The Impact of Digital Finance on the Urban–Rural Income Gap in China: The Mediating Role of Employment Structural Transformation
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of Digital Finance Development on the Urban–Rural Income Gap
2.2. The Mediating Mechanism of Employment Structural Transformation
3. Research Design
3.1. Variable Definition
3.1.1. Dependent Variable
3.1.2. Core Explanatory Variable
3.1.3. Mediating Variable
3.1.4. Control Variables
3.2. Methodology
3.2.1. Benchmark Model
3.2.2. Mechanism Test Model
3.3. Data
4. Empirical Results and Discussion
4.1. Baseline Regression Results
4.2. Endogeneity
4.3. Robustness Test
4.3.1. Robustness Test: Variable Replacement and Addition
4.3.2. Robustness Test: Excluding Extreme Values
4.3.3. Robustness Test: Sub-Dimensional Analysis
4.4. Heterogeneity Analysis
4.4.1. Heterogeneity Analysis: Cultural Environment
4.4.2. Heterogeneity Analysis: Market Environment
4.5. Mechanism Test
4.6. Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | VIF | 1/VIF |
---|---|---|
Lfid | 1.09 | 0.916 |
Lgdp | 2.50 | 0.400 |
Insr | 2.11 | 0.474 |
Lfdi | 1.64 | 0.610 |
Edu | 1.31 | 0.763 |
Rerate | 1.26 | 0.792 |
Mean VIF | 1.65 |
Variables | (incg) | (Lfid) | (Lgdp) | (Lfdi) | (Edu) | (Rerate) | (Insr) |
---|---|---|---|---|---|---|---|
incg | 1.000 | ||||||
Lfid | −0.585 *** | 1.000 | |||||
Lgdp | −0.448 *** | 0.183 *** | 1.000 | ||||
Lfdi | −0.392 *** | −0.015 | 0.499 *** | 1.000 | |||
Edu | −0.251 *** | 0.081 | 0.146 *** | 0.409 *** | 1.000 | ||
Rerate | 0.216 *** | −0.084 | −0.255 *** | −0.312 *** | −0.325 *** | 1.000 | |
Insr | −0.294 *** | 0.230 *** | 0.697 *** | 0.332 *** | 0.140 ** | −0.039 | 1.000 |
References
- Luo, C.; Li, S.; Sicular, T. The long-term evolution of national income inequality and rural poverty in China. China Econ. Rev. 2020, 62, 101465. [Google Scholar] [CrossRef]
- Bai, T.; Qi, Y.; Li, Z.; Xu, D. Digital economy, industrial transformation and upgrading, and spatial transfer of carbon emissions: The paths for low-carbon transformation of Chinese cities. J. Environ. Manag. 2023, 344, 118528. [Google Scholar] [CrossRef]
- Omar, M.A.; Inaba, K. Does financial inclusion reduce poverty and income inequality in developing countries? A panel data analysis. J. Econ. Struct. 2020, 9, 37. [Google Scholar] [CrossRef]
- Van, L.T.-H.; Vo, A.T.; Nguyen, N.T.; Vo, D.H. Financial inclusion and economic growth: An international evidence. Emerg. Mark. Financ. Trade 2021, 57, 239–263. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, Y.; Si, H. Digital economy development and the urban–rural income gap: Intensifying or reducing. Land 2022, 11, 1980. [Google Scholar] [CrossRef]
- Tu, Z.; Kong, J.; Sun, L.; Liu, B. Can the Digital Economy Reduce the Rural-Urban Income Gap? Sustainability 2024, 16, 938. [Google Scholar] [CrossRef]
- Xia, H.; Yu, H.; Wang, S.; Yang, H. Digital economy and the urban–rural income gap: Impact, mechanisms, and spatial heterogeneity. J. Innov. Knowl. 2024, 9, 100505. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ray, T. Bank-based versus market-based financial systems: A growth-theoretic analysis. J. Monet. Econ. 2006, 53, 329–350. [Google Scholar] [CrossRef]
- McKinnon, R.I. Money and Capital in Economic Development; Brookings Institution Press: Washington, DC, USA, 2010. [Google Scholar]
- Achdou, Y.; Han, J.; Lasry, J.-M.; Lions, P.-L.; Moll, B. Income and wealth distribution in macroeconomics: A continuous-time approach. Rev. Econ. Stud. 2022, 89, 45–86. [Google Scholar] [CrossRef]
- Guvenen, F.; Kuruscu, B.; Tanaka, S.; Wiczer, D. Multidimensional skill mismatch. Am. Econ. J. Macroecon. 2020, 12, 210–244. [Google Scholar] [CrossRef]
- Khan, I.; Khan, I.; Sayal, A.U.; Khan, M.Z. Does financial inclusion induce poverty, income inequality, and financial stability: Empirical evidence from the 54 African countries? J. Econ. Stud. 2022, 49, 303–314. [Google Scholar] [CrossRef]
- Levine, M.R. Finance, Growth, and Inequality; International Monetary Fund: Washington, DC, USA, 2021. [Google Scholar]
- Baiardi, D.; Morana, C. Financial development and income distribution inequality in the euro area. Econ. Model. 2018, 70, 40–55. [Google Scholar] [CrossRef]
- Ratnawati, K. The impact of financial inclusion on economic growth, poverty, income inequality, and financial stability in Asia. J. Asian Financ. Econ. Bus. 2020, 7, 73–85. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, C. Poverty reduction in rural China: Does the digital finance matter? PLoS ONE 2021, 16, e0261214. [Google Scholar] [CrossRef] [PubMed]
- Xun, Z.; Guanghua, W.; Jiajia, Z.; Zongyue, H. Digital economy, financial inclusion and inclusive growth. China Econ. 2020, 15, 92–105. [Google Scholar]
- Luo, Y.; Zeng, L. Digital financial capabilities and household entrepreneurship. Econ. Political Stud. 2020, 8, 165–202. [Google Scholar] [CrossRef]
- Gimet, C.; Lagoarde-Segot, T. A closer look at financial development and income distribution. J. Bank. Financ. 2011, 35, 1698–1713. [Google Scholar] [CrossRef]
- Kling, G.; Pesqué-Cela, V.; Tian, L.; Luo, D. A theory of financial inclusion and income inequality. Eur. J. Financ. 2022, 28, 137–157. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Chien, M.-S.; Lee, C.-C. ICT diffusion, financial development, and economic growth: An international cross-country analysis. Econ. Model. 2021, 94, 662–671. [Google Scholar] [CrossRef]
- Kapoor, A. Financial inclusion and the future of the Indian economy. Futures 2024, 56, 35–42. [Google Scholar] [CrossRef]
- Yao, L.; Ma, X. Has digital finance widened the income gap? PLoS ONE 2022, 17, e0263915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Shi, M. How digital finance affects income distribution: Evidence from 280 cities in China. PLoS ONE 2022, 17, e0267486. [Google Scholar]
- Su, C.W.; Song, Y.; Ma, Y.T.; Tao, R. Is financial development narrowing the urban–rural income gap? A cross-regional study of China. Pap. Reg. Sci. 2019, 98, 1779–1801. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, M.; Zhu, Y.; Chen, Z.; Huang, X. Urban expansion and the urban–rural income gap: Empirical evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, X.; Zhang, S.; Ji, J. The threshold effect of high-level human capital investment on China’s urban-rural income gap. China Agric. Econ. Rev. 2021, 3, 297–320. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Ma, P.; Wang, W. Urban-rural income gap and air pollution: A stumbling block or stepping stone. Environ. Impact Assess. Rev. 2022, 94, 106758. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, Q.; Shen, M. Does polycentric spatial structure narrow the urban-rural income gap? –Evidence from six urban clusters in China. China Econ. Rev. 2023, 80, 101999. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Chen, Y.; Liu, B.; Shen, Y.; Zheng, M. Investigating the influence of transport accessibility on urban–rural income gaps. Appl. Econ. 2023, 1–16. [Google Scholar] [CrossRef]
- Zulher, Z.; Ratnasih, C. Financial development and poverty reduction in developing countries. Accounting 2021, 7, 667–674. [Google Scholar] [CrossRef]
- Zhang, X.M.; Dong, W.K.; Han, K.F. An Analysis of the Influence of Inclusive Finance on Household Financial Assets Selection and Its Mechanism. J. Contemp. Financ. Econ. 2020, 2, 43. [Google Scholar]
- Cihak, M.M.; Sahay, M.R. Finance and Inequality; International Monetary Fund: Washington, DC, USA, 2020. [Google Scholar]
- Náñez Alonso, S.L.; Jorge-Vazquez, J.; Reier Forradellas, R.F.; Ahijado Dochado, E. Solutions to financial exclusion in rural and depopulated areas: Evidence Based in Castilla y León (Spain). Land 2022, 11, 74. [Google Scholar] [CrossRef]
- Koomson, I.; Villano, R.A.; Hadley, D. Effect of financial inclusion on poverty and vulnerability to poverty: Evidence using a multidimensional measure of financial inclusion. Soc. Indic. Res. 2020, 149, 613–639. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y. Financial inclusion and urban–rural income inequality: Long-run and short-run relationships. Emerg. Mark. Financ. Trade 2020, 56, 457–471. [Google Scholar] [CrossRef]
- Sarma, M. Index of Financial Inclusion; (No. 215) Working Paper; Indian Council for Research on International Economic Relations (ICRIER): New Delhi, India, 2008. [Google Scholar]
- Yang, L.; Geng, Z. Impact of Digital Financial Inclusion on Optimization of Employment Structure: Evidence from China. Appl. Econ. 2022, 54, 6625–6638. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lou, R.; Wang, F. Digital financial inclusion and poverty alleviation: Evidence from the sustainable development of China. Econ. Anal. Policy 2023, 77, 418–434. [Google Scholar] [CrossRef]
- Liao, G.; Yao, D.; Hu, Z. The spatial effect of the efficiency of regional financial resource allocation from the perspective of internet finance: Evidence from Chinese provinces. Emerg. Mark. Financ. Trade 2020, 56, 1211–1223. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, S. The effects of digital finance and financial constraint on financial performance: Firm-level evidence from China’s new energy enterprises. Energy Econ. 2022, 112, 106158. [Google Scholar] [CrossRef]
- Kumar, K.; McKay, C.; Rotman, S. Microfinance and mobile banking: The story so far. Focus Note 2010, 62, 1–16. [Google Scholar]
- Zhang, L.; Liu, J.-K.; Li, Z.-H.; Yu, J.-Y.; Ding, C.J. Inclusive or Fraudulent: Digital Inclusive Finance and Urban–Rural Income Gap. Asia-Pac. Financ. Mark. 2024, 1–34. [Google Scholar] [CrossRef]
- Yu, C.; Jia, N.; Li, W.; Wu, R. Digital inclusive finance and rural consumption structure–evidence from Peking University digital inclusive financial index and China household finance survey. China Agric. Econ. Rev. 2022, 14, 165–183. [Google Scholar] [CrossRef]
- Banerjee, A.; Duflo, E.; Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 2020, 145, 102442. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y. Can economic structural change and transition explain cross-country differences in innovative activity? Technol. Forecast. Soc. Chang. 2020, 159, 120194. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Jin, C.; Wang, J. How an industrial internet platform empowers the digital transformation of SMEs: Theoretical mechanism and business model. J. Knowl. Manag. 2023, 27, 105–120. [Google Scholar] [CrossRef]
- Xia, Y.; Qiao, Z.; Xie, G. Corporate resilience to the COVID-19 pandemic: The role of digital finance. Pac.-Basin Financ. J. 2022, 74, 101791. [Google Scholar] [CrossRef]
- Zhanbayev, R.; Bu, W. How does digital finance affect industrial transformation? J. Inf. Econ. 2023, 1, 18–30. [Google Scholar] [CrossRef]
- Marshall, N.A.; Stokes, C.J.; Webb, N.P.; Marshall, P.A.; Lankester, A.J. Social vulnerability to climate change in primary producers: A typology approach. Agric. Ecosyst. Environ. 2014, 186, 86–93. [Google Scholar] [CrossRef]
- Patton, F.L. Diminishing Returns in Agriculture; Columbia University Press: New York, NY, USA, 1968. [Google Scholar]
- Alabi, R.A.; Bakare, A.; Alabi, T.V. Financial inclusion, innovation and agricultural development in Nigeria. Sustain. Dev. Goal Nine Afr. Dev. Chall. Oppor. 2022, 22, 223. [Google Scholar]
- Wang, Y.; Weng, F.; Huo, X. Can digital finance promote professional farmers’ income growth in China?—An examination based on the perspective of income structure. Agriculture 2023, 13, 1103. [Google Scholar] [CrossRef]
- Ben Abdallah, A. The relationship between trade openness, foreign direct investment inflows, and economic growth in middle east and north of Africa region: Autoregressive distributed lag model vs. vector error correction model. J. Knowl. Econ. 2023, 15, 1118–1141. [Google Scholar] [CrossRef]
- Liu, S.; Tang, X.; Zhao, Y. Global Value Chain Participation, Employment Structure, and Urban–Rural Income Gap in the Context of Sustainable Development. Sustainability 2024, 16, 1931. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Gozgor, G. How does digital finance affect industrial structure upgrading? Evidence from Chinese prefecture-level cities. J. Environ. Manag. 2023, 330, 117125. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, X. Intelligent manufacturing, green technological innovation and environmental pollution. J. Innov. Knowl. 2023, 8, 100384. [Google Scholar] [CrossRef]
- Zhang, Q.; Churchill, S.A. Income inequality and subjective wellbeing: Panel data evidence from China. China Econ. Rev. 2020, 60, 101392. [Google Scholar] [CrossRef]
- Guo, Y.; Qiao, W. Rural migration and urbanization in China: Historical evolution and coupling pattern. Sustainability 2020, 12, 7307. [Google Scholar] [CrossRef]
- Maestas, N.; Mullen, K.J.; Powell, D. The effect of population aging on economic growth, the labor force, and productivity. Am. Econ. J. Macroecon. 2023, 15, 306–332. [Google Scholar] [CrossRef]
- Fayzullayev, B.Z.; Khalid, S. Navigating The Digital Divide: Analysing The Impact of Technology And Connectivity On Modern Trends In International Labor Migration. Am. J. Interdiscip. Res. Dev. 2023, 20, 80–92. [Google Scholar]
- Yu, N.; Wang, Y. Can digital inclusive finance narrow the Chinese urban–rural income gap? The perspective of the regional urban–rural income structure. Sustainability 2021, 13, 6427. [Google Scholar] [CrossRef]
First-Order Dimension | Second-Level Dimension | Specific Index |
---|---|---|
breadth of coverage | account coverage | Number of Alipay accounts per 10,000 individuals |
Proportion of Alipay card-holding users | ||
Average number of bank cards tied to each Alipay account | ||
depth of use | payment transactions | Number of payments per capita |
Payment per capita | ||
Ratio of high-frequency (50 or more times per year) active users to users active 1 or more times per year | ||
monetary fund operations | Amount of balance purchase per capita | |
Number of balance purchase transactions per capita | ||
Number of balance purchases per 10,000 Alipay users | ||
credit service | Number of users with internet consumer loans per 10,000 adult Alipay users | |
Number of loans per capita | ||
Loan amount per capita | ||
Number of users with Internet-based micro and small business loans per 10,000 adult Alipay users | ||
Average number of loans per household for micro and small operators | ||
Average loan amount per household for micro and small operators | ||
insurance services | Number of insured users per 10,000 Alipay users | |
Number of insurance strokes per capita | ||
Amount of insurance per capita | ||
investment business | Number of people involved in Internet investment and wealth management per 10,000 Alipay users | |
Number of investments per capita | ||
Amount of investment per capita | ||
credit business | Number of calls per capita for natural person credit | |
Number of users using credit-based services per 10,000 Alipay users (including finance, accommodation, travel, social, etc.) | ||
degree of digitization | mobility | Percentage of mobile payment transactions |
Percentage of mobile payment amount | ||
affordability | Average lending rate for micro and small operators | |
Average personal loan interest rate | ||
creditworthiness | Percentage of Chanting Payments | |
Chanting Payment Amount Percentage | ||
Percentage of Sesame Credit no-wave strokes (compared to all cases requiring a deposit) | ||
Percentage of credit waiver amount (compared to all cases requiring a deposit) | ||
facilitation | Percentage of payments made by users using QR codes | |
Percentage of amount paid by users on QR code |
Variables | Name | Symbol | Measurement |
---|---|---|---|
Dependent variable | The urban–rural income gap | Incg | The ratio of per capita disposable income for urban residents to per capita net income for rural residents. |
Independent variables | Digital financial development | Difid | The Peking University Digital Financial Inclusion Index of China. |
Moderating variables | Employment structural transformation | Estr | The ratio of employed individuals in the secondary and tertiary industries to the total employed population. |
Control variables | Economic Development Level | lgdp | Natural logarithm of per capita GDP |
Level of Economic Openness | lfdi | The ratio of total foreign direct investment to GDP by region. | |
Proportion of Financial Support for Agriculture | rerate | The proportion of agricultural financial expenditure to total expenditure. | |
Human Capital | edu | The ratio of the number of students enrolled in colleges and universities to the total population at the end of the year. | |
Industrial Structure | insr | The proportion of non-agricultural industry output value to GDP. |
Variables | Variable Definition | Obs | Mean | Sd | Min | Max |
---|---|---|---|---|---|---|
Incg | The urban–rural income gap | 310 | 2.738 | 0.481 | 1.852 | 4.290 |
Difid | Digital financial development | 310 | 216.235 | 97.030 | 16.220 | 431.930 |
Estr | Employment structural transformation | 310 | 0.662 | 0.141 | 0.334 | 0.976 |
Lgdp | Economic Development Level | 310 | 10.836 | 0.420 | 10.036 | 12.011 |
Lfdi | Level of Economic Openness | 310 | 0.019 | 0.015 | 0.0001 | 0.0796 |
Rerate | Proportion of Financial Support for Agriculture | 310 | 0.138 | 0.122 | 0.019 | 0.731 |
Edu | Human Capital | 310 | 0.029 | 0.005 | 0.015 | 0.045 |
Insr | Industrial Structure | 310 | 0.903 | 0.051 | 0.739 | 0.997 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Difid | −0.351 *** (0.122) | −0.309 ** (0.130) | −0.349 ** (0.135) | −0.328 *** (0.103) | −0.341 *** (0.096) | −0.341 *** (0.093) |
lgdp | −0.335 *** (0.104) | −0.357 ** (0.166) | −0.364 ** (0.156) | −0.387 ** (0.154) | −0.383 * (0.211) | |
lfdi | 0.483 (2.139) | 0.403 (2.089) | 0.107 (2.092) | 0.115 (2.165) | ||
edu | −3.543 (11.642) | −2.635 (11.778) | −2.666 (12.082) | |||
rerate | −0.847 ** (0.340) | −0.847 ** (0.344) | ||||
insr | −0.068 (1.726) | |||||
constant | 4.455 *** (0.439) | 7.444 *** (0.887) | 7.762 *** (1.359) | 7.860 *** (1.279) | 8.214 *** (1.224) | 8.233 *** (1.280) |
year | yes | yes | Yes | yes | yes | yes |
province | yes | yes | Yes | yes | yes | yes |
adj_R2 | 0.822 | 0.836 | 0.830 | 0.830 | 0.834 | 0.834 |
N | 310 | 310 | 310 | 310 | 310 | 310 |
Independent Variables | 2SLS | LIML |
---|---|---|
(1) | (2) | |
Difid | −0.7225 ** (0.2974) | −0.616 * (0.332) |
lgdp | −0.2850 ** (0.1106) | −0.261 *** (0.097) |
lfdi | 0.3562 (1.1756) | −0.064 ** (0.031) |
edu | 8.8530 (5.6890) | 7.389 (7.283) |
rerate | −0.4075 ** (0.2034) | −0.386 ** (0.194) |
insr | 1.4977 * (0.8167) | 2.006 ** (0.802) |
Kleibergen-Paap rk LM | 21.804 (0.000) | 21.804 (0.000) |
Kleibergen-Paap Wald rk F | 126.217 (19.93) | 126.217 (8.68) |
Hansen J | 0.654 (0.419) | 0.654 (0.419) |
year | Yes | yes |
province | Yes | yes |
adj_R2 | 0.799 | 0.799 |
N | 248 | 248 |
Variables | Replacing Core Dependent Variable | Replacing Core Independent Variable | Adding Control Variable | Replacing Dependent Variable and Core Independent Variable | Replacing Core Independent Variable and Adding Control Variable |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Difid | −0.017 * (0.009) | −0.151 ** (0.065) | |||
Inter | −0.343 *** (0.086) | −0.021 *** (0.008) | −0.128 * (0.065) | ||
lgdp | −0.033 (0.021) | −0.361 * (0.193) | −0.250 (0.156) | −0.032 (0.020) | −0.2478 (0.1583) |
lfdi | −0.232 * (0.116) | −0.626 (1.913) | 1.714 (1.872) | −0.268 ** (0.105) | 1.278 (1.785) |
edu | −1.115 (0.922) | −6.514 (11.688) | 9.583 (8.899) | −1.256 (0.901) | 6.681 (9.004) |
rerate | −0.104 ** (0.043) | −0.880 ** (0.327) | −0.838 ** (0.345) | −0.107 ** (0.046) | −0.838 ** (0.340) |
insr | 0.112 (0.223) | 0.600 (1.705) | 1.563 (1.229) | 0.154 (0.220) | 1.719 (1.277) |
Urb | −4.226 *** (1.261) | −4.028 *** (1.318) | |||
Ageing | 0.024 ** (0.011) | 0.024 ** (0.010) | |||
Constant | 0.440 *** (0.137) | 8.501 *** (1.420) | 6.377 *** (1.161) | 0.463 *** (0.145) | 6.480 *** (1.130) |
year | yes | Yes | yes | Yes | yes |
province | yes | Yes | yes | Yes | yes |
adj_R2 | 0.634 | 0.841 | 0.871 | 0.634 | 0.870 |
N | 310 | 310 | 310 | 310 | 310 |
Independent Variables | Two-Tailed Truncation | Two-Tailed Trimming | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Difid | −0.329 *** (0.116) | −0.328 *** (0.088) | −0.286 ** (0.122) | −0.315 *** (0.084) |
Lgdp | −0.349 (0.209) | −0.303 (0.237) | ||
Lfdi | 0.064 (2.155) | −0.305 (2.269) | ||
Edu | −1.273 (11.945) | 2.694 (13.421) | ||
rerate | −0.841 ** (0.336) | −0.981 ** (0.394) | ||
Insr | −0.246 (1.675) | −0.549 (1.717) | ||
Constant | 4.372 *** (0.416) | 7.984 *** (1.217) | 4.201 *** (0.438) | 7.670 *** (1.137) |
Year | Yes | Yes | Yes | yes |
province | Yes | Yes | Yes | yes |
adj_R2 | 0.824 | 0.846 | 0.816 | 0.828 |
N | 310 | 310 | 304 | 304 |
Independent Variables | Coverage_Breadth | Usage_Depth | Digitization_Level |
---|---|---|---|
(1) | (2) | (3) | |
lcover | −0.1352 *** | ||
(0.0387) | |||
lusage | −0.1757 ** | ||
(0.0691) | |||
ldigit | −0.1993 *** | ||
(0.0481) | |||
lnewpgdp | −0.3416 | −0.4062 * | −0.4386 ** |
(0.2144) | (0.2212) | (0.2074) | |
newfdi | −0.0314 | −0.2873 | −0.3112 |
(2.1521) | (2.1073) | (2.0307) | |
edu2 | −2.7692 | −9.4032 | −9.6081 |
(12.5989) | (13.4895) | (12.7814) | |
rerate | −0.8894 ** | −0.6803 * | −0.6968 ** |
(0.3492) | (0.3414) | (0.3204) | |
str | −0.2953 | −0.4389 | −0.3240 |
(1.7455) | (1.7621) | (1.8759) | |
Constant | 7.2660 *** | 8.3996 *** | 7.2105 *** |
(1.3131) | (1.1918) | (1.4134) | |
Year | Yes | Yes | Yes |
Province | Yes | Yes | Yes |
adj_R2 | 0.8332 | 0.8269 | 0.8319 |
N | 310 | 310 | 310 |
Independent Variables | South | North | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Lfid | −0.371 ** (0.156) | −0.430 * (0.220) | −0.460 ** (0.207) | −0.473 ** (0.197) |
Lgdp | −0.096 (0.682) | −0.159 (0.227) | ||
Lfdi | −0.075 (0.061) | −0.090 (0.065) | ||
Edu | 4.145 (10.685) | 5.443 (18.555) | ||
rerate | −1.700 *** (0.478) | −0.447 (0.485) | ||
Insr | 3.275 (2.090) | −0.708 (1.589) | ||
Constant | 4.629 *** (0.602) | 3.428 (6.463) | 4.732 *** (0.705) | 7.296 (0.944) |
Year | yes | Yes | Yes | yes |
Province | yes | Yes | Yes | yes |
adj_R2 | 0.877 | 0.898 | 0.788 | 0.808 |
N | 160 | 160 | 150 | 150 |
Independent Variables | Low Marketization Regions | High Marketization Regions | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Difid | −0.259 (0.224) | −0.060 (0.204) | −0.491 * (0.238) | −0.363 ** (0.142) |
Lgdp | −0.634 *** (0.099) | −0.069 (0.144) | ||
Lfdi | −0.131 ** (0.062) | 0.016 (0.096) | ||
Edu | 11.666 (9.155) | −5.688 (17.582) | ||
Rerate | −1.048 ** (0.452) | −0.817 (0.550) | ||
insr | 2.038 (1.793) | −1.936 (3.473) | ||
constant | 4.274 *** (0.717) | 7.958 *** (1.637) | 4.849 *** (0.918) | 6.964 *** (2.204) |
year | yes | Yes | Yes | yes |
province | yes | Yes | Yes | yes |
adj_R2 | 0.801 | 0.875 | 0.884 | |
N | 170 | 170 | 140 | 140 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Estr | |||
Difid | 0.073 *** (0.014) | 0.048 *** (0.014) | 0.1500 *** (0.0428) |
lgdp | 0.060 (0.039) | 0.0563 *** (0.0204) | |
lfdi | 0.463 (0.309) | 0.5685 *** (0.1786) | |
edu | 3.068 ** (1.386) | 2.5850 ** (1.0189) | |
rerate | −0.019 (0.088) | 0.0239 (0.0498) | |
insr | 0.253 (0.178) | 0.0494 (0.1216) | |
Kleibergen-Paap rk LM | 21.804 (0.000) | ||
Kleibergen-Paap Wald rk F | 126.217 (19.93) | ||
Hansen J | 0.423 (0.5153) | ||
year | yes | yes | yes |
province | yes | yes | yes |
adj_R2 | 0.647 | 0.718 | 0.828 |
N | 310 | 310 | 310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, W. The Impact of Digital Finance on the Urban–Rural Income Gap in China: The Mediating Role of Employment Structural Transformation. Sustainability 2024, 16, 8365. https://doi.org/10.3390/su16198365
Zhao J, Li W. The Impact of Digital Finance on the Urban–Rural Income Gap in China: The Mediating Role of Employment Structural Transformation. Sustainability. 2024; 16(19):8365. https://doi.org/10.3390/su16198365
Chicago/Turabian StyleZhao, Jing, and Wenshun Li. 2024. "The Impact of Digital Finance on the Urban–Rural Income Gap in China: The Mediating Role of Employment Structural Transformation" Sustainability 16, no. 19: 8365. https://doi.org/10.3390/su16198365
APA StyleZhao, J., & Li, W. (2024). The Impact of Digital Finance on the Urban–Rural Income Gap in China: The Mediating Role of Employment Structural Transformation. Sustainability, 16(19), 8365. https://doi.org/10.3390/su16198365