Navigating the Road to Acceptance: Unveiling Psychological and Socio-Demographic Influences on Autonomous Vehicle Adoption in Malaysia
Abstract
:1. Introduction
2. Literature Review
2.1. Development of Autonomous Vehicles in Malaysia
2.2. Theories of Technology Acceptance
2.2.1. Theory of Planned Behaviour
2.2.2. Technology Acceptance Model
2.3. Hypothesis Development
Factors Influencing the Acceptance of Autonomous Vehicles
2.4. Moderating Effect of Socio-Demographic Variables on Acceptance
3. Methodology
3.1. Questionnaire Development
3.2. Data Collection
3.3. Sample Profiles
4. Results
4.1. Measurement Assessment
4.2. Structural Model Assessment
4.2.1. Main Effects
4.2.2. Test of Moderation Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Statistics Malaysia (DOSM). Key Findings Population and Housing Census of Malaysia 2020. Available online: https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=500&bul_id=WEFGYlprNFpVcUdWcXFFWkY3WHhEQT09&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09 (accessed on 18 January 2023).
- International Traffic Safety Data and Analysis Group (IRTAD). Road Safety Annual Report 2017; OECD Publishing: Paris, France, 2017. [Google Scholar]
- International Transport Forum. Road Safety Annual Report 2022; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Chin, M. Malaysia Car Sales in 2022—Total Industry Volume Hits All-Time High at 720k Units, up 212k Units from 2021. Available online: https://paultan.org/2023/01/19/maa-tiv-forecast-slow-increase-from-2023-to-2027-but-still-lower-than-record-high-2022-total-sales/ (accessed on 17 June 2024).
- Lembaga Lebuhraya Malaysia. Annual Report 2020; Lembaga Lebuhraya Malaysia: Kajang, Malaysia, 2020. [Google Scholar]
- Reason, J.; Manstead, A.; Stradling, S.; Baxter, J.; Campbell, K. Errors and Violations on the Roads: A Real Distinction? Ergonomics 1990, 33, 1315–1332. [Google Scholar] [CrossRef]
- Charbonnier, S.; Roy, R.N.; Bonnet, S.; Campagne, A. EEG Index for Control Operators’ Mental Fatigue Monitoring Using Interactions between Brain Regions. Expert Syst. Appl. 2016, 52, 91–98. [Google Scholar] [CrossRef]
- Xiao, S.; Ge, X.; Han, Q.-L.; Zhang, Y. Secure and Collision-Free Multi-Platoon Control of Automated Vehicles under Data Falsification Attacks. Automatica 2022, 145, 110531. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What Drives People to Use Automated Vehicles? A Meta-Analytic Review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef] [PubMed]
- Shariff, A.; Bonnefon, J.-F.; Rahwan, I. Psychological Roadblocks to the Adoption of Self-Driving Vehicles. Nat. Hum. Behav. 2017, 1, 694–696. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What Drives People to Accept Automated Vehicles? Findings from a Field Experiment. Transp. Res. Part C Emerg. Technol. 2018, 95, 320–334. [Google Scholar] [CrossRef]
- Ho, J.S.; Tan, B.C.; Lau, T.C.; Khan, N. A Review of Perceived Risk Role in Autonomous Vehicles Acceptance. Int. J. Manag. Financ. Account. 2023, 4, 22–36. [Google Scholar] [CrossRef]
- Nastjuk, I.; Herrenkind, B.; Marrone, M.; Brendel, A.B.; Kolbe, L.M. What Drives the Acceptance of Autonomous Driving? An Investigation of Acceptance Factors from an End-User’s Perspective. Technol. Forecast. Soc. Chang. 2020, 161, 120319. [Google Scholar] [CrossRef]
- Nordhoff, S.; van Arem, B.; Happee, R. Conceptual Model to Explain, Predict, and Improve User Acceptance of Driverless Podlike Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2016, 2602, 60–67. [Google Scholar] [CrossRef]
- McKinsey & Company. Autonomous Driving’s Future: Convenient and Connected; McKinsey & Company: New York, NY, USA, 2023. [Google Scholar]
- Fortune Business Insights. Autonomous Cars Market Size, Share & Industry Analysis, by Type (Fully Autonomous and Semi-Autonomous), by Vehicle Type (Passenger Cars and Commercial Vehicles), and Regional Forecast, 2024–2032; Fortune Business Insights: Pune, India, 2024. [Google Scholar]
- Ho, J.S.; Sri Nusa Ahmad, L.Y.; Tan, B.C. A Conceptual Framework for Acceptance of Autonomous Vehicle in Malaysia. Int. J. Manag. Financ. Account. 2024, 5, 152–169. [Google Scholar] [CrossRef]
- National Automotive Policy (NAP). National Automotive Policy 2020; National Automotive Policy (NAP): Kuala Lumpur, Malaysia, 2020. [Google Scholar]
- Futurise Leading Malaysia’s National Regulatory Sandbox. Available online: https://www.futurise.com.my/ (accessed on 20 March 2023).
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Processes 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Rogers, E.M. Lessons for Guidelines from the Diffusion of Innovations. Jt. Comm. J. Qual. Improv. 1995, 21, 324–328. [Google Scholar] [CrossRef]
- Benleulmi, A.Z.; Ramdani, B. Behavioural Intention to Use Fully Autonomous Vehicles: Instrumental, Symbolic, and Affective Motives. Transp. Res. Part F Traffic Psychol. Behav. 2022, 86, 226–237. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behaviour: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Buckley, L.; Kaye, S.-A.; Pradhan, A.K. Psychosocial Factors Associated with Intended Use of Automated Vehicles: A Simulated Driving Study. Accid. Anal. Prev. 2018, 115, 202–208. [Google Scholar] [CrossRef]
- Kaye, S.-A.; Lewis, I.; Forward, S.; Delhomme, P. A Priori Acceptance of Highly Automated Cars in Australia, France, and Sweden: A Theoretically-Informed Investigation Guided by the TPB and UTAUT. Accid. Anal. Prev. 2020, 137, 105441. [Google Scholar] [CrossRef] [PubMed]
- Payre, W.; Cestac, J.; Delhomme, P. Intention to Use a Fully Automated Car: Attitudes and a Priori Acceptability. Transp. Res. Part F Traffic Psychol. Behav. 2014, 27, 252–263. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lesch, M.F.; Horrey, W.J.; Strawderman, L. Assessing the Utility of TAM, TPB, and UTAUT for Advanced Driver Assistance Systems. Accid. Anal. Prev. 2017, 108, 361–373. [Google Scholar] [CrossRef]
- Todd, J.; Kothe, E.; Mullan, B.; Monds, L. Reasoned versus Reactive Prediction of Behaviour: A Meta-Analysis of the Prototype Willingness Model. Health Psychol. Rev. 2016, 10, 1–24. [Google Scholar] [CrossRef]
- Sheeran, P.; Webb, T.L. The Intention–Behavior Gap. Soc. Personal. Psychol. Compass 2016, 10, 503–518. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decis. Sci. 1996, 27, 451–481. [Google Scholar] [CrossRef]
- Armitage, C.J.; Christian, J. From Attitudes to Behaviour: Basic and Applied Research on the Theory of Planned Behaviour. Curr. Psychol. 2003, 22, 187–195. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. Int. J. Hum. Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Hegner, S.M.; Beldad, A.D.; Brunswick, G.J. In Automatic We Trust: Investigating the Impact of Trust, Control, Personality Characteristics, and Extrinsic and Intrinsic Motivations on the Acceptance of Autonomous Vehicles. Int. J. Hum. Comput. Interact. 2019, 35, 1769–1780. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The Roles of Initial Trust and Perceived Risk in Public’s Acceptance of Automated Vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Park, Y.; Lee, S.; Ha, T. Autonomous Vehicles Can Be Shared, but a Feeling of Ownership Is Important: Examination of the Influential Factors for Intention to Use Autonomous Vehicles. Transp. Res. Part C Emerg. Technol. 2019, 107, 411–422. [Google Scholar] [CrossRef]
- Moták, L.; Neuville, E.; Chambres, P.; Marmoiton, F.; Monéger, F.; Coutarel, F.; Izaute, M. Antecedent Variables of Intentions to Use an Autonomous Shuttle: Moving beyond TAM and TPB? Eur. Rev. Appl. Psychol. 2017, 67, 269–278. [Google Scholar] [CrossRef]
- Huang, T. Psychological Factors Affecting Potential Users’ Intention to Use Autonomous Vehicles. PLoS ONE 2023, 18, e0282915. [Google Scholar] [CrossRef] [PubMed]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An Empirical Investigation on Consumers’ Intentions towards Autonomous Driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H.; Wang, J.-W.; Chen, T. The Role of Environmental Concern in the Public Acceptance of Autonomous Electric Vehicles: A Survey from China. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 37–46. [Google Scholar] [CrossRef]
- Jing, P.; Xu, G.; Chen, Y.; Shi, Y.; Zhan, F. The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review. Sustainability 2020, 12, 1719. [Google Scholar] [CrossRef]
- Schepers, J.; Wetzels, M. A Meta-Analysis of the Technology Acceptance Model: Investigating Subjective Norm and Moderation Effects. Inf. Manag. 2007, 44, 90–103. [Google Scholar] [CrossRef]
- Thorpe, J.; Motwani, E. Nudging People into Autonomous Vehicles; PwC: Sydney, NSW, Australia, 2017. [Google Scholar]
- Kapser, S.; Abdelrahman, M. Acceptance of Autonomous Delivery Vehicles for Last-Mile Delivery in Germany—Extending UTAUT2 with Risk Perceptions. Transp. Res. Part C Emerg. Technol. 2020, 111, 210–225. [Google Scholar] [CrossRef]
- Koul, S.; Eydgahi, A. Utilizing Technology Acceptance Model (TAM) for Driverless Car Technology Adoption. J. Technol. Manag. Innov. 2018, 13, 37–46. [Google Scholar] [CrossRef]
- Dai, J.; Liu, Z.; Li, R. Improving the Subway Attraction for the Post-COVID-19 Era: The Role of Fare-Free Public Transport Policy. Transp. Policy 2021, 103, 21–30. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, Y.; Zheng, J. Modelling the Acceptance of Fully Autonomous Vehicles: A Media-Based Perception and Adoption Model. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 80–91. [Google Scholar] [CrossRef]
- Becker, F.; Axhausen, K.W. Literature Review on Surveys Investigating the Acceptance of Automated Vehicles. Transportation 2017, 44, 1293–1306. [Google Scholar] [CrossRef]
- Keszey, T. Behavioural Intention to Use Autonomous Vehicles: Systematic Review and Empirical Extension. Transp. Res. Part C Emerg. Technol. 2020, 119, 102732. [Google Scholar] [CrossRef]
- Park, J.; Hong, E.; Le, H.T. Adopting Autonomous Vehicles: The Moderating Effects of Demographic Variables. J. Retail. Consum. Serv. 2021, 63, 102687. [Google Scholar] [CrossRef]
- Haghzare, S.; Campos, J.L.; Bak, K.; Mihailidis, A. Older Adults’ Acceptance of Fully Automated Vehicles: Effects of Exposure, Driving Style, Age, and Driving Conditions. Accid. Anal. Prev. 2021, 150, 105919. [Google Scholar] [CrossRef]
- Hulse, L.M.; Xie, H.; Galea, E.R. Perceptions of Autonomous Vehicles: Relationships with Road Users, Risk, Gender and Age. Saf. Sci. 2018, 102, 1–13. [Google Scholar] [CrossRef]
- Charness, N.; Yoon, J.S.; Souders, D.; Stothart, C.; Yehnert, C. Predictors of Attitudes toward Autonomous Vehicles: The Roles of Age, Gender, Prior Knowledge, and Personality. Front. Psychol. 2018, 9, 2589. [Google Scholar] [CrossRef]
- Kyriakidis, M.; Happee, R.; de Winter, J.C.F. Public Opinion on Automated Driving: Results of an International Questionnaire among 5000 Respondents. Transp. Res. Part F Traffic Psychol. Behav. 2015, 32, 127–140. [Google Scholar] [CrossRef]
- Weigl, K.; Nees, M.A.; Eisele, D.; Riener, A. Acceptance of Automated Vehicles: Gender Effects, but Lack of Meaningful Association with Desire for Control in Germany and in the U.S. Transp. Res. Interdiscip. Perspect. 2022, 13, 100563. [Google Scholar] [CrossRef]
- Howard, D.; Dai, D. Public Perceptions of Self-Driving Cars: The Case of Berkeley, California; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2014. [Google Scholar]
- Xiao, J.; Goulias, K.G. Perceived Usefulness and Intentions to Adopt Autonomous Vehicles. Transp. Res. Part A Policy Pract. 2022, 161, 170–185. [Google Scholar] [CrossRef]
- Moody, J.; Bailey, N.; Zhao, J. Public Perceptions of Autonomous Vehicle Safety: An International Comparison. Saf. Sci. 2020, 121, 634–650. [Google Scholar] [CrossRef]
- Hassan, H.M.; Ferguson, M.R.; Vrkljan, B.; Newbold, B.; Razavi, S. Older Adults and Their Willingness to Use Semi and Fully Autonomous Vehicles: A Structural Equation Analysis. J. Transp. Geogr. 2021, 95, 103133. [Google Scholar] [CrossRef]
- Nasri, W.; Charfeddine, L. Factors Affecting the Adoption of Internet Banking in Tunisia: An Integration Theory of Acceptance Model and Theory of Planned Behavior. J. High Technol. Manag. Res. 2012, 23, 1–14. [Google Scholar] [CrossRef]
- Memon, M.A.; Ting, H.; Cheah, J.-H.; Thurasamy, R.; Chuah, F.; Cham, T.H. Sample Size for Survey Research: Review and Recommendations. J. Appl. Struct. Equ. Model. 2020, 4, i–xx. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Bowling, N.A.; Liu, M.; Li, Y. Detecting Insufficient Effort Responding with an Infrequency Scale: Evaluating Validity and Participant Reactions. J. Bus. Psychol. 2015, 30, 299–311. [Google Scholar] [CrossRef]
- Department of Statistics Malaysia Population Table: Malaysia. Available online: https://open.dosm.gov.my/data-catalogue/population_malaysia (accessed on 7 September 2024).
- Nunnally, J. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Hinton, P.R.; McMurray, I.; Brownlow, C.; Terry, P.C. SPSS Explained; Routledge: London, UK, 2023; ISBN 9780429350863. [Google Scholar]
- Mathieson, K. Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Yuen, K.F.; Huyen, D.T.K.; Wang, X.; Qi, G. Factors Influencing the Adoption of Shared Autonomous Vehicles. Int. J. Environ. Res. Public Health 2020, 17, 4868. [Google Scholar] [CrossRef]
- Man, S.S.; Xiong, W.; Chang, F.; Chan, A.H.S. Critical Factors Influencing Acceptance of Automated Vehicles by Hong Kong Drivers. IEEE Access 2020, 8, 109845–109856. [Google Scholar] [CrossRef]
- Dong, X.; DiScenna, M.; Guerra, E. Transit User Perceptions of Driverless Buses. Transportation 2019, 46, 35–50. [Google Scholar] [CrossRef]
- Makahleh, H.Y.; Ferranti, E.J.S.; Dissanayake, D. Assessing the Role of Autonomous Vehicles in Urban Areas: A Systematic Review of Literature. Future Transp. 2024, 4, 321–348. [Google Scholar] [CrossRef]
Construct | Items | Adopted from |
---|---|---|
Perceived Usefulness (PU) | 1. I would find AVs useful in meeting my transportation needs. 2. The use of autonomous vehicles would be useful. 3. Using AVs would enhance my effectiveness while driving. | Panagiotopoulos and Dimitrakopoulos (2018); Davis (1989) [20,42] |
Perceive Ease of Use (PEOU) | 1. Learning to operate AVs would be easy for me. 2. I would find it easy to get autonomous vehicle to do what I want to do. 3. Interacting with AVs would not require a lot of my mental effort. | Davis (1989) [20] |
Attitude (ATT) | 1. I think that using AVs is a good idea. 2. I like the idea of using AVs. 3. I think that using AVs would be beneficial for me. | Nasri and Charfeddine (2012) [63] |
Subjective Norm (SN) | 1. People who are important to me would think that I should use AVs. 2. People who influence my behaviour would think that I should use AVs. 3. People whose opinion I value would prefer that I use AVs. | Nasri and Charfeddine (2012) [63] |
Perceived Behavioural Control (PBC) | 1. Given the resources, opportunities, and knowledge it takes to use AVs, it would be easy for me to use an AV. 2. I have the resources necessary to use AVs. 3. I do not have the knowledge necessary to use AVs. | Venkatesh et al. (2003) [22] |
Acceptance (ACC) | 1. I intend to use AVs in the future. 2. I expect that I would use AVs in the future. 3. I plan to use AVs in the future. | Choi and Ji (2015) [36] |
Measure | Items | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 164 | 53.6 |
Female | 142 | 46.4 | |
Ethnicity | Malay | 166 | 54.3 |
Chinese | 113 | 36.9 | |
Indian | 18 | 5.9 | |
Others | 9 | 2.9 | |
Age | 18–25 | 25 | 8.2 |
26–35 | 47 | 15.4 | |
36–45 | 79 | 25.8 | |
46–55 | 89 | 29.1 | |
56–65 | 53 | 17.3 | |
66–75 | 11 | 3.6 | |
76 and above | 2 | 0.6 | |
Marital Status | Single | 65 | 21.2 |
Married | 232 | 75.8 | |
Divorced | 7 | 2.3 | |
Widowed | 2 | 0.7 | |
Educational Level | Secondary School | 38 | 12.4 |
Certificate/Diploma | 59 | 19.3 | |
Bachehor’s Degree | 152 | 49.7 | |
Postgraduate Degree | 57 | 18.6 | |
Income Level (RM) | RM 2500 and below | 57 | 18.6 |
RM 2501–4849 | 90 | 29.4 | |
RM 4850–7099 | 64 | 20.9 | |
RM 7100–10,959 | 53 | 17.3 | |
RM 10,960–15,039 | 22 | 7.2 | |
RM 15,040 and above | 20 | 6.6 | |
Occupation | Students | 21 | 6.9 |
Self-employed | 31 | 10.1 | |
Private | 142 | 46.4 | |
Government | 83 | 27.1 | |
Housewife | 11 | 3.6 | |
Unemployed | 1 | 0.3 | |
Retired | 17 | 5.6 |
AGE | GEN | ETH | MAR | EDU | OCC | INC | PU | PEOU | ATT | SN | PBC | ACC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AGE | 1 | ||||||||||||
GEN | 0.008 | 1 | |||||||||||
ETH | 0.202 ** | 0.056 | 1 | ||||||||||
MAR | 0.415 ** | −0.054 | 0.010 | 1 | |||||||||
EDU | −0.165 ** | 0.147 * | 0.083 | −0.119 * | 1 | ||||||||
OCC | 0.312 ** | 0.120 * | −0.011 | 0.173 ** | 0.021 | 1 | |||||||
INC | 0.265 ** | 0.026 | 0.112 | 0.231 ** | 0.356 ** | −0.119 * | 1 | ||||||
PU | −0.041 | −0.048 | 0.040 | −0.019 | 0.030 | −0.117 * | 0.043 | 1 | |||||
PEOU | −0.110 | −0.147 ** | −0.012 | −0.018 | 0.089 | −0.229 ** | 0.067 | 0.475 ** | 1 | ||||
ATT | −0.037 | −0.097 | 0.077 | −0.006 | −0.005 | −0.187 ** | 0.056 | 0.658 ** | 0.496 ** | 1 | |||
SN | −0.013 | −0.018 | 0.030 | 0.008 | −0.055 | −0.095 | 0.048 | 0.567 ** | 0.400 ** | 0.520 ** | 1 | ||
PBC | −0.019 | −0.105 | −0.097 | 0.049 | 0.049 | −0.171 ** | 0.116 * | 0.579 ** | 0.530 ** | 0.628 ** | 0.471 ** | 1 | |
ACC | −0.026 | −0.099 | 0.070 | 0.028 | 0.032 | −0.172 ** | 0.122 * | 0.566 ** | 0.440 ** | 0.821 ** | 0.481 ** | 0.598 ** | 1 |
Mean | 3.45 | 1.46 | 1.58 | 1.82 | 2.75 | 3.34 | 2.850 | 4.64 | 4.62 | 4.93 | 4.02 | 4.63 | 4.95 |
Standard Deviation | 1.301 | 0.500 | 0.735 | 0.481 | 0.902 | 1.265 | 1.439 | 1.255 | 1.206 | 1.299 | 1.339 | 1.261 | 1.366 |
Skewness | −0.061 | 0.145 | 1.309 | −0.089 | −0.5 | 0.948 | 0.570 | −0.411 | −0.161 | −0.644 | −0.31 | −0.328 | −0.538 |
Kurtosis | −0.447 | −1.992 | 1.636 | 2.508 | −0.44 | 2.109 | −0.494 | 0.281 | −0.256 | 0.408 | 0.006 | −0.021 | 0.294 |
Cronbach α | - | - | - | - | - | - | - | 0.846 | 0.874 | 0.955 | 0.957 | 0.686 | 0.976 |
Hypotheses | Unstandardized Coefficients | Standardized Coefficients | Beta | t | Results |
---|---|---|---|---|---|
B | Std. Error | ||||
H1: Perceived Usefulness → Acceptance | −0.015 | 0.056 | −0.012 | −0.260 | Rejected |
H2: Perceived Ease of Use → Acceptance | −0.001 | 0.048 | −0.001 | −0.027 | Rejected |
H3: Attitude → Acceptance | 0.758 | 0.050 *** | 0.722 | 15.053 | Accepted |
H4: Subjective Norm → Acceptance | 0.053 | 0.041 | 0.052 | 1.273 | Rejected |
H5: Perceived Behavioural Control → Acceptance | 0.152 | 0.054 ** | 0.128 | 2.829 | Accepted |
R2 | 0.829 |
Unstandardized Coefficients | Standardized Coefficients | Standard Error | p-Value | |
---|---|---|---|---|
PEOU | 0.036 | 0.030 | 0.056 | 0.518 |
PU | −0.040 | −0.034 | 0.064 | 0.533 |
ATT | 0.765 *** | 0.729 | 0.058 | 0.000 |
SN | 0.087 * | 0.086 | 0.047 | 0.066 |
PBC | 0.073 | 0.062 | 0.066 | 0.264 |
AGE | −0.096 | −0.050 | 0.086 | 0.265 |
GENDER(GEN) | −0.043 | −0.016 | 0.094 | 0.651 |
ETHIC (ET) | 0.021 | 0.012 | 0.069 | 0.767 |
MARITAL (MA) | 0.096 | 0.035 | 0.107 | 0.368 |
EDUCATION (EDU) | 0.032 | 0.022 | 0.058 | 0.582 |
OCCUPATION (OCC) | −0.040 | −0.038 | 0.043 | 0.356 |
INCOME (INC) | 0.047 | 0.052 | 0.038 | 0.209 |
INT_AGE × PEOU | 0.062 | 0.049 | 0.083 | 0.453 |
INT_AGE × PU | −0.106 | −0.087 | 0.092 | 0.248 |
INT_AGE × ATT | 0.119 | 0.098 | 0.092 | 0.196 |
INT_AGE × SN | −0.049 | −0.037 | 0.073 | 0.508 |
INT_AGE × PBC | 0.063 | 0.052 | 0.085 | 0.458 |
INT_GEN × PEOU | −0.037 | −0.028 | 0.059 | 0.525 |
INT_GEN × PU | −0.078 | −0.059 | 0.075 | 0.299 |
INT_GEN × ATT | −0.054 | −0.041 | 0.072 | 0.452 |
INT_GEN × SN | 0.008 | 0.006 | 0.062 | 0.897 |
INT_GE × PBC | 0.133 | 0.101 | 0.068 | 0.052 |
INT_ET × PEOU | −0.136 ** | −0.098 | 0.065 | 0.037 *** |
INT_ET × PU | 0.036 | 0.030 | 0.067 | 0.590 |
INT_ET × ATT | 0.017 | 0.014 | 0.064 | 0.790 |
INT_ET × PBC | −0.029 | −0.027 | 0.059 | 0.628 |
INT_MA × PEOU | 0.056 | 0.050 | 0.065 | 0.393 |
INT_MA × PU | 0.112 | 0.111 | 0.087 | 0.201 |
INT_MA × ATT | −0.048 | −0.045 | 0.088 | 0.589 |
INT_MA × SN | −0.013 | −0.010 | 0.092 | 0.891 |
INT_MA × PBC | −0.104 | −0.094 | 0.087 | 0.230 |
INT_EDU × PEOU | 0.061 | 0.049 | 0.058 | 0.294 |
INT_EDU × PU | −0.157 ** | −0.124 | 0.079 | 0.048 *** |
INT_EDU × ATT | 0.092 | 0.071 | 0.086 | 0.285 |
INT_EDU × SN | −0.067 | −0.053 | 0.070 | 0.336 |
INT_EDE × PBC | 0.094 | 0.073 | 0.085 | 0.273 |
INT_OCC × PEOU | 0.012 | 0.009 | 0.068 | 0.858 |
INT_OCC × PU | 0.091 | 0.065 | 0.074 | 0.221 |
INT_OCC × ATT | −0.032 | −0.024 | 0.071 | 0.649 |
INT_OCC × SN | 0.123 | 0.073 | 0.076 | 0.108 |
INT_OCC × PBC | −0.159 * | −0.112 | 0.082 | 0.053 |
INT_INC × PEOU | −0.018 | −0.014 | 0.070 | 0.796 |
INT_INC × PU | 0.076 | 0.057 | 0.091 | 0.406 |
INT_INC × ATT | −0.278 ** | −0.197 | 0.097 | 0.004 *** |
INT_INC × SN | 0.049 | 0.039 | 0.076 | 0.520 |
INT_INC × PBC | 0.018 | 0.013 | 0.084 | 0.828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, S.M.; Ho, J.S.; Tan, B.C.; Lau, T.C.; Khan, N. Navigating the Road to Acceptance: Unveiling Psychological and Socio-Demographic Influences on Autonomous Vehicle Adoption in Malaysia. Sustainability 2024, 16, 8262. https://doi.org/10.3390/su16188262
Pang SM, Ho JS, Tan BC, Lau TC, Khan N. Navigating the Road to Acceptance: Unveiling Psychological and Socio-Demographic Influences on Autonomous Vehicle Adoption in Malaysia. Sustainability. 2024; 16(18):8262. https://doi.org/10.3390/su16188262
Chicago/Turabian StylePang, Suk Min, Jen Sim Ho, Booi Chen Tan, Teck Chai Lau, and Nasreen Khan. 2024. "Navigating the Road to Acceptance: Unveiling Psychological and Socio-Demographic Influences on Autonomous Vehicle Adoption in Malaysia" Sustainability 16, no. 18: 8262. https://doi.org/10.3390/su16188262
APA StylePang, S. M., Ho, J. S., Tan, B. C., Lau, T. C., & Khan, N. (2024). Navigating the Road to Acceptance: Unveiling Psychological and Socio-Demographic Influences on Autonomous Vehicle Adoption in Malaysia. Sustainability, 16(18), 8262. https://doi.org/10.3390/su16188262