: A Case Study of Haiyuan County, Ningxia. Arid Land Geogr. 2019, 42, 433–443. [Google Scholar]
- Su, C.H.; Wang, Y.L. Evolution of Ecosystem Services and its Driving Factors in the Upper Reaches of the Fenhe River watershed. Acta Ecol. Sin. 2018, 38, 7886–7898. [Google Scholar]
- Zhang, K.; Lv, Y.H.; Fu, B.J.; Yi, L.C.; Yu, D.D. The Effects of Vegetation Coverage Changes on Ecosystem Service and Their Threshold in the Loess Plateau. Acta Geogr. Sin. 2020, 75, 949–960. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, J.L.; Zhang, C.Y.; Zhao, Z. The Research Trends of Ecosystem Services and the Paradigm in Geography. Acta Geogr. Sin. 2011, 66, 1618–1630. [Google Scholar] [CrossRef]
- Liu, Y.P.; Lv, S.H.; Li, S.S.; Lun Yu, S. Changes and Relation Analyses of Climate and Vegetation in the Source Region of Yellow River in Recent Several Decade Years. Plateau Meteorol. 2007, 26, 1045–1051. [Google Scholar]
- Zheng, Z.Y.; Lv, M.X.; Ma, Z.G. Climate, Hydrology, and Vegetation Coverage Changes in Source Region of Yellow River and Countermeasures for Challenges. Bull. Chin. Acad. Sci. (Chin. Version) 2020, 35, 61–72. [Google Scholar]
- Pan, J.H.; Liu, J.L. Changes of Land Use and Landscape Pattern in the Source Region of the Yellow River and Their Effects on Ecological Environment. J. Arid Land Resour. Environ. 2005, 04, 69–74. [Google Scholar] [CrossRef]
- Mo, X.G.; Liu, S.X.; Hu, S. Co-Evolution of Climate-Vegetation-Hydrology and its Mechanisms in the Source Region of Yellow River. Acta Geogr. Sin. 2022, 77, 1730–1744. [Google Scholar] [CrossRef]
- Gao, C.; Liu, L.; Ma, D.; He, K.Q.; Xu, Y.P. Assessing Responses of Hydrological Processes to Climate Change Over the Southeastern Tibetan Plateau Based on Resampling of Future Climate Scenarios. Sci. Total Environ. 2019, 664, 737–752. [Google Scholar] [CrossRef]
- Dai, E.F.; Wang, Y.H. Spatial Heterogeneity and Driving Mechanisms of Water Yield Service in the Hengduan Mountain Region. Acta Geogr. Sin. 2020, 75, 607–619. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of Available Soil Water Capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dai, E.F.; Ma, L.; Yin, L. Spatiotemporal and Influencing Factors Analysis of Water Yield in the Hengduan Mountain Region. J. Nat. Resour. 2020, 35, 371–386. [Google Scholar] [CrossRef]
- Gupta, S.; Larson, W. Estimating Soil Water Retention Characteristics from Particle Size Distribution, Organic Matter Percent, And Bulk Density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Liu, M.J.; Zhong, J.T.; Wang, B. Spatiotemporal Change and Driving Factor Analysis of the Qinghai Lake Basin Based on InVEST Model. Sci. Geogr. Sin. 2023, 43, 411–422. [Google Scholar] [CrossRef]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as A Land Use Change Driver of Forest Ecosystem Services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef]
- Su, S.L.; Xiao, R.; Jiang, Z.L.; Zhang, Y. Characterizing Landscape Pattern and Ecosystem Service Value Changes for Urbanization Impacts at An Eco-regional Scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Gyozo, J.; Anton, V.R.; Peter, S.; Gabor, C.; Chris, M.; Tsehaie, W. Historical Land Use Changes and Their Impact on Sediment Fluxes in the Balaton Basin (Hungary). Agric. Ecosyst. Environ. 2005, 108, 119–133. [Google Scholar] [CrossRef]
- Ke, S.j.; Wang, L.; Han Ying, Y. Causes of Yellow River Drying up In Source Region and Countermeasures. Adv. Sci. Technol. Water Resour. 2003, 23, 10–12. [Google Scholar] [CrossRef]
- Lan, Y.C.; Lu, C.Y.; Lai, C.F.; Shen, Y.; Jin, H.; Song, J.; Wen, J.; Liu, J. The Fact of Climate Shift to Warm-Humid in the Source regions of the Yellow River and its Hydrologic Response. J. Glaciol. Geocryol. 2013, 35, 920–928. [Google Scholar]
- Duan, S.Q.; Fan, S.X.; Cao, G.C.; Liu, X.S. The Changing Features and Cause Analysis of the Lakes in the Source Regions of the Yellow River from 1976 to 2014. J. Glaciol. Geocryol. 2015, 37, 745–756. [Google Scholar]
LULC_desc | Lucode | Kc | Root_depth | LULC_veg |
---|---|---|---|---|
Cropland | 1 | 0.542 | 2100 | 1 |
Forestland | 2 | 0.81 | 5100 | 1 |
Grassland | 3 | 0.563 | 2600 | 1 |
Shrubland | 4 | 0.531 | 4000 | 1 |
Wetland | 5 | 0.367 | 3000 | 1 |
Water | 6 | 0.462 | −1 | 0 |
Impervious surface | 7 | 0.514 | −1 | 0 |
Bareland | 8 | 0.168 | −1 | 0 |
Snow/Ice | 9 | 0.344 | −1 | 0 |
Typology | Norm | Data Type | Typology | Norm | Data Type |
---|---|---|---|---|---|
Situation | Average annual temperature | Progression | Land use | Land use type | (Math.) discrete |
Total annual precipitation | Progression | SHDI | Progression | ||
Average annual potential Evapotranspiration | Progression | CONTAG | Progression | ||
Topography | Altitude (e.g., above street level) | Progression | MESH | Progression | |
Elevation | Progression | PLAND1 | Progression | ||
Ground | Soil type | (Math.) discrete | PLAND2 | Progression | |
Plant cover | NDVI | Progression | PLAND3 | Progression | |
PLAND4 | Progression |
Data Type | Resolution/Scale | Specification | Data Description | Data Sources |
---|---|---|---|---|
Meteorological data | Hagrid’s point (math.) | Checkpoint | Temperature, precipitation, humidity, sunshine, wind speed | China Meteorological Science Data Sharing Service Network (http://data.cma.cn/, accessed on 3 July 2024) |
DEM | 30 m × 30 m | Raster | Digital elevation model (DEM) | Geospatial data cloud (https://www.gscloud.cn/search, accessed on 3 July 2024) |
Land use data | 30 m × 30 m | Raster | Data on finished land use types | National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn/zh-hans/, accessed on 3 July 2024) |
Soil data | 1000 m × 1000 m | Raster, nc | Soil texture, soil depth | Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed on 3 July 2024) Cold and Arid Regions Data Center |
NDVI | 1000 m × 1000 m | Raster | Vegetation index | National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn/zh-hans/, accessed on 3 July 2024) |
LAI | 30 m × 30 m | Raster | Leaf area index (LAI) | National Tibetan Plateau Science Data Center (http://data.tpdc.ac.cn/zh-hans/, accessed on 3 July 2024) |
Real-time data | Pdf, xls | Qinghai Water Conservancy Information Network and other website supplements |
Watershed | Year | Simulated Water Yield/Billion m3 | Actual Water Yield/Billion m3 | Relative Error/% |
---|---|---|---|---|
Yellow River source area | 1985 | 270.50 | - | - |
1990 | 152.08 | - | - | |
1995 | 198.12 | 181.80 | 8.98% | |
2000 | 182.73 | 166.00 | 10.08% | |
2005 | 302.44 | 264.94 | 14.15% | |
2010 | 210.28 | 229.44 | 8.35% | |
2015 | 162.09 | 177.40 | 8.63% | |
2020 | 269.16 | 298.54 | 9.84% |
Shore | Year | Water Yield/Billion m3 | Average Depth of Water Yield/mm | Annual Precipitation/mm | Average Potential Evapotranspiration/mm |
---|---|---|---|---|---|
Yellow River source area | 1985 | 270.50 | 226.04 | 589.84 | 618.33 |
1990 | 152.08 | 127.09 | 484.15 | 651.22 | |
1995 | 198.12 | 165.56 | 529.14 | 640.42 | |
2000 | 182.73 | 152.70 | 516.62 | 642.02 | |
2005 | 302.44 | 252.73 | 627.52 | 629.65 | |
2010 | 210.28 | 175.72 | 567.55 | 683.64 | |
2015 | 162.09 | 135.45 | 510.15 | 666.95 | |
2020 | 269.16 | 224.92 | 598.98 | 648.19 |
Shore | Indicator Factors | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|---|---|
Yellow River source area | Average annual temperature | 0.117 | 0.173 | 0.102 | 0.101 | 0.1 | 0.121 | 0.152 | 0.182 |
Total annual precipitation | 0.71 | 0.748 | 0.737 | 0.661 | 0.666 | 0.64 | 0.503 | 0.805 | |
Average annual potential Evapotranspiration | 0.134 | 0.195 | 0.125 | 0.127 | 0.13 | 0.168 | 0.169 | 0.197 | |
Altitude (e.g., above street level) | 0.116 | 0.16 | 0.108 | 0.098 | 0.122 | 0.163 | 0.145 | 0.192 | |
Elevation | 0.059 | 0.018 | 0.041 | 0.043 | 0.058 | 0.038 | 0.06 | 0.035 | |
Soil type | 0.441 | 0.403 | 0.416 | 0.407 | 0.448 | 0.404 | 0.442 | 0.424 | |
NDVI | 0.247 | 0.27 | 0.256 | 0.176 | 0.204 | 0.205 | 0.108 | 0.353 | |
Land use type | 0.052 | 0.055 | 0.04 | 0.061 | 0.061 | 0.078 | 0.116 | 0.031 | |
SHDI | 0.042 | 0.05 | 0.034 | 0.038 | 0.025 | 0.05 | 0.07 | 0.012 | |
CONTAG | 0.032 | 0.021 | 0.015 | 0.017 | 0.031 | 0.012 | 0.06 | 0.02 | |
MESH | 0.009 | 0.009 | 0.01 | 0.016 | 0.003 | 0.002 | 0.003 | 0.009 | |
PLAND1 (cropland) | 0.01 | 0.012 | 0.015 | 0.015 | 0.023 | 0.01 | 0.023 | 0.093 | |
PLAND2 (Forest Lawn) | 0.035 | 0.043 | 0.056 | 0.056 | 0.056 | 0.07 | 0.056 | 0.004 | |
PLAND3 (water bodies) | 0.008 | 0.004 | 0.009 | 0.004 | 0.008 | 0.008 | 0.008 | 0.007 | |
PLAND4 (Ice and Snow Land) | 0.006 | 0.002 | 0.008 | 0.008 | 0.008 | 0.009 | 0.008 | 0.005 |
Zoning | Main Interactions | ||
---|---|---|---|
Source area of the Yellow River Basin | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Aba County | Precipitation ∩ potential evapotranspiration | Potential evapotranspiration ∩ temperature | Precipitation ∩ Elevation |
Chengduo County | Precipitation ∩ Temperature | Precipitation ∩ potential evapotranspiration | Precipitation ∩ Elevation |
Dari County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Gande County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Guinan County | Precipitation ∩ potential evapotranspiration | Temperature ∩ potential evapotranspiration | Potential evapotranspiration ∩ soil type |
Henan County | Precipitation ∩ potential evapotranspiration | Precipitation ∩ Elevation | Temperature ∩ precipitation |
Hongyuan County | Elevation ∩ land use type | Potential evapotranspiration ∩ land use type | Temperature ∩ land use type |
Jiuzhi County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Lvqu County | Potential evapotranspiration ∩ elevation | Temperature ∩ potential evapotranspiration | Potential evapotranspiration ∩ land use type |
Maduo County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ land use type |
Maqin County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Maqu County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Qumalai County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Potential evapotranspiration ∩ land use type |
Ruoergai County | Potential evapotranspiration ∩ land use type | Temperature ∩ land use type | Elevation ∩ land use type |
Shiquan County | Precipitation ∩ potential evapotranspiration | Precipitation ∩ Elevation | Temperature ∩ precipitation |
Tongde County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
Xinghai County, | Elevation ∩ land use type | Potential evapotranspiration ∩ land use type | Temperature ∩ land use type |
Zeku County | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
2600–3000 | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ Elevation |
3000–3400 | Precipitation ∩ potential evapotranspiration | Precipitation ∩ Soil type | Precipitation ∩ land use type |
3400–3800 | Precipitation ∩ potential evapotranspiration | Precipitation ∩ Soil type | Precipitation ∩ land use type |
3800–4200 | Precipitation ∩ potential evapotranspiration | Precipitation ∩ land use type | Temperature ∩ precipitation |
4200–4600 | Precipitation ∩ potential evapotranspiration | Temperature ∩ precipitation | Precipitation ∩ land use type |
4600–5000 | Precipitation ∩ potential evapotranspiration | Precipitation ∩ land use type | Temperature ∩ precipitation |
5000–6100 | Precipitation ∩ land use type | Precipitation ∩ Soil type | Temperature ∩ precipitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhong, J.; Xu, S. Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors. Sustainability 2024, 16, 8259. https://doi.org/10.3390/su16188259
Liu M, Zhong J, Xu S. Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors. Sustainability. 2024; 16(18):8259. https://doi.org/10.3390/su16188259
Chicago/Turabian StyleLiu, Meijuan, Juntao Zhong, and Shiyu Xu. 2024. "Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors" Sustainability 16, no. 18: 8259. https://doi.org/10.3390/su16188259
APA StyleLiu, M., Zhong, J., & Xu, S. (2024). Simulation of Spatial and Temporal Variations in the Water Yield Function in the Source Area of the Yellow River and an Analysis of Influencing Factors. Sustainability, 16(18), 8259. https://doi.org/10.3390/su16188259