Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants
Abstract
:1. Introduction
2. Properties of Chitosan
3. Chitosan in Catalysis and Adsorption
4. Synthesis of Chitosan-Based Catalysts
4.1. Synthesis of Chitosan-Based Catalysts by Electrospinning
4.2. Synthesis of Chitosan-Based Catalysts by Coating
4.3. Synthesis of Chitosan-Based Catalysts by Casting
4.4. Synthesis of Chitosan-Based Catalysts by Phase Inversion
5. Biocatalysts Using Chitosan-Based Supports
5.1. Biocatalyst Immobilization in Chitosan Support
5.2. Advances in Chitosan-Based Biocatalyst Immobilization for Wastewater Treatment
6. Adsorption of Emerging Pollutants Using Chitosan-Based Materials
6.1. Pharmaceutical Adsorption with Chitosan-Based Materials
6.2. Personal Care Product Adsorption with Chitosan-Based Materials
6.3. Microplastic Adsorption with Chitosan-Based Materials
6.4. PFASs Adsorption with Chitosan-Based Materials
6.5. Glyphosate Adsorption with Chitosan-Based Materials
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, S.; Jabeur, F.; Pontoni, L.; Mechri, S.; Jaouadi, B.; Sannino, F. Sustainable Removal of Arsenic from Waters by Adsorption on Blue Crab, Portunus Segnis (Forskål, 1775) Chitosan-Based Adsorbents. Environ. Technol. Innov. 2024, 33, 103491. [Google Scholar] [CrossRef]
- Khatoon, N.; Jamal, A.; Ali, M.I. Polymeric Pollutant Biodegradation through Microbial Oxidoreductase: A Better Strategy to Safe Environment. Int. J. Biol. Macromol. 2017, 105, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Mehandia, S.; Sharma, S.C.; Arya, S.K. Immobilization of Laccase on Chitosan-Clay Composite Beads to Improve Its Catalytic Efficiency to Degrade Industrial Dyes. Mater. Today Commun. 2020, 25, 101513. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Guibal, E. Heterogeneous Catalysis on Chitosan-Based Materials: A Review. Prog. Polym. Sci. 2005, 30, 71–109. [Google Scholar] [CrossRef]
- Ahmed, K.B.M.; Khan, M.M.A.; Siddiqui, H.; Jahan, A. Chitosan and Its Oligosaccharides, a Promising Option for Sustainable Crop Production-a Review. Carbohydr. Polym. 2020, 227, 115331. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Kaliannan, T.; Garalleh, H.A.L.; Garaleh, M.; Brindhadevi, K.; Chi, N.T.L.; Sharma, A.; Pugazhendhi, A. Bio-Functionalized Copper Oxide/Chitosan Nanocomposite Using Sida Cordifolia and Their Efficient Properties of Antibacterial, Anticancer Activity against on Breast and Lung Cancer Cell Lines. Environ. Res. 2023, 218, 114986. [Google Scholar] [CrossRef]
- Peteffi, G.P.; Fleck, J.D.; Kael, I.M.; Girardi, V.; Bündchen, R.; Krajeski, D.M.; Demoliner, M.; Silva, F.P.; da Rosa, D.C.; Antunes, M.V.; et al. Caffeine Levels as a Predictor of Human Mastadenovirus Presence in Surface Waters—A Case Study in the Sinos River Basin—Brazil. Environ. Sci. Pollut. Res. 2018, 25, 15774–15784. [Google Scholar] [CrossRef]
- de Oliveira Silva, M.B.; de Oliveira, S.A.; dos Santos Rosa, D. Comparative Study on Microwave-Assisted and Conventional Chitosan Production from Shrimp Shell: Process Optimization, Characterization, and Environmental Impacts. J. Clean. Prod. 2024, 440, 140726. [Google Scholar] [CrossRef]
- Ko, M.; Jang, T.; Yoon, S.; Lee, J.; Choi, J.H.; Choi, J.W.; Park, J.A. Synthesis of Recyclable and Light-Weight Graphene Oxide/Chitosan/Genipin Sponges for the Adsorption of Diclofenac, Triclosan, and Microplastics. Chemosphere 2024, 356, 141956. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Z.; Zheng, H.; Chen, L.; Li, F. Biodegradable and Re-Usable Sponge Materials Made from Chitin for Efficient Removal of Microplastics. J. Hazard. Mater. 2021, 420, 126599. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guo, Y.; Tang, C.; Qian, Y.; Guo, C.; Wang, Z.; Li, L. Hardwood Vessel-Inspired Chitosan-Based Sponge with Superior Compressibility, Superfast Adsorption and Remarkable Recyclability for Microplastics Removal in Water. Chem. Eng. J. 2023, 475, 146130. [Google Scholar] [CrossRef]
- Aslani, H.; Pashmtab, P.; Shaghaghi, A.; Mohammadpoorasl, A.; Taghipour, H.; Zarei, M. Tendencies towards Bottled Drinking Water Consumption: Challenges Ahead of Polyethylene Terephthalate (PET) Waste Management. Health Promot. Perspect. 2021, 11, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Tan, X.; Li, J.; Peng, C.; Naz, I.; Duan, Z.; Ruan, Y. Interaction of Microplastics and Nanoplastics with Natural Organic Matter (NOM) and the Impact of NOM on the Sorption Behavior of Anthropogenic Contaminants—A Critical Review. J. Clean. Prod. 2022, 376, 134314. [Google Scholar] [CrossRef]
- Shahady, T. Mitigating Strategies for Agricultural Water Pollution Exacerbated by Climate Change; Elsevier Inc.: Amsterdam, The Netherlands, 2024; ISBN 9780443185151. [Google Scholar]
- Habiba, U.; Islam, M.S.; Siddique, T.A.; Afifi, A.M.; Ang, B.C. Adsorption and Photocatalytic Degradation of Anionic Dyes on Chitosan/PVA/Na–Titanate/TiO2 Composites Synthesized by Solution Casting Method. Carbohydr. Polym. 2016, 149, 317–331. [Google Scholar] [CrossRef]
- ZabihiSahebi, A.; Koushkbaghi, S.; Pishnamazi, M.; Askari, A.; Khosravi, R.; Irani, M. Synthesis of Cellulose Acetate/Chitosan/SWCNT/Fe3O4/TiO2 Composite Nanofibers for the Removal of Cr(VI), As(V), Methylene Blue and Congo Red from Aqueous Solutions. Int. J. Biol. Macromol. 2019, 140, 1296–1304. [Google Scholar] [CrossRef]
- Abdelwahab, N.A.; Helaly, F.M. Simulated Visible Light Photocatalytic Degradation of Congo Red by TiO2 Coated Magnetic Polyacrylamide Grafted Carboxymethylated Chitosan. J. Ind. Eng. Chem. 2017, 50, 162–171. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mohamed, A.A. The Use of Chitosan-Based Composites for Environmental Remediation: A Review. Int. J. Biol. Macromol. 2023, 242, 124787. [Google Scholar] [CrossRef]
- Vedula, S.S.; Yadav, G.D. Chitosan-Based Membranes Preparation and Applications: Challenges and Opportunities. J. Indian Chem. Soc. 2021, 98, 100017. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; de Farias, B.S.; Junior, T.R.S.C.; de Almeida Pinto, L.A.; Diaz, P.S. Chitosan–Based Nanofibers for Enzyme Immobilization. Int. J. Biol. Macromol. 2021, 183, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef]
- Xie, T.; Lv, X.; Tian, S.; Zhang, X.; Lv, Z.; Sun, S. Tailored Chitosan-Based Entrapped Catalyst for Dyes Removal by Highly Active, Stable, and Recyclable Nanoparticles Toughened Hydrogel. Int. J. Biol. Macromol. 2023, 245, 125634. [Google Scholar] [CrossRef]
- Molnár, Á. The Use of Chitosan-Based Metal Catalysts in Organic Transformations. Coord. Chem. Rev. 2019, 388, 126–171. [Google Scholar] [CrossRef]
- Sargin, I. Efficiency of Ag (0)@ Chitosan Gel Beads in Catalytic Reduction of Nitroaromatic Compounds by Sodium Borohydride. Int. J. Biol. Macromol. 2019, 137, 576–582. [Google Scholar] [CrossRef]
- Alves, D.C.S.; Goncalves, J.O.; Coseglio, B.B.; Burgo, T.A.L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval Jr, T.R.S. Adsorption of Phenol onto Chitosan Hydrogel Scaffold Modified with Carbon Nanotubes. J. Environ. Chem. Eng. 2019, 7, 103460. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Silva, K.A.; Dotto, G.L.; Pinto, L.A.A. Adsorption Kinetics of Dyes in Single and Binary Systems Using Cyanoguanidine-Crosslinked Chitosan of Different Deacetylation Degrees. J. Polym. Environ. 2018, 26, 2401–2409. [Google Scholar] [CrossRef]
- Goncalves, J.O.; Dotto, G.L.; Pinto, L.A.A. Cyanoguanidine-Crosslinked Chitosan to Adsorption of Food Dyes in the Aqueous Binary System. J. Mol. Liq. 2015, 211, 425–430. [Google Scholar] [CrossRef]
- Jawad, A.H.; Nawi, M.A. Oxidation of Crosslinked Chitosan-Epichlorohydrine Film and Its Application with TiO2 for Phenol Removal. Carbohydr. Polym. 2012, 90, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, M.; Shao, L.; Qi, C. Palladiumimmobilized on Chitosan Nanofibers Cross-Linked by Glutaraldehyde as an Efficient Catalyst for the Mizoroki–Heck Reaction. Kinet. Catal. 2016, 57, 354–359. [Google Scholar] [CrossRef]
- Zimmerman, J.B.; Anastas, P.T.; Erythropel, H.C.; Leitner, W. Designing for a Green Chemistry Future. Science (1979) 2020, 367, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Regitz, M. New Methods of Preparative Organic Chemistry. Transfer of Diazo Groups. Angew. Chem. Int. Ed. Engl. 1967, 6, 733–749. [Google Scholar] [CrossRef]
- Diogo, G.M.; Moro, P.A.M.; Costin, T.A.; Fantinel, M.; Sá, M.M. Chitosan as a Sustainable Heterogeneous Catalyst for the Preparation of Functionalized α-Diazo Carbonyl Compounds. Tetrahedron Green Chem 2023, 1, 100006. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Cordoba, A.; Guernelli, M.; Montalti, M.; Saldías, C.; Focarete, M.L.; Leiva, A. Nanofibers of Chitosan-Polycaprolactone Blends as Active Support for Photocatalytic Nanoparticles: Outstanding Role of Chitosan in the Degradation of an Organic Dye in Water. Int. J. Biol. Macromol. 2023, 253, 127111. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Strieder, M.M.; Silva, L.F.O.; Dos Reis, G.S.; Dotto, G.L. Advanced Technologies in Water Treatment: Chitosan and Its Modifications as Effective Agents in the Adsorption of Contaminants. Int. J. Biol. Macromol. 2024, 270, 132307. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Kou, S.G.; Peters, L.M.; Mucalo, M.R. Chitosan: A Review of Sources and Preparation Methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef]
- Brown, T.E.; LeMay, H.E.; Bruce, E.B.; Murphy, C.; Woodward, P.; Matthew, E.S. Chemistry: The Central Science, 14th ed.; Pearson: New York, NY, USA, 2017. [Google Scholar]
- RUSSEL, J.B. Química Geral; McGraw-Hill do Brasil: São Paulo, Brazil, 1982. [Google Scholar]
- Zheng, Z.; Tian, S.; Feng, Y.; Zhao, S.; Li, X.; Wang, S.; He, Z. Recent Advances of Photocatalytic Coupling Technologies for Wastewater Treatment. Chin. J. Catal. 2023, 54, 88–136. [Google Scholar] [CrossRef]
- Karan, R.; Bhatia, R.; Rawal, R.K. Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–188. [Google Scholar]
- Cao, M.; Xu, P.; Tian, K.; Shi, F.; Zheng, Q.; Ma, D.; Zhang, G. Recent Advances in Microwave-Enhanced Advanced Oxidation Processes (MAOPs) for Environmental Remediation: A Review. Chem. Eng. J. 2023, 471, 144208. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem.–Asian J. 2020, 15, 3239–3253. [Google Scholar] [CrossRef] [PubMed]
- Sohouli, E.; Irannejad, N.; Ziarati, A.; Ehrlich, H.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Luque, R. Application of Polysaccharide-Based Biopolymers as Supports in Photocatalytic Treatment of Water and Wastewater: A Review. Environ. Chem. Lett. 2022, 20, 3789–3809. [Google Scholar] [CrossRef]
- Škorić, M.L.; Terzić, I.; Milosavljević, N.; Radetić, M.; Šaponjić, Z.; Radoičić, M.; Krušić, M.K. Chitosan-Based Microparticles for Immobilization of TiO2 Nanoparticles and Their Application for Photodegradation of Textile Dyes. Eur. Polym. J. 2016, 82, 57–70. [Google Scholar] [CrossRef]
- Yazdani, M.R.; Bhatnagar, A.; Vahala, R. Synthesis, Characterization and Exploitation of Nano-TiO2/Feldspar-Embedded Chitosan Beads towards UV-Assisted Adsorptive Abatement of Aqueous Arsenic (As). Chem. Eng. J. 2017, 316, 370–382. [Google Scholar] [CrossRef]
- Hoang, N.T.-T.; Tran, A.T.-K.; Hoang, M.-H.; Nguyen, T.T.H.; Bui, X.-T. Synergistic Effect of TiO2/Chitosan/Glycerol Photocatalyst on Color and COD Removal from a Dyeing and Textile Secondary Effluent. Environ. Technol. Innov. 2021, 21, 101255. [Google Scholar] [CrossRef]
- Khan, A.; Goepel, M.; Colmenares, J.C.; Gläser, R. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications. ACS Sustain. Chem. Eng. 2020, 8, 4708–4727. [Google Scholar] [CrossRef]
- Nikoshvili, L.Z.; Tikhonov, B.B.; Ivanov, P.E.; Stadolnikova, P.Y.; Sulman, M.G.; Matveeva, V.G. Recent Progress in Chitosan-Containing Composite Materials for Sustainable Approaches to Adsorption and Catalysis. Catalysts 2023, 13, 367. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Sargin, I.; Baran, T.; Arslan, G. Environmental Remediation by Chitosan-Carbon Nanotube Supported Palladium Nanoparticles: Conversion of Toxic Nitroarenes into Aromatic Amines, Degradation of Dye Pollutants and Green Synthesis of Biaryls. Sep. Purif. Technol. 2020, 247, 116987. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Yuan, J.; Yu, S.; Xiao, S. Preparation of Highly Stable ZnO/MOFs/Polypropylene Non-Woven Catalytic Thin Films by Chitosan Modification for Organic Wastewater Treatment. J. Alloys Compd. 2024, 1006, 176374. [Google Scholar] [CrossRef]
- Rehan, M.; Elhaddad, E. An Efficient Multi-Functional Ternary Reusable Nanocomposite Based on Chitosan@ TiO2@ Ag NP Immobilized on Cellulosic Fiber as a Support Substrate for Wastewater Treatment. Environ. Pollut. 2024, 340, 122850. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zhu, Q.; Chen, H.; Zhang, Y.; Du, M.; Li, F.; Ma, J. Insights into the Synergistic Effect of Fe and Ce in Fenton-like Reactions Catalyzed by Chitosan/FeOOH/CeO2 Microspheres. J. Clean. Prod. 2024, 451, 142058. [Google Scholar] [CrossRef]
- Shen, C.; Li, H.; Wen, Y.; Zhao, F.; Zhang, Y.; Wu, D.; Liu, Y.; Li, F. Spherical Cu2O-Fe3O4@ Chitosan Bifunctional Catalyst for Coupled Cr-Organic Complex Oxidation and Cr (VI) Capture-Reduction. Chem. Eng. J. 2020, 383, 123105. [Google Scholar] [CrossRef]
- Chen, A.-H.; Chen, S.-M. Biosorption of Azo Dyes from Aqueous Solution by Glutaraldehyde-Crosslinked Chitosans. J. Hazard. Mater. 2009, 172, 1111–1121. [Google Scholar] [CrossRef]
- Nasri, A.; Jaleh, B.; Khazalpour, S.; Nasrollahzadeh, M.; Shokouhimehr, M. Facile Synthesis of Graphitic Carbon Nitride/Chitosan/Au Nanocomposite: A Catalyst for Electrochemical Hydrogen Evolution. Int. J. Biol. Macromol. 2020, 164, 3012–3024. [Google Scholar] [CrossRef]
- Hassanpour, H.; Naeimi, H. Fabrication and Characterization of Inorganic–Organic Hybrid Copper Ferrite Anchored on Chitosan Schiff Base as a Reusable Green Catalyst for the Synthesis of Indeno [1,2-b]Indolone Derivatives. RSC Adv. 2024, 14, 17296–17305. [Google Scholar] [CrossRef]
- Almajidi, Y.Q.; Abdullaev, S.; Haydar, S.; Al-Hetty, H.R.A.K.; Ahmad, I.; Shafik, S.S.; Alawadi, A.H.; Alsalamy, A.; Bisht, Y.S.; Abbas, H.A. Magnetic Nanocomposite Based on Chitosan-Gelatin Hydrogel Embedded with Copper Oxide Nanoparticles: A Novel and Promising Catalyst for the Synthesis of Polyhydroquinoline Derivatives. Int. J. Biol. Macromol. 2024, 263, 130211. [Google Scholar] [CrossRef]
- de Souza, J.F.; da Silva, G.T.; Fajardo, A.R. Chitosan-Based Film Supported Copper Nanoparticles: A Potential and Reusable Catalyst for the Reduction of Aromatic Nitro Compounds. Carbohydr. Polym. 2017, 161, 187–196. [Google Scholar] [CrossRef]
- Masoudnia, S.; Juybari, M.H.; Mehrabian, R.Z.; Ebadi, M.; Kaveh, F. Efficient Dye Removal from Wastewater by Functionalized Macromolecule Chitosan-SBA-15 Nanofibers for Biological Approaches. Int. J. Biol. Macromol. 2020, 165, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Satilmis, B. Electrospinning Polymers of Intrinsic Microporosity (PIMs) Ultrafine Fibers; Preparations, Applications and Future Perspectives. Curr. Opin. Chem. Eng. 2022, 36, 100793. [Google Scholar] [CrossRef]
- Refate, A.; Mohamed, Y.; Mohamed, M.; Sobhy, M.; Samhy, K.; Khaled, O.; Eidaroos, K.; Batikh, H.; El-Kashif, E.; El-Khatib, S.; et al. Influence of Electrospinning Parameters on Biopolymers Nanofibers, with Emphasis on Cellulose & Chitosan. Heliyon 2023, 9, e17051. [Google Scholar] [CrossRef] [PubMed]
- Rabanimehr, F.; Farhadian, M.; Nazar, A.R.S. A High-Performance Microreactor Integrated with Chitosan/ Bi2WO6/CNT/TiO2 Nanofibers for Adsorptive/Photocatalytic Removal of Cephalexin from Aqueous Solution. Int. J. Biol. Macromol. 2022, 208, 260–274. [Google Scholar] [CrossRef] [PubMed]
- AlAbduljabbar, F.A.; Haider, S.; Ahmed Ali, F.A.; Alghyamah, A.A.; Almasry, W.A.; Patel, R.; Mujtaba, I.M. TiO2 Nanostructured Coated Functionally Modified and Composite Electrospun Chitosan Nanofibers Membrane for Efficient Photocatalytic Degradation of Organic Pollutant in Wastewater. J. Mater. Res. Technol. 2021, 15, 5197–5212. [Google Scholar] [CrossRef]
- Yang, L.W.; Peng, Y.Q.; Qian, C.F.; Xing, G.H.; He, J.J.; Zhao, C.L.; Lai, B. Enhanced Adsorption/Photocatalytic Removal of Cu(Ⅱ) from Wastewater by a Novel Magnetic Chitosan@ Bismuth Tungstate Coated by Silver (MCTS-Ag/Bi2WO6) Composite. Chemosphere 2021, 263, 128120. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.B.; Shaheen, N.; Zhu, Y.Z. Eggshell Membranes Coated Chitosan Decorated with Metal Nanoparticles for the Catalytic Reduction of Organic Contaminates. Carbohydr. Polym. 2021, 259, 117681. [Google Scholar] [CrossRef]
- Haider, S.; Kamal, T.; Khan, S.B.; Omer, M.; Haider, A.; Khan, F.U.; Asiri, A.M. Natural Polymers Supported Copper Nanoparticles for Pollutants Degradation. Appl. Surf. Sci. 2016, 387, 1154–1161. [Google Scholar] [CrossRef]
- Veisi, H.; Joshani, Z.; Karmakar, B.; Tamoradi, T.; Heravi, M.M.; Gholami, J. Ultrasound Assisted Synthesis of Pd NPs Decorated Chitosan-Starch Functionalized Fe3O4 Nanocomposite Catalyst towards Suzuki-Miyaura Coupling and Reduction of 4-Nitrophenol. Int. J. Biol. Macromol. 2021, 172, 104–113. [Google Scholar] [CrossRef]
- Soltaninejad, V.; Maleki, A. A Green, and Eco-Friendly Bionanocomposite Film (Poly(Vinyl Alcohol)/TiO2/Chitosan/Chlorophyll) by Photocatalytic Ability, and Antibacterial Activity under Visible-Light Irradiation. J. Photochem. Photobiol. A Chem. 2021, 404, 112906. [Google Scholar] [CrossRef]
- Majnis, M.F.; Yee, O.C.; Mohd Adnan, M.A.; Yusof Hamid, M.R.; Ku Shaari, K.Z.; Muhd Julkapli, N. Photoactive of Chitosan-ZrO2/TiO2 Thin Film in Catalytic Degradation of Malachite Green Dyes by Solar Light. Opt. Mater. 2022, 124, 111967. [Google Scholar] [CrossRef]
- Phuoc, N.M.; Thien, L.T.; Phuong, N.T.T.; Duong, N.T.H.; Van Dung, N.; Quang Long, N. Novel Chitosan-Zeolite X Composite Beads Prepared by Phase-Inversion Method for CO2 Adsorptive Capture. Chemosphere 2024, 352, 141327. [Google Scholar] [CrossRef] [PubMed]
- Eroğlan, A.N.; Baran, T. Palladium Nanoparticles Anchored on NiO Particles-Modified Micro-Size Chitosan Spheres: A Promising, Active, and Retrievable Catalyst System for Treatment of Environmental Pollutants. Int. J. Biol. Macromol. 2024, 276, 133835. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Appunni, S.; Gopalram, K. Immobilized TiO2/Chitosan Beads for Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid. Int. J. Biol. Macromol. 2020, 161, 282–291. [Google Scholar] [CrossRef]
- Mishra, A.; Omoyeni, T.; Singh, P.K.; Anandakumar, S.; Tiwari, A. Trends in Sustainable Chitosan-Based Hydrogel Technology for Circular Biomedical Engineering: A Review. Int. J. Biol. Macromol. 2024, 276, 133823. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Feleni, U.; Haneklaus, N.H.; Brink, H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers 2023, 15, 3492. [Google Scholar] [CrossRef]
- Gkantzou, E.; Chatzikonstantinou, A.V.; Fotiadou, R.; Giannakopoulou, A.; Patila, M.; Stamatis, H. Trends in the Development of Innovative Nanobiocatalysts and Their Application in Biocatalytic Transformations. Biotechnol. Adv. 2021, 51, 107738. [Google Scholar] [CrossRef]
- Mishra, B.; Varjani, S.; Agrawal, D.C.; Mandal, S.K.; Ngo, H.H.; Taherzadeh, M.J.; Chang, J.S.; You, S.; Guo, W. Engineering Biocatalytic Material for the Remediation of Pollutants: A Comprehensive Review. Environ. Technol. Innov. 2020, 20, 101063. [Google Scholar] [CrossRef]
- Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and Peroxidases: The Smart, Greener and Futuristic Biocatalytic Tools to Mitigate Recalcitrant Emerging Pollutants. Sci. Total Environ. 2020, 714, 136572. [Google Scholar] [CrossRef]
- Zdarta, J.; Jesionowski, T.; Pinelo, M.; Meyer, A.S.; Iqbal, H.M.N.; Bilal, M.; Nguyen, L.N.; Nghiem, L.D. Free and Immobilized Biocatalysts for Removing Micropollutants from Water and Wastewater: Recent Progress and Challenges. Bioresour. Technol. 2022, 344, 126201. [Google Scholar] [CrossRef]
- Husain, Q.; Fahad Ullah, M. Biocatalysis: Enzymatic Basics and Applications; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Rubilar, O.; Diez, M.C.; Gianfreda, L. Transformation of Chlorinated Phenolic Compounds by White Rot Fungi. Crit. Rev. Environ. Sci. Technol. 2008, 38, 227–268. [Google Scholar] [CrossRef]
- Pickard, M.A.; Roman, R.; Tinoco, R.; Vazquez-Duhalt, R. Polycyclic Aromatic Hydrocarbon Metabolism by White Rot Fungi and Oxidation by Coriolopsis Gallica UAMH 8260 Laccase. Appl. Environ. Microbiol 1999, 65, 3805–3809. [Google Scholar] [CrossRef] [PubMed]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- Ivanec-Goranina, R. Kinetic Study of Coprinus Cinereus Peroxidase-Catalyzed Oxidation of 2,2′-Dihydroxyazobenzene. Int. J. Mol. Sci. 2024, 25, 828. [Google Scholar] [CrossRef]
- Longoria, A.; Tinoco, R.; Vázquez-Duhalt, R. Chloroperoxidase-Mediated Transformation of Highly Halogenated Monoaromatic Compounds. Chemosphere 2008, 72, 485–490. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef]
- Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A Review on the Synthesis of Graft Copolymers of Chitosan and Their Potential Applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. [Google Scholar] [CrossRef]
- de Farias, B.S.; Cadaval, T.R.S., Jr.; de Almeida Pinto, L.A. Chitosan-Functionalized Nanofibers: A Comprehensive Review on Challenges and Prospects for Food Applications. Int. J. Biol. Macromol. 2019, 123, 210–220. [Google Scholar] [CrossRef]
- Ribeiro, E.S.; Machado, B.R.; de Farias, B.S.; dos Santos, L.O.; Duarte, S.H.; Cadaval Junior, T.R.S.; Pinto, L.A.d.A.; Diaz, P.S. Development of Microstructured Chitosan Nanocapsules with Immobilized Lipase. J. Polym. Environ. 2024, 32, 3627–3639. [Google Scholar] [CrossRef]
- Jin, H.; Wang, Z. Advances in Alkylated Chitosan and Its Applications for Hemostasis. Macromol 2022, 2, 346–360. [Google Scholar] [CrossRef]
- Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B. Sulfonated and Sulfated Chitosan Derivatives for Biomedical Applications: A Review. Carbohydr. Polym. 2018, 202, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Federer, C.; Kurpiers, M.; Bernkop-Schnürch, A. Thiolated Chitosans: A Multi-Talented Class of Polymers for Various Applications. Biomacromolecules 2021, 22, 24–56. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.L.; Li, Y.; Zhang, G.L.; Hao, H.; Hou, H.M.; Bi, J. Quaternary-Ammonium Chitosan, a Promising Packaging Material in the Food Industry. Carbohydr. Polym. 2024, 323, 121384. [Google Scholar] [CrossRef] [PubMed]
- Piegat, A.; Żywicka, A.; Niemczyk, A.; Goszczyńska, A. Antibacterial Activity of n,o-Acylated Chitosan Derivative. Polymers 2021, 13, 107. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, F.; Liu, X.; Li, M. Removal of Cr(VI) by Glutaraldehyde-Crosslinked Chitosan Encapsulating Microscale Zero-Valent Iron: Synthesis, Mechanism, and Longevity. J. Environ. Sci. 2024, 142, 115–128. [Google Scholar] [CrossRef]
- Di Santo, M.C.; D’ Antoni, C.L.; Domínguez Rubio, A.P.; Alaimo, A.; Pérez, O.E. Chitosan-Tripolyphosphate Nanoparticles Designed to Encapsulate Polyphenolic Compounds for Biomedical and Pharmaceutical Applications—A Review. Biomed. Pharmacother. 2021, 142, 111970. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Pinem, M.P.; Susilo, S.; Siom, B.J.; Sudrajad, A.; Pramono, A.; Meliana, Y.; Guénin, E. Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach. Polymers 2022, 14, 5216. [Google Scholar] [CrossRef]
- George, J.; Anand, S.S.; Senthil Kumar, P.; Saravanan, P.; Lenin, R.; Rajendran, D.S.; Venkataraman, S.; Vaidyanathan, V.K.; Vo, D.V.N. Biocatalytic Polymeric Membranes to Decrease Biofilm Fouling and Remove Organic Contaminants in Wastewater: A Review. Environ. Chem. Lett. 2022, 20, 1897–1927. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Nghiem, L.D.; Jesionowski, T. Functionalized Materials as a Versatile Platform for Enzyme Immobilization in Wastewater Treatment. Curr. Pollut. Rep. 2021, 7, 263–276. [Google Scholar] [CrossRef]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme Entrapment, Biocatalyst Immobilization without Covalent Attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Hirsh, S.L.; Bilek, M.M.M.; Nosworthy, N.J.; Kondyurin, A.; Dos Remedios, C.G.; McKenzie, D.R. A Comparison of Covalent Immobilization and Physical Adsorption of a Cellulase Enzyme Mixture. Langmuir 2010, 26, 14380–14388. [Google Scholar] [CrossRef] [PubMed]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme Immobilization by Adsorption: A Review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Liu, D.M.; Chen, J.; Shi, Y.P. Advances on Methods and Easy Separated Support Materials for Enzymes Immobilization. TrAC Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Kiyota, Y.; Miyazaki, M. Techniques for Preparation of Cross-Linked Enzyme Aggregates and Their Applications in Bioconversions. Catalysts 2018, 8, 174. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan Beads Immobilized Manganese Peroxidase Catalytic Potential for Detoxification and Decolorization of Textile Effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Enhanced Bio-Catalytic Performance and Dye Degradation Potential of Chitosan-Encapsulated Horseradish Peroxidase in a Packed Bed Reactor System. Sci. Total Environ. 2017, 575, 1352–1360. [Google Scholar] [CrossRef]
- Gu, Y.; Yuan, L.; Li, M.; Wang, X.; Rao, D.; Bai, X.; Shi, K.; Xu, H.; Hou, S.; Yao, H. Co-Immobilized Bienzyme of Horseradish Peroxidase and Glucose Oxidase on Dopamine-Modified Cellulose-Chitosan Composite Beads as a High-Efficiency Biocatalyst for Degradation of Acridine. RSC Adv. 2022, 12, 23006–23016. [Google Scholar] [CrossRef]
- Aslam, S.; Asgher, M.; Khan, N.A.; Bilal, M. Immobilization of Pleurotus Nebrodensis WC 850 Laccase on Glutaraldehyde Cross-Linked Chitosan Beads for Enhanced Biocatalytic Degradation of Textile Dyes. J. Water Process Eng. 2021, 40, 101971. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Wang, L.; Wang, B.; Zeng, X.; Ren, B.; Zhang, H.; Zhang, X.; Wang, L.; Wang, B.; et al. Citation: Functionalized Chitosan and Alginate Composite Hydrogel-Immobilized Laccase with Sustainable Biocatalysts for the Effective Removal of Organic Pollutant Bisphenol A. Catalysts 2024, 14, 304. [Google Scholar] [CrossRef]
- Mehandia, S.; Ahmad, S.; Sharma, S.C.; Arya, S.K. Decolorization and Detoxification of Textile Effluent by Immobilized Laccase-ACS into Chitosan-Clay Composite Beads Using a Packed Bed Reactor System: An Ecofriendly Approach. J. Water Process Eng. 2022, 47, 102662. [Google Scholar] [CrossRef]
- Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of Fungal Laccase on Glutaraldehyde Cross-Linked Chitosan Beads and Its Bio-Catalytic Potential to Degrade Bisphenol A. Biocatal. Agric. Biotechnol. 2019, 19, 101174. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Xie, H.; Ngo, H.H.; Guo, W.; Zhang, J. Enhanced Biocatalysis of Phenanthrene in Aqueous Phase by Novel CA-Ca-SBE-Laccase Biocatalyst: Performance and Mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125884. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, W.; Guo, X.; Zhang, H.; Hu, S.; Huang, Z.; Yin, D. Characteristics of Antibiotics and Antibiotic Resistance Genes in Qingcaosha Reservoir in Yangtze River Delta, China. Environ. Sci. Eur. 2020, 32, 82. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and Personal Care Products as Emerging Contaminants: Need for Combined Treatment Strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Dago-Serry, Y.; Maroulas, K.N.; Tolkou, A.K.; Kokkinos, N.C.; Kyzas, G.Z. How the Chitosan Structure Can Affect the Adsorption of Pharmaceuticals from Wastewaters: An Overview. Carbohydr. Polym. Technol. Appl. 2024, 7, 100466. [Google Scholar] [CrossRef]
- Shahrin, E.W.E.S.; Narudin, N.A.H.; Shahri, N.N.M.; Nur, M.; Lim, J.W.; Bilad, M.R.; Mahadi, A.H.; Hobley, J.; Usman, A. A Comparative Study of Adsorption Behavior of Rifampicin, Streptomycin, and Ibuprofen Contaminants from Aqueous Solutions onto Chitosan: Dynamic Interactions, Kinetics, Diffusions, and Mechanisms. Emerg. Contam. 2023, 9, 100199. [Google Scholar] [CrossRef]
- Soares, S.F.; Trindade, T.; Daniel-Da-Silva, A.L. Enhanced Removal of Non-Steroidal Inflammatory Drugs from Water by Quaternary Chitosan-Based Magnetic Nanosorbents. Coatings 2021, 11, 964. [Google Scholar] [CrossRef]
- Machado, K.C.; Grassi, M.T.; Vidal, C.; Pescara, I.C.; Jardim, W.F.; Fernandes, A.N.; Sodré, F.F.; Almeida, F.V.; Santana, J.S.; Canela, M.C.; et al. A Preliminary Nationwide Survey of the Presence of Emerging Contaminants in Drinking and Source Waters in Brazil. Sci. Total Environ. 2016, 572, 138–146. [Google Scholar] [CrossRef]
- Stefanowska, K.; Woźniak, M.; Majka, J.; Sip, A.; Mrówczyńska, L.; Kozak, W.; Dobrucka, R.; Ratajczak, I. Chitosan Films with Caffeine and Propolis as Promising and Ecofriendly Packaging Materials. Appl. Sci. 2023, 13, 12351. [Google Scholar] [CrossRef]
- Quesada, H.B.; de Araújo, T.P.; Cusioli, L.F.; de Barros, M.A.S.D.; Gomes, R.G.; Bergamasco, R. Caffeine Removal by Chitosan/Activated Carbon Composite Beads: Adsorption in Tap Water and Synthetic Hospital Wastewater. Chem. Eng. Res. Des. 2022, 184, 1–12. [Google Scholar] [CrossRef]
- Kumar, A.; Patra, C.; Rajendran, H.K.; Narayanasamy, S. Activated Carbon-Chitosan Based Adsorbent for the Efficient Removal of the Emerging Contaminant Diclofenac: Synthesis, Characterization and Phytotoxicity Studies. Chemosphere 2022, 307, 135806. [Google Scholar] [CrossRef] [PubMed]
- Mirizadeh, S.; Solisio, C.; Converti, A.; Casazza, A.A. Efficient Removal of Tetracycline, Ciprofloxacin, and Amoxicillin by Novel Magnetic Chitosan/Microalgae Biocomposites. Sep. Purif. Technol. 2024, 329, 125115. [Google Scholar] [CrossRef]
- Davarnejad, R.; Sarvmeili, K.; Safari, Z.; Kennedy, J.F. Estrogen Adsorption from an Aqueous Solution on the Chitosan Nanoparticles. Int. J. Biol. Macromol. 2023, 237, 124224. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and Adsorption Mechanism of Tetracycline and Cefotaxime Contaminants in Water by NiFe2O4-COF-Chitosan-Terephthalaldehyde Nanocomposites Film. Chem. Eng. J. 2020, 382, 123008. [Google Scholar] [CrossRef]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current Research Trends on Emerging Contaminants Pharmaceutical and Personal Care Products (PPCPs): A Comprehensive Review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef]
- de Almeida, A.d.S.V.; de Figueiredo Neves, T.; da Silva, M.G.C.; Prediger, P.; Vieira, M.G.A. Synthesis of a Novel Magnetic Composite Based on Graphene Oxide, Chitosan and Organoclay and Its Application in the Removal of Bisphenol A, 17α-Ethinylestradiol and Triclosan. J. Environ. Chem. Eng. 2022, 10, 107071. [Google Scholar] [CrossRef]
- Vakili, M.; Mojiri, A.; Kindaichi, T.; Cagnetta, G.; Yuan, J.; Wang, B.; Giwa, A.S. Cross-Linked Chitosan/Zeolite as a Fixed-Bed Column for Organic Micropollutants Removal from Aqueous Solution, Optimization with RSM and Artificial Neural Network. J. Environ. Manag. 2019, 250, 109434. [Google Scholar] [CrossRef]
- Kavianinia, I.; Plieger, P.G.; Kandile, N.G.; Harding, D.R.K. New Hydrogels Based on Symmetrical Aromatic Anhydrides: Synthesis, Characterization and Metal Ion Adsorption Evaluation. Carbohydr. Polym. 2012, 87, 881–893. [Google Scholar] [CrossRef]
- Machado, A.H.S.; Garcia, I.M.; Motta, A.d.S.d.; Leitune, V.C.B.; Collares, F.M. Triclosan-Loaded Chitosan as Antibacterial Agent for Adhesive Resin. J. Dent. 2019, 83, 33–39. [Google Scholar] [CrossRef]
- Tiseo, I. Global Plastic Production 1950–2020. Statistica 2021, 20, 1–5. [Google Scholar]
- Luo, X.; Wang, Z.; Yang, L.; Gao, T.; Zhang, Y. A Review of Analytical Methods and Models Used in Atmospheric Microplastic Research. Sci. Total Environ. 2022, 828, 154487. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Tan, X.; Li, J.; Peng, C.; Wan, P.; Naz, I.; Duan, Z.; Ruan, Y. Innovations in the Development of Promising Adsorbents for the Remediation of Microplastics and Nanoplastics—A Critical Review. Water Res. 2023, 230, 119526. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Li, B.; Wan, H.; Lin, X.; Cai, Y. Coral-Inspired Environmental Durability Aerogels for Micron-Size Plastic Particles Removal in the Aquatic Environment. J. Hazard. Mater. 2022, 431, 128611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.; Zhu, X.; Zhu, D.; Wang, W.; Wang, B.; Deng, S.; Yu, G. Efficient Removal of per/Polyfluoroalkyl Substances from Water Using Recyclable Chitosan-Coated Covalent Organic Frameworks: Experimental and Theoretical Methods. Chemosphere 2024, 356, 141942. [Google Scholar] [CrossRef]
- Liu, W.; Lin, T.; Zhang, X.; Jiang, F.; Yan, X.; Chen, H. Adsorption of Perfluoroalkyl Acids on Granular Activated Carbon Supported Chitosan: Role of Nanobubbles. Chemosphere 2022, 309, 136733. [Google Scholar] [CrossRef]
- Shahrokhi, R.; Park, J. Enhanced Removal of Short- and Long-Chain per- and Poly-Fluoroalkyl Substances from Aqueous Phase Using Crushed Grafted Chitosan Beads: Performance and Mechanisms. Environ. Pollut. 2024, 340, 122836. [Google Scholar] [CrossRef]
- Ilango, A.K.; Liang, Y. Surface Modifications of Biopolymers for Removal of Per- and Polyfluoroalkyl Substances from Water: Current Research and Perspectives. Water Res. 2024, 249, 120927. [Google Scholar] [CrossRef]
- He, C.; Yang, Y.; Hou, Y.J.; Luan, T.; Deng, J. Chitosan-Coated Fluoro-Functionalized Covalent Organic Framework as Adsorbent for Efficient Removal of per- and Polyfluoroalkyl Substances from Water. Sep. Purif. Technol. 2022, 294, 121195. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Fruit Peel Waste: Characterization and Its Potential Uses. Curr. Sci. 2017, 113, 444–454. [Google Scholar] [CrossRef]
- Zavala-Robles, K.G.; Ramos-Ibarra, J.R.; Franco Rodriguez, N.E.; Zamudio-Ojeda, A.; Cavazos-Garduño, A.; Serrano-Niño, J.C. Assessment of Chitosan-Based Adsorbents for Glyphosate Removal. J. Environ. Sci. Health B 2024, 59, 62–71. [Google Scholar] [CrossRef]
- Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M.K.; Raza, S.K. Synthesis and Surface Engineering of Magnetic Nanoparticles for Environmental Cleanup and Pesticide Residue Analysis: A Review. J. Sep. Sci. 2014, 37, 1805–1825. [Google Scholar] [CrossRef] [PubMed]
- Aksu Demirezen, D.; Demirezen Yılmaz, D.; Yıldız, Y.Ş. Determination of the Effect of Iron Oxide Nanoparticle Content in Magnetic Chitosan/Calcium Alginate Hydrogel Matrix on the Removal of Glyphosate from Water. J. Nanopart. Res. 2024, 26, 15. [Google Scholar] [CrossRef]
- Briceño, S.; Reinoso, C. CoFe2O4-Chitosan-Graphene Nanocomposite for Glyphosate Removal. Environ. Res. 2022, 212, 113470. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Chitosan Modifiers | Pollutant | Major Achievement | Ref. |
---|---|---|---|---|
Pd NPs | Carbon nanotubes + Glutaraldehyde | Nitroaromatic and CR, MO, MR dyes | High activity provides 85% removal after 6 cycles. | [55] |
ZnO | MOFs/Polypropylene | MB | 97% removal; reuse: 6 cycles | [56] |
TiO2 | Glycerol | AB 193 | 85% removal | [51] |
TiO2/Ag NPs | Ultrasound radiation | Cu(II), MO, MB, and microbial inhibition | 95% removal Cu(II); reuse: 6 cycles | [57] |
FeOOH CeO2 | Glutaraldehyde | OTC | 98% removal; reuse: 5 cycles | [58] |
Cu2O/Fe3O4 NPs | Glutaraldehyde | Cr(VI) | 91% removal | [59] |
Chitosan-Based Support | Biocatalyst | Target Pollutant | Major Achievement | Ref. |
---|---|---|---|---|
Chitosan beads | Manganese peroxidase | Textile effluent | 97.31% of decolorization | [110] |
Chitosan beads | Horseradish peroxidase | Textile dyes | Reduction in total organic carbon of 78.58; 84.03; 77.61; and 76.16% for remazol brilliant blue R; reactive black 5; Congo red; and crystal violet dyes, respectively | [111] |
Dopamine-modified cellulose–chitosan composite beads | Horseradish peroxidase and glucose oxidase | Acridine | 99.5% of aridine degradation | [112] |
Chitosan beads | Laccase | Textile dyes | Reduction in chemical oxygen demand of 93.91; 93.47; 94.67; 94.94; 93.01; and 91.90% for drimaren red; drimaren black; drimaren yellow; drimaren turquoise; foron turquoise; and foron blue dyes, respectively | [113] |
Chitosan and alginate composite hydrogel | Laccase | Bisphenol A | 93.4% of degradation | [114] |
Chitosan–clay composite beads | Laccase | Textile effluent | 78% of decolorization | [115] |
Chitosan beads | Laccase | Bisphenol A | 100% of bisphenol A degradation | [116] |
Calcium-modified chitosan–alginate | Laccase | Phenanthrene | 94.4% of phenanthrene degradation | [117] |
Chitosan–clay composite beads | Laccase | Textile dyes | Decolorization of 82%; 85%; and 69% for methyl red; remazol brilliant blue R; and reactive black 5 dyes, respectively | [3] |
Chitosan-Based Support | Target Pollutant | Major Achievement | Ref. |
---|---|---|---|
Chitosan, activated carbon sodium hydroxide (KOH), and carbon dioxide (CO2) composite beads | Caffeine | qe = 39.53 mg/g for chitosan/CO2 and qe = 121.90 mg/g in batch. qe = 83.88 mg/g in fixed bed for chitosan/KOH. %R = 72.84% and 77.22% for chitosan/activated carbon, and their activation in the composites increased efficiency by approximately 4 times. | [125] |
Activated carbon/chitosan beads | Diclofenac | qe = 99.29 mg/g. | [126] |
Magnetite/chitosan and Chlorella vulgaris (MCC) or Arthrospira platensis (MCA) | Tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMX) | qe = 744.3 mg/g (TC), 327.8 mg/g (CIP), 125.6 mg/g (AMX) for MCC; qe = 753.2 mg/g (TC), 339.0 mg/g (CIP), 135.4 mg/g (AMX) for MCA. | [127] |
Chitosan nanoparticles | Ethinylestradiol | qe = 5.79 mg/g and %R = 93.7% of degradation. | [128] |
NiFe2O4–COF–chitosan–terephthalaldehyde nanocomposite film (NCCT) | Tetracycline (TC) and cefotaxime (CTX) | qe = 388.52 mg/g for TC and qe = 309.26 mg/g for CTX. | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, J.O.; de Farias, B.S.; Rios, E.C.; Jaeschke, D.P.; Ribeiro, A.C.; da Silva, M.D.; Vieira, M.L.G.; Carvalho, V.V.d.L.; Cadaval, T.R.S., Jr.; Pinto, L.A.d.A. Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants. Sustainability 2024, 16, 8321. https://doi.org/10.3390/su16198321
Gonçalves JO, de Farias BS, Rios EC, Jaeschke DP, Ribeiro AC, da Silva MD, Vieira MLG, Carvalho VVdL, Cadaval TRS Jr., Pinto LAdA. Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants. Sustainability. 2024; 16(19):8321. https://doi.org/10.3390/su16198321
Chicago/Turabian StyleGonçalves, Janaína Oliveira, Bruna Silva de Farias, Estéfani Cardillo Rios, Débora Pez Jaeschke, Anelise Christ Ribeiro, Mariele Dalmolin da Silva, Mery Luiza Garcia Vieira, Valéria Vieira de Lima Carvalho, Tito Roberto Santanna Cadaval, Jr., and Luiz Antonio de Almeida Pinto. 2024. "Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants" Sustainability 16, no. 19: 8321. https://doi.org/10.3390/su16198321
APA StyleGonçalves, J. O., de Farias, B. S., Rios, E. C., Jaeschke, D. P., Ribeiro, A. C., da Silva, M. D., Vieira, M. L. G., Carvalho, V. V. d. L., Cadaval, T. R. S., Jr., & Pinto, L. A. d. A. (2024). Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants. Sustainability, 16(19), 8321. https://doi.org/10.3390/su16198321