Urban Sprawl and Imbalance between Supply and Demand of Ecosystem Services: Evidence from China’s Yangtze River Delta Urban Agglomerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Data Sources
2.2. Models of Ecosystem Service Supplies
2.2.1. Water Conservation
2.2.2. Carbon Sequestration
2.2.3. Soil Conservation
2.2.4. Crop Production
2.3. Models of Ecosystem Service Demands
2.3.1. Water Resource Demand
2.3.2. Carbon Storage Demand
2.3.3. Soil Conservation Demand
2.3.4. Crop Production Demand
2.4. Models of Ecosystem Service Values
2.4.1. Value of Water Conservation Service
2.4.2. Value of Carbon Sequestration Service
2.4.3. Value of Soil Conservation Service
2.4.4. Value of Crop Production
2.5. Index of Supply and Demand for Ecosystem Services
2.6. Spatial Analysis Methods
3. Results
3.1. Changes in Ecosystem Services in the YRDUA
3.1.1. Spatial Pixel Distribution of Ecosystem Services
3.1.2. Supply of Ecosystem Services
3.2. Changes in the Ecosystem Service Values in the YRDUA
3.3. Evolution of Ecosystem Service Value Supply and Demand in the YRDUA
3.3.1. Spatial Evolution of Each Service Function
3.3.2. Changes in the ESR Index by City
3.3.3. Characteristics of ESR Spatial Clustering at the County Scale
4. Discussion
4.1. Evaluation of Ecosystem Service Value
4.2. Urban Sprawl and Risk of Unbalanced Supply and Demand of Ecosystem Services
4.3. Limitations and Future Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Serial Number | LUCC Types | Maximum Root Depth of the Plant | Surface Crop Coefficient | Vegetation Class |
---|---|---|---|---|
1 | Cropland | 1000 | 1.1 | 1 |
2 | Woodland | 3500 | 1.008 | 1 |
3 | Grassland | 2000 | 0.65 | 1 |
4 | Water area | −1 | 1.05 | 0 |
5 | Construction land | −1 | 0.2 | 0 |
6 | Unutilized land | −1 | 0.2 | 0 |
Serial Number | LUCC Types | Above-Ground Carbon Pool | Underground Carbon Pool | Soil Carbon Pool | Carbon Pool of Dead Organic Matter |
---|---|---|---|---|---|
1 | Cropland | 26.064 | 15.210 | 22.849 | 1 |
2 | Woodland | 46.294 | 48.548 | 34.764 | 3.511 |
3 | Grassland | 22.749 | 11.187 | 19.667 | 1 |
4 | Water area | 0 | 0 | 0 | 0 |
5 | Construction land | 0 | 0 | 0 | 0 |
6 | Unutilized land | 6.501 | 1.475 | 0 | 0 |
LUCC Types | Cropland | Woodland | Grassland | Water Area | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
P | 1 | 1 | 1 | 0 | 0 | 1 |
C | 0.07 | 0.03 | 0.07 | 0 | 0 | 1 |
Serial Number | City | 2010 | 2015 | 2020 |
---|---|---|---|---|
1 | Xuancheng | 72.434 | 92.355 | 74.057 |
2 | Wuhu | 11.870 | 16.214 | 13.652 |
3 | Chizhou | 70.228 | 77.923 | 65.004 |
4 | Tongling | 8.184 | 10.586 | 9.233 |
5 | Hefei | 10.181 | 14.552 | 14.589 |
6 | Maanshan | 4.509 | 6.746 | 6.474 |
7 | Chuzhou | 8.068 | 11.791 | 13.182 |
8 | Anqing | 61.526 | 70.227 | 71.866 |
9 | Zhenjiang | 2.037 | 3.171 | 3.851 |
10 | Yangzhou | 1.463 | 2.143 | 3.376 |
11 | Yancheng | 4.029 | 4.294 | 9.316 |
12 | Wuxi | 2.554 | 4.141 | 4.364 |
13 | Taizhou | 1.561 | 2.224 | 3.688 |
14 | Suzhou | 1.511 | 2.558 | 3.122 |
15 | Nantong | 3.429 | 5.025 | 7.677 |
16 | Changzhou | 2.492 | 4.062 | 4.103 |
17 | Nanjing | 4.037 | 6.428 | 6.616 |
18 | Shanghai | 1.492 | 2.192 | 2.591 |
19 | Huzhou | 17.662 | 24.370 | 21.383 |
20 | Jiaxing | 1.942 | 2.848 | 2.386 |
21 | Ningbo | 35.921 | 30.543 | 25.592 |
22 | Shaoxing | 45.133 | 41.747 | 31.739 |
23 | Taizhou2 | 78.692 | 67.523 | 43.850 |
24 | Zhoushan | 1.947 | 2.031 | 2.155 |
25 | Jinhua | 95.855 | 84.353 | 56.968 |
26 | Hangzhou | 135.481 | 145.590 | 112.542 |
YRDUA Total | 684.238 | 735.637 | 613.376 |
Serial Number | City | 2010 | 2015 | 2020 |
---|---|---|---|---|
1 | Xuancheng | 3336.752 | 3308.900 | 3324.824 |
2 | Wuhu | 1025.750 | 992.519 | 1006.114 |
3 | Chizhou | 2056.765 | 2054.453 | 2050.346 |
4 | Tongling | 481.184 | 476.487 | 473.772 |
5 | Hefei | 1616.710 | 1584.710 | 1569.757 |
6 | Maanshan | 631.005 | 626.222 | 623.594 |
7 | Chuzhou | 2217.401 | 2183.593 | 2188.882 |
8 | Anqing | 2897.386 | 2903.617 | 2898.168 |
9 | Zhenjiang | 549.716 | 543.238 | 531.199 |
10 | Yangzhou | 759.571 | 754.276 | 740.858 |
11 | Yancheng | 2154.726 | 2145.636 | 2163.214 |
12 | Wuxi | 516.320 | 509.779 | 498.379 |
13 | Taizhou | 752.079 | 735.040 | 724.546 |
14 | Suzhou | 599.584 | 580.249 | 579.460 |
15 | Nantong | 1327.064 | 1286.691 | 1284.901 |
16 | Changzhou | 550.333 | 544.079 | 528.555 |
17 | Nanjing | 875.120 | 871.344 | 841.903 |
18 | Shanghai | 709.790 | 677.182 | 633.060 |
19 | Huzhou | 1380.875 | 1366.871 | 1347.489 |
20 | Jiaxing | 496.578 | 483.794 | 456.359 |
21 | Ningbo | 2013.144 | 2022.464 | 2045.621 |
22 | Shaoxing | 2134.251 | 2115.888 | 2104.729 |
23 | Taizhou2 | 2619.666 | 2612.383 | 2584.824 |
24 | Zhoushan | 245.525 | 271.520 | 259.623 |
25 | Jinhua | 3018.839 | 3008.560 | 2970.038 |
26 | Hangzhou | 4785.511 | 4764.625 | 4724.582 |
YRDUA Total | 39,751.645 | 39,424.120 | 39,154.797 |
Serial Number | City | 2010 | 2015 | 2020 |
---|---|---|---|---|
1 | Xuancheng | 2723.589 | 3203.697 | 4875.357 |
2 | Wuhu | 177.880 | 182.771 | 322.362 |
3 | Chizhou | 2684.438 | 3178.521 | 4159.193 |
4 | Tongling | 182.136 | 192.784 | 324.066 |
5 | Hefei | 200.884 | 180.850 | 373.588 |
6 | Maanshan | 105.307 | 95.181 | 208.847 |
7 | Chuzhou | 180.958 | 131.374 | 317.849 |
8 | Anqing | 4003.517 | 3542.539 | 6453.133 |
9 | Zhenjiang | 41.446 | 35.888 | 93.126 |
10 | Yangzhou | 19.380 | 15.310 | 42.488 |
11 | Yancheng | 36.106 | 25.988 | 70.143 |
12 | Wuxi | 80.100 | 87.219 | 186.455 |
13 | Taizhou | 12.719 | 10.341 | 28.487 |
14 | Suzhou | 19.343 | 21.317 | 51.708 |
15 | Nantong | 15.092 | 13.220 | 38.914 |
16 | Changzhou | 33.126 | 34.134 | 74.676 |
17 | Nanjing | 90.664 | 80.790 | 194.134 |
18 | Shanghai | 8.966 | 9.351 | 26.266 |
19 | Huzhou | 631.999 | 737.629 | 1332.038 |
20 | Jiaxing | 6.302 | 6.823 | 14.893 |
21 | Ningbo | 1224.255 | 972.292 | 1748.854 |
22 | Shaoxing | 1341.550 | 1172.383 | 1943.937 |
23 | Taizhou2 | 3039.294 | 2794.521 | 3766.633 |
24 | Zhoushan | 70.432 | 64.661 | 86.655 |
25 | Jinhua | 3192.200 | 2858.591 | 4098.407 |
26 | Hangzhou | 5379.012 | 5809.302 | 9057.452 |
YRDUA Total | 25,500.695 | 25,457.477 | 39,889.661 |
Serial Number | City | 2010 | 2015 | 2020 |
---|---|---|---|---|
1 | Xuancheng | 133.527 | 130.846 | 131.716 |
2 | Wuhu | 175.457 | 168.512 | 171.464 |
3 | Chizhou | 102.586 | 101.499 | 100.798 |
4 | Tongling | 80.566 | 79.021 | 78.858 |
5 | Hefei | 303.013 | 296.756 | 294.016 |
6 | Maanshan | 127.408 | 125.948 | 125.389 |
7 | Chuzhou | 312.244 | 305.848 | 307.185 |
8 | Anqing | 239.474 | 238.057 | 237.264 |
9 | Zhenjiang | 105.104 | 103.893 | 101.927 |
10 | Yangzhou | 131.648 | 130.770 | 128.512 |
11 | Yancheng | 389.737 | 387.855 | 393.984 |
12 | Wuxi | 84.615 | 83.010 | 80.814 |
13 | Taizhou | 139.811 | 136.476 | 134.180 |
14 | Suzhou | 120.253 | 115.624 | 113.611 |
15 | Nantong | 271.323 | 262.794 | 260.022 |
16 | Changzhou | 126.255 | 124.249 | 119.842 |
17 | Nanjing | 135.351 | 134.577 | 128.441 |
18 | Shanghai | 168.096 | 160.551 | 147.699 |
19 | Huzhou | 102.514 | 99.905 | 96.536 |
20 | Jiaxing | 114.196 | 110.802 | 104.392 |
21 | Ningbo | 136.665 | 134.931 | 118.382 |
22 | Shaoxing | 110.575 | 105.583 | 103.959 |
23 | Taizhou2 | 109.894 | 105.103 | 102.677 |
24 | Zhoushan | 16.511 | 17.379 | 11.528 |
25 | Jinhua | 141.550 | 137.926 | 132.788 |
26 | Hangzhou | 133.186 | 125.203 | 119.198 |
YRDUA Total | 4011.559 | 3923.118 | 3845.182 |
Serial Number | City | Water Conservation | Carbon Sequestration | Soil Conservation | Crop Production | Total ES Values |
---|---|---|---|---|---|---|
1 | Xuancheng | 167.368 | 108.812 | 87.762 | 34.246 | 398.188 |
2 | Wuhu | 30.853 | 32.927 | 5.803 | 44.581 | 114.164 |
3 | Chizhou | 146.909 | 67.102 | 74.870 | 26.207 | 315.088 |
4 | Tongling | 20.867 | 15.505 | 5.834 | 20.503 | 62.709 |
5 | Hefei | 32.971 | 51.374 | 6.725 | 76.444 | 167.514 |
6 | Maanshan | 14.631 | 20.409 | 3.759 | 32.601 | 71.400 |
7 | Chuzhou | 29.792 | 71.636 | 5.722 | 79.868 | 187.018 |
8 | Anqing | 162.417 | 94.849 | 116.163 | 61.689 | 435.119 |
9 | Zhenjiang | 8.703 | 17.385 | 1.676 | 26.501 | 54.265 |
10 | Yangzhou | 7.630 | 24.246 | 0.765 | 33.413 | 66.054 |
11 | Yancheng | 21.055 | 70.796 | 1.263 | 102.436 | 195.549 |
12 | Wuxi | 9.862 | 16.311 | 3.356 | 21.012 | 50.541 |
13 | Taizhou | 8.334 | 23.712 | 0.513 | 34.887 | 67.446 |
14 | Suzhou | 7.056 | 18.964 | 0.931 | 29.539 | 56.490 |
15 | Nantong | 17.350 | 42.051 | 0.700 | 67.606 | 127.707 |
16 | Changzhou | 9.274 | 17.298 | 1.344 | 31.159 | 59.075 |
17 | Nanjing | 14.953 | 27.553 | 3.495 | 33.395 | 79.396 |
18 | Shanghai | 5.856 | 20.718 | 0.473 | 38.402 | 65.449 |
19 | Huzhou | 48.326 | 44.100 | 23.978 | 25.099 | 141.504 |
20 | Jiaxing | 5.391 | 14.935 | 0.268 | 27.142 | 47.737 |
21 | Ningbo | 57.838 | 66.948 | 31.481 | 30.779 | 187.046 |
22 | Shaoxing | 71.730 | 68.882 | 34.993 | 27.029 | 202.634 |
23 | Taizhou2 | 99.102 | 84.594 | 67.804 | 26.696 | 278.196 |
24 | Zhoushan | 4.870 | 8.497 | 1.560 | 2.997 | 17.923 |
25 | Jinhua | 128.748 | 97.201 | 73.776 | 34.525 | 334.250 |
26 | Hangzhou | 254.344 | 154.623 | 163.044 | 30.992 | 603.002 |
Total | 1386.229 | 1281.430 | 718.058 | 999.748 | 4385.464 |
References
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Pritchard, L.; Folke, C.; Gunderson, L. Valuation of Ecosystem Services in Institutional Context. Ecosystems 2000, 3, 36–40. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2010, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Asah, S.T.; Blahna, D.J.; Ryan, C.M. Involving Forest Communities in Identifying and Constructing Ecosystem Services: Millennium Assessment and Place Specificity. J. For. 2012, 110, 149–156. [Google Scholar] [CrossRef]
- Ling, Y.; Yang, Y.N.; Xu, J.L.; Wang, L.; Wang, Z.H.; Sun, Y.Y.; Yao, C.X.; Wang, Y. Impacts of urbanization on the supply and demand relationship of typical ecosystem services in Beijing-Tianjin-Hebei region. Acta Ecol. Sin. 2023, 43, 5289–5304. [Google Scholar]
- Huang, X.; Xie, Y.; Lei, F.; Cao, L.; Zeng, H. Analysis on spatio-temporal evolution and influencing factors of ecosystem service in the Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Front. Environ. Sci. 2024, 11, 1334458. [Google Scholar] [CrossRef]
- Hua, Y.; Yan, D.; Liu, X. Assessing synergies and trade-offs between ecosystem services in highly urbanized area under different scenarios of future land use change. Environ. Sustain. Indic. 2024, 22, 100350. [Google Scholar] [CrossRef]
- Darshana, A.; Yuji, M.; Madduma, C.B.; Erandathie, L.; Tilak, H.; Jagath, G.; Siri, K. Effects of urban land change on ecosystem service values in the Bolgoda Wetland, Sri Lanka. Sustain. Cities Soc. 2024, 101, 105050. [Google Scholar]
- Hu, Y.C.; Liu, Y.; Yan, Z.Y. Research Regarding the Coupling and Coordination Relationship between New Urbanization and Ecosystem Services in Nanchang. Sustainability 2022, 14, 15041. [Google Scholar] [CrossRef]
- Li, N.; Yang, L.Z.; Luo, G. Coupling Coordination Analysis of Ecosystem Services and Urbanization in Inner Mongolia, China. Land 2022, 11, 1870. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Feng, X.; Liu, S.; Yin, L.; Chen, Y. Trade-offs and Synergies of Ecosystem Services in Karst Area of China Driven by Grain-for-Green Program. Chin. Geogr. Sci. 2020, 30, 101–114. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Z.; Li, Y.; Li, S. Freshwater ecosystem service footprint model: A model to evaluate regional freshwater sustainable development—A case study in Beijing–Tianjin–Hebei, China. Ecol. Indic. 2014, 39, 1–9. [Google Scholar] [CrossRef]
- Zhou, S.; Li, W.; Lu, Z.; Yue, R. An analysis of multiple ecosystem services in a large-scale urbanized area of northern China based on the food-energy-water integrative framework. Environ. Impact Assess. Rev. 2023, 98, 106913. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Y.; Wu, J. Evaluating the spatiotemporal dynamics of ecosystem service supply-demand risk from the perspective of service flow to support regional ecosystem management: A case study of yangtze river delta urban agglomeration. J. Clean. Prod. 2024, 460, 142598. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Lu, H.; Liu, G. Temporal and spatial heterogeneity of land use, urbanization, and ecosystem service value in China: A national-scale analysis. J. Clean. Prod. 2023, 418, 137911. [Google Scholar] [CrossRef]
- Roy, S.K.; Alam, M.T.; Mojumder, P.; Mondal, I.; Kafy, A.A.; Dutta, M.; Ferdous, M.N.; Al Mamun, M.A.; Mahtab, S.B. Dynamic assessment and prediction of land use alterations influence on ecosystem service value: A pathway to environmental sustainability. Environ. Sustain. Indic. 2024, 21, 100319. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl. Soc. Environ. 2019, 17, 100286. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Gong, J.; Dai, X.; Wang, L.; Niu, Z.; Cao, Q.; Huang, C. The Impact of Urbanization on the Supply–Demand Relationship of Ecosystem Services in the Yangtze River Middle Reaches Urban Agglomeration. Remote Sens. 2023, 15, 4749. [Google Scholar] [CrossRef]
- Wang, W.; Deng, X.; Wang, Y.; Peng, L.; Yu, Z. Impacts of infrastructure construction on ecosystem services in new-type urbanization area of North China Plain. Resour. Conserv. Recycl. 2022, 185, 106376. [Google Scholar] [CrossRef]
- Das, S.; Kumar Shit, P.; Bera, B.; Adhikary, P.P. Effect of urbanization on the dynamics of ecosystem services: An analysis for decision making in Kolkata urban agglomeration. Urban Ecosyst. 2022, 25, 1541–1559. [Google Scholar] [CrossRef]
- Prakash, C.M.; Milap, P. Impact of urbanization processes on availability of ecosystem services in National Capital Region of Delhi (1992–2010). Environ. Dev. Sustain. 2021, 24, 21–25. [Google Scholar]
- Xu, L.; He, N.P.; Yu, G.R. Data Set of Carbon Density of Terrestrial Ecosystems in China in 2010s; Science Data Bank: Beijing, China, 2018. [Google Scholar]
- Zhong, J.T.; Wang, B.; Mi, W.B.; Fan, X.G.; Yang, M.L.; Yang, X.M. Spatial recognition of ecological compensation standard for grazing grassland in Yanchi County based on InVEST model. Sci. Geogr. Sin. 2020, 40, 1019–1028. [Google Scholar]
- Zhang, W.; Wang, F.C.; Wan, H.L.; Zhang, L.J.; Li, Z.M.; Wang, H.X. Spatiotemporal variations and influencing factors of soil conservation service based on InVEST model: A case study of Miyun Reservoir upstream basin of Zhangcheng area in Hebei. Prog. Geophys. 2022, 37, 2339–2350. [Google Scholar]
Data Content | Data Source | Year |
---|---|---|
LUCC | China’s Multi-period Remote Sensing Monitoring of Land Use (LUCC) dataset | 2010, 2015, 2020 |
administrative divisions | Source Environmental Science and Data Center of Chinese Academy of Sciences (SESDC) | 2020 |
GDP raster data | SESDC | 2010, 2015, 2020 |
meteorological data for the YRDUA | the National Qinghai–Tibetan Plateau Scientific Data Center (NATPSSDC) | 2010, 2015, 2020 |
population raster data, | World Pop public dataset | 2010, 2015, 2020 |
the resource consumption, population, and food demand data of the cities and provinces | the Statistical Yearbook and Water Resources Bulletin of each province and city | 2010, 2015, 2020 |
major highways, railroads, and rivers in the YRDUA | the National Geographic Information Resource Inventory Service System (NGIRSS) | 2010, 2015, 2020 |
DEM | the ASTER GDEM 30m data of the American Aviation Administration (NASA) | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Sun, Q. Urban Sprawl and Imbalance between Supply and Demand of Ecosystem Services: Evidence from China’s Yangtze River Delta Urban Agglomerations. Sustainability 2024, 16, 8269. https://doi.org/10.3390/su16188269
Wang H, Sun Q. Urban Sprawl and Imbalance between Supply and Demand of Ecosystem Services: Evidence from China’s Yangtze River Delta Urban Agglomerations. Sustainability. 2024; 16(18):8269. https://doi.org/10.3390/su16188269
Chicago/Turabian StyleWang, Huan, and Qiao Sun. 2024. "Urban Sprawl and Imbalance between Supply and Demand of Ecosystem Services: Evidence from China’s Yangtze River Delta Urban Agglomerations" Sustainability 16, no. 18: 8269. https://doi.org/10.3390/su16188269
APA StyleWang, H., & Sun, Q. (2024). Urban Sprawl and Imbalance between Supply and Demand of Ecosystem Services: Evidence from China’s Yangtze River Delta Urban Agglomerations. Sustainability, 16(18), 8269. https://doi.org/10.3390/su16188269