Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution
Abstract
:1. Introduction
2. Tyre Particles in the Environment
2.1. Tyres’ Contribution to Microplastics
Year | Ref. | Country | MP Emissions (kt) | Tyres’ Contribution to MP Emissions | Tyre Fraction Released to Aquatic Environment |
---|---|---|---|---|---|
2014 | [68] | Norway | 8.4 | 54% | 50% |
2015 | [69] | Denmark | 5.5–13.9 | 56% | 12–26% |
2016 | [61,82] | The Netherlands 1 | 5.4–32.9 | 11–96% | 10–18% |
2017 | [70] | Sweden | 10.5–13.5 | 60–77% | 42% 2 |
2018 | [83] | Germany | 330 | 43% | 22% |
2018 | [64] | Switzerland | 87.8 | 93% 3 | 22% |
2018 | [48] | EU | 787 | 64% | 19% |
2019 | [71] | China | 737 | 54% | 10% |
2019 | [84] | Global | 3000 | 47% | n/a |
2022 | [85] | Sweden | 9.6 | 85% | n/a |
2022 | [73] | The Netherlands | 7.6 | 35% | 9% |
2023 | [17] | EU | 450 | 36% | n/a |
2023 | [86] | Global | 800 | 62% | 14% |
2.2. Tyres Contribution to Ambient Particulate Matter (PM)
3. Characterisation of Tyre Wear Particles
3.1. Chemical Composition
3.2. Physical Characterisation
4. Emission Factors
4.1. Measurement of Tyre Properties and Emissions
- In the laboratory, using (i) road simulators, where one or several wheels are run on real pavement materials (e.g., asphalt), either in a carousel setting [142,155,156] or an inner drum setting [53,148,157]; (ii) an outer drum dynamometer, where one wheel rolls on the outer surface of the drum with a wearing counter-surface, e.g., sand paper [141]; or (iii) a chassis dynamometer on which the whole vehicle is driving [117,158]. Sampling is usually performed in a room for road simulators and drums or behind one tyre in chassis laboratories. Alternatively, the mass loss or tread depth reduction of tyres before and after the test can be determined.
- Roadside, through ambient air sampling using real-time instruments or filters via sampling and analysis [56].
- Condensation particle counters (CPCs) for measuring the total particle number concentration from a few nm up to a few μm.
- Electrical particle sizers for measuring the size distribution of particles, starting from a few nm up to <1 μm (e.g., EEPS) or 10 μm (e.g., ELPI).
- Optical particle counters based on light scattering to determine the size distribution of μm particles, typically between 0.3 and 10–20 μm (e.g., OPC, OPS, APS, DustTrak).
- Filter weighing for total mass, and transmission/scanning electron microscope (TEM/SEM) with an energy-dispersive X-ray analysis of filters for morphology and chemical composition are also typically carried out, or pyrolysis–gas chromatography/mass spectrometry (Pyr-GC/MS) techniques are used for tyre wear quantification. Cyclones or impactors are used to classify particles < 10 μm and/or <2.5 μm.
- Tyre weighing before and after a test in order to determine the total tyre material release (i.e., tyre abrasion).
4.2. Influencing Parameters
Influencing Factor | Impact from | Impact Level on Abrasion | Abrasion | PM |
---|---|---|---|---|
Tyre | Construction and structure | Very high | [183,184] | - |
Tyre size (surface area) | Medium | [185,186] | - | |
Summer, winter, studded | High | [168,187] | [155,157,188] | |
Treadwear resistance 1 | High | [156,178,189] | [156,189,190] | |
Driving distance and aging | Medium | [191] | - | |
Tyre pressure | Low/Med. | [171,176,185,192] | [158,193] | |
Tyre storage | Low | - | - | |
Vehicle | Weight (tyre load) | High | [175,176,185,192,194,195] | [116,148,157,159,180,193] |
Suspension (toe angle) | High | [186,195,196,197,198] | - | |
Suspension (camber angle) | Low | [175,194,195,197,198] | - | |
Vehicle control (hybrids) | Med./High | [168,199] | - | |
Road 2 | Surface (micro and macro) | Very high | [177,178] | [161] |
Material/binder | High | - | [200] | |
Road dust loading | Low | - | - | |
Driving style | Speed | Medium | [116,168,171,185,195] | [116,140,148,152,155,161,180] |
Acceleration, long. | High | [53,168] | [53,116,148] | |
Acceleration lat., cornering 3 | Very high | [171,172,176,186,192,194,201] | [141,148,161] | |
Braking | High | [116,192] | [116,140,159] | |
Environment | Ambient temperature | High | [171] | [157,180] |
Humidity/wetness | Low/Med. | [178,186] | - |
4.3. Emissions Factors of Tyre Abrasion and PM
4.3.1. Tyre Abrasion
- C1: 205/55 R16, 225/45 R17, 195/65 R15, 175/65 R14, 225/40 R18, and 225/60 R16;
- C2: 215/65 R16, 235/65 R16, 205/65 R16, 205/75 R16, and 225/65 R16;
- C3: 315/80 R22.5, 315/70 R22.5, 385/65 R22.5, 295/80 R22.5, and 385/55 R22.5.
Year | Ref. | No. of Tyres × Types of Tyres | Vehicle | Abrasion (mg/km) | Comment |
---|---|---|---|---|---|
2013 | [41] | 1 × 175/70 R13 | n/a | 127 | Data (per tyre) from the Russian Federation, based on mass loss and average travelled distance. Multiplied by four, assuming that they were based on both front and rear wheels. Exact number of vehicles is not provided. |
2 × 185/60&70 R14 | 132 | ||||
1 × 195/65 R15 | 149 | ||||
4 × 205/60-70 R14&15 | 141 (125–154) | ||||
1 × 215/65 R16 | 119 | ||||
2004 | [108] | 195/65 R15 | FWD | 56 | 36,000 km (motorway), 90–94 km/h |
185/65 R14 | FWD | 67 | 40,370 km (motorway), 65–75 km/h | ||
145/80 R13 | RWD | 86 | 11,300 km (urban), 43–51 km/h | ||
185/65 R14 | FWD | 193 | 3665 km (urban), 60–64 km/h, misaligned wheels | ||
175/70R | FWD | 85 | 15,000 km (rural), 61–66 km/h | ||
2022 | [174] | 205/55 R16 | Gasoline 1370 kg | 158 | Based on tread depth loss; 550 km test track with asphalt concrete (KS F 2349, b19 mm). 50 km/h (3 h), 80 km/h (2 h), and 110 km/h (2 h). |
Diesel 1395 kg | 168 | ||||
Electric 1665 kg | 202 | ||||
2022 | [168] | 205/55 R16 94 | ICEs | 72 (36–105) | Based on tread depth loss; 76 taxis in Rome (Italy) and Athens (Greece). Hybrids (Toyota-Auris) and ICEs (Škoda Octavia) had a similar curb mass. |
Hybrids summer | 53 (26–91) | ||||
Hybrids M + S | 112(56–175) | ||||
Hybrids winter | 160 (109–180) | ||||
2022 | [215] | 18 × (models) | Mercedes C-class 1 | 67 (38–161) | 5000 km (motorway) in U.K. |
2021 | [204] | 6 × 205/55 R16 91 | Peugeot 308 | 37–63 | 15,000 km (65% rural, 30% motorway) in France 71 km/h, LoAS 0.68 m/s2, LaAS 0.87 m/s2 |
2022 | [203] | 2 × 205/55 R16 91 | VW T-Roc | 217–227 | 7000 km (39% motorway, 31% rural) in Spain |
2021 | [211] | 4 × 205/55 R16 [S] | VW Golf 8 | 91 (70–115) 2 | France and Germany up to 24,000 km, at temperatures from 7 °C to 25 °C (summer tyres) and 4 °C to 16 °C (winter tyres). |
6 × 205/55 R16 [W] | VW Golf 7 | 94 (58–163) 2 | |||
2 × 235/35 R19 [S] | VW Golf 8 | 92 (59–123) 2 | |||
2022 | [206] | 14 × 185/65 R15 [S] | VW Polo | 89 (58–126) | 15,000 km (55% rural, 40% motorway) in Germany, 85 km/h average speed |
2019 | 16 × 185/65 R15 [S] | VW Polo | 93 (59–124) | ||
2019 | 16 × 185/65 R15 [W] | VW Polo | 109 (85–109) | ||
2021 | 15 × 205/65 R16 [S] | VW Golf 7 | 118 (82–151) | ||
2020 | 15 × 205/65 R16 [W] | VW Golf 7 | 121 86–149) | ||
2016 | 7 × 205/65 R16 [M + S] | VW Golf 7 | 117 (82–152) | ||
2020 | 16 × 225/40 R18 [S] | VW Golf 7 | 130 (115–157) | ||
2021 | 16 × 195/65 R15 [W] | VW Golf 7 | 139 (100–171) | ||
2023 | [212] | 50 × 205/65 R16 91 [S] | (VW Golf 7) | 125 (56–202) 2 | 35× on a drum, 19× on-road |
2023 | [216] | 5 × 245/45 R19 102 [S] | BMW X1, iX1 | 171 (134–202) 3 | 15,000 km (50% rural, 35% motorway) in France |
4.3.2. PM
4.3.3. Particle Number
5. Mitigation Measures
- Preventing or reducing the formation of particles (source: road–tyre interaction);
- Collecting particles upon emissions (release: vehicle and road);
- Reducing exposure and treating particles (transport: atmosphere, run-off).
5.1. Reducing the Formation of Tyre Abrasion Particles
- Technological measures: improved tyres (material resulting in reduced abrasion, the elimination of vent spews), road surface improvement, reduced vehicle mass, and speed/acceleration limiters.
- Management measures: traffic flow and volume (smooth driving, cornering, braking, and traffic flow, e.g., with support of Driver Assistance Systems), reduced total km driven, improved road maintenance, fleet maintenance (tyre pressure, tyre selection, wheel alignment), educational measures (the use of public transport, communication about environment friendly choices, and driving behaviour adaption), economic measures (e.g., taxation), and regulatory measures.
5.2. Collecting Particles upon Emissions
5.3. Reducing Exposure and Treating Particles
5.4. Discussion of Possible Measures
- Improved driving practices: avoiding strong accelerations, heavy braking, and fast cornering; choice of tyres adapted to environmental conditions; correct tyre pressure; and correct wheel alignment.
- Wear-resistant materials (without compromising safety or noise) and/or technologies capturing emitted particles.
- Reduced road traffic (relevant not only for tyre abrasion but also for road dust resuspension reduction): taxation, fees, and subsidies or incentives can help reduce the use of vehicles and/or increase the use of public transport.
- Street cleaning and road runoff treatment systems at hot spots (not only for tyre abrasion but also for road dust resuspension reduction).
6. EU Regulation
- UNECE Regulations Nos. 30 and 54 regarding pneumatic tyres on passenger cars, light commercial vehicles, and their trailers, respectively.
- UNECE Regulation No. 117 regarding rolling sound emissions, adhesion on wet surfaces, and rolling resistance.
- Regulation EU 2020/740 on tyre labelling.
- UNECE Regulation No. 142 on the installation of tyres on cars, vans, trucks, buses, and trailers.
- Directive 2005/64/EC on the type-approval of motor vehicles with regard to their reusability, recyclability, and recoverability implements the end-of-life vehicle directive (Directive 2000/53/EC).
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
Appendix A
Compound | Year Market Ingredients | n/a U.S. [252] | 2006 EU [111,253] | 2012 Japan 1 [254] |
---|---|---|---|---|
Rubber/ Elastomer | Natural rubber | 34% | 45% | 37–39% |
Synthetic rubber | 11% | 10–11% | ||
Fillers | Carbon black | 24% | 22% | 23–25% |
Silica | n/a | 0–1% | ||
others | n/a | n/a | ||
Process oils | Mineral oils | n/a | n/a | 1% |
Vulcanisation agents | ZnO | n/a | 2% | 2% |
Sulphur | 1% | 1% | ||
Others | n/a | n/a | ||
Additives | Preservatives, antioxidants, etc. | 10% | 5% | n/a |
Reinforcement agents | Textile fibres | 0% | 0% | 0% |
Steel wire | 21% | 25% | 21–22% |
Year Market Ingredients | n/a n/a [26,52,108] | n/a U.S. [252] | 1994 Sweden [255] | 1998 Germany [256] | 2006 EU [111,253] | 2012 Japan 1 [254] | 2013 Germany 2 [257] | 2016 EU [61] | 2018 Algeria 3 [258] |
---|---|---|---|---|---|---|---|---|---|
Natural rubber | 40–60% | 19% | 40–60% | 48–57% | 45% | 20–23% | 41% | 17% | 44% |
Synthetic rubber | 24% | 26–31% | 24% | ||||||
Carbon black | 20–35% | 26% | 20–35% 4 | 23–33% | 21.5% | 20–25% | 30% | 18% | 24% |
Silica | n/a | 1–8% | 11% | ||||||
Others | n/a | n/a | n/a | ||||||
Mineral oils | 12–15% | n/a | 15–20% | 5% | n/a | 4–5% | 6% | 7% | n/a |
ZnO | 1–5% | n/a | 1.5% | 1% | 1% | 2% | 6% | 1% | 1% |
Sulphur | 1% | 1% | 1% | 1–2% | 1% | 1% | |||
Others | 1.5% | n/a | n/a | n/a | n/a | n/a | |||
Preservatives, antioxidants, etc. | 5–10% | 14% | 2% | 3–8% | 7.5% | n/a | 2% | 2% | 11% |
Textile fibres | - 5 | 4% | - 5 | 3% | 5.5% | 4–5% | 15% | n/a | 2% |
Steel wire | 12% | 18% | 16.5% | 11–12% | 12% | 18% |
References
- Plastics Europe AISBL. Plastics Europe AISBL Plastics—The Facts 2022; Plastics Europe AISBL: Brussels, Belgium, 2022; Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 17 November 2023).
- Zhang, K.; Hamidian, A.H.; Tubić, A.; Zhang, Y.; Fang, J.K.H.; Wu, C.; Lam, P.K.S. Understanding Plastic Degradation and Microplastic Formation in the Environment: A Review. Environ. Pollut. 2021, 274, 116554. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2017; ISBN 978-2-8317-1827-9. [Google Scholar]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health Impacts of Environmental Contamination of Micro- and Nanoplastics: A Review. Environ. Health Prev. Med. 2020, 25, 29. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.S.; Dogiparthi, L.K.; Gangadhar, L.; Chakravorty, A.; Abhishek, N. Effects of Microplastics and Nanoplastics on Marine Environment and Human Health. Environ. Sci. Pollut. Res. 2020, 27, 44743–44756. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic Sources, Formation, Toxicity and Remediation: A Review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef]
- Lebreton, L.; Egger, M.; Slat, B. A Global Mass Budget for Positively Buoyant Macroplastic Debris in the Ocean. Sci. Rep. 2019, 9, 12922. [Google Scholar] [CrossRef]
- Kreider, M.L.; Unice, K.M.; Panko, J.M. Human Health Risk Assessment of Tire and Road Wear Particles (TRWP) in Air. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2567–2585. [Google Scholar] [CrossRef]
- Bouredji, A.; Pourchez, J.; Forest, V. Biological Effects of Tire and Road Wear Particles (TRWP) Assessed by in Vitro and in Vivo Studies—A Systematic Review. Sci. Total Environ. 2023, 894, 164989. [Google Scholar] [CrossRef]
- Ding, J.; Lv, M.; Zhu, D.; Leifheit, E.F.; Chen, Q.-L.; Wang, Y.-Q.; Chen, L.-X.; Rillig, M.C.; Zhu, Y.-G. Tire Wear Particles: An Emerging Threat to Soil Health. Crit. Rev. Environ. Sci. Technol. 2023, 53, 239–257. [Google Scholar] [CrossRef]
- Federico, L.; Masseroni, A.; Rizzi, C.; Villa, S. Silent Contamination: The State of the Art, Knowledge Gaps, and a Preliminary Risk Assessment of Tire Particles in Urban Parks. Toxics 2023, 11, 445. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Mobility and Transport.; CE Delft. In Handbook on the External Costs of Transport: Version 2019—1.1; Publications Office: Luxembourg, Luxembourg, 2020. [Google Scholar]
- European Commission Pathway to a Healthy Planet for All. EU Action Plan: Towards Zero Pollution for Air, Water and Soil. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2021) 400 Final; European Commission: Brussels, Belgium, 2021. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:a1c34a56-b314-11eb-8aca-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 12 May 2021).
- European Commission Euro 7 Proposal. Available online: https://single-market-economy.ec.europa.eu/sectors/automotive-industry/environmental-protection/emissions-automotive-sector_en (accessed on 17 November 2023).
- European Commission Combating Microplastic Pollution in the European Union. Impact Assessment Report for the Proposal for a Regulation of the European Parliament and of the Council on Preventing Plastic Pellet Losses to Reduce Microplastic Pollution; European Commission Combating Microplastic Pollution in the European Union: Brussels, Belgium, 2023; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_14248_2023_ADD_5&qid=1697535311916 (accessed on 17 November 2023).
- Fukahori, Y.; Gabriel, P.; Liang, H.; Busfield, J.J.C. A New Generalized Philosophy and Theory for Rubber Friction and Wear. Wear 2020, 446–447, 203166. [Google Scholar] [CrossRef]
- Park, I.; Lee, J.; Lee, S. Laboratory Study of the Generation of Nanoparticles from Tire Tread. Aerosol Sci. Technol. 2017, 51, 188–197. [Google Scholar] [CrossRef]
- Vallabani, N.V.S.; Gruzieva, O.; Elihn, K.; Juárez-Facio, A.T.; Steimer, S.S.; Kuhn, J.; Silvergren, S.; Portugal, J.; Piña, B.; Olofsson, U.; et al. Toxicity and Health Effects of Ultrafine Particles: Towards an Understanding of the Relative Impacts of Different Transport Modes. Environ. Res. 2023, 231, 116186. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Tainosho, Y. Characterization of Heavy Metal Particles Embedded in Tire Dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental Occurrence, Fate, Impact, and Potential Solution of Tire Microplastics: Similarities and Differences with Tire Wear Particles. Sci. Total Environ. 2021, 795, 148902. [Google Scholar] [CrossRef] [PubMed]
- Pierson, W.R.; Brachaczek, W.W. Airborne Particulate Debris from Rubber Tires. Rubber Chem. Technol. 1974, 47, 1275–1299. [Google Scholar] [CrossRef]
- OECD. Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge; OECD: Paris, France, 2020; ISBN 978-92-64-45244-2. [Google Scholar]
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic Related Emissions—Brake and Tyre Wear PM: Literature Review; Publications Office: Luxembourg, 2014. [Google Scholar]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and Road Wear Particles (TRWP)—A Review of Generation, Properties, Emissions, Human Health Risk, Ecotoxicity, and Fate in the Environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-Exhaust Traffic Emissions: Sources, Characterization, and Mitigation Measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, H.; Tan, J.; Wang, X.; Yang, Z.; Hao, L.; Du, T.; Niu, Z.; Ge, Y. A Comprehensive Review of Tyre Wear Particles: Formation, Measurements, Properties, and Influencing Factors. Atmos. Environ. 2023, 297, 119597. [Google Scholar] [CrossRef]
- Gieré, R.; Dietze, V. Tire-Abrasion Particles in the Environment. In Degradation of Elastomers in Practice, Experiments and Modeling; Heinrich, G., Kipscholl, R., Stoček, R., Eds.; Advances in Polymer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 289, pp. 71–101. ISBN 978-3-031-15163-7. [Google Scholar]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef] [PubMed]
- Mennekes, D.; Nowack, B. Tire Wear Particle Emissions: Measurement Data Where Are You? Sci. Total Environ. 2022, 830, 154655. [Google Scholar] [CrossRef] [PubMed]
- Jekel, M. Scientific Report on Tyre and Road Wear Particles, TRWP, in the Aquatic Environment; European TRWP platform: Berlin, Germany, 2019. [Google Scholar]
- Rutgers, M.; Faber, M.; Waaijers-van der Loop, S.; Quik, J. Microplastics in Soil Systems, from Source to Path to Protection Goals. State of Knowledge on Microplastics in Soil; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2022.
- IMARC. IMARC Europe Tire Market: Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028; IMARC: London, UK, 2022; Available online: https://www.imarcgroup.com/europe-tire-market#:~:text=the%20europe%20tire%20market%20size,3.11%25%20during%202023%2d2028 (accessed on 17 November 2023).
- Michelin. Michelin Results 2022; Michelin: Clermont Ferrand, France, 2022; Available online: https://www.michelin.com/en/finance/results-and-presentations/results-and-sales/ (accessed on 17 November 2023).
- ETRMA. European Tyre & Rubber Industry. Statistics; European Tyre & Rubber Manufacturers Association (ETRMA): Brussels, Belgium, 2021. [Google Scholar]
- Anadón, R. Study on Tyres Abrasion Test Method Durability Investigation. Document TA-01-05. 2022. Available online: https://wiki.unece.org/display/trans/tf+ta+session+1 (accessed on 17 November 2023).
- Michelin Six Years of Data Reveals True Tyre Mileage. 2012. Available online: https://news.cision.com/michelin-fleet/r/six-years-of-data-reveals-true-tyre-mileage,C9273112 (accessed on 17 November 2023).
- CFR (Code of Federal Regulations) 49 CFR § 575.104—Uniform Tire Quality Grading Standards. 2023. Available online: https://www.law.cornell.edu/cfr/text/49/575.104 (accessed on 17 November 2023).
- Russian Federation Particulate Matter Emissions by Tyres. Informal Document GRPE-65-20. 2013. Available online: https://unece.org/DAM/trans/doc/2013/wp29grpe/GRPE-65-20e.pdf (accessed on 17 November 2023).
- Mugnier, E.; Farhangi, C.; Kley, S.; Aurez, V.; Chhang, A. The Socio-Economic Impact of Truck Tyre Retreading in Europe. In The Circular Economy of Tyres in Danger; EY: Paris, France, 2016; Available online: https://www.etrma.org/wp-content/uploads/2019/09/201611-ey_retreading_lr.pdf (accessed on 17 November 2023).
- Camatini, M.; Crosta, G.F.; Dolukhanyan, T.; Sung, C.; Giuliani, G.; Corbetta, G.M.; Cencetti, S.; Regazzoni, C. Microcharacterization and Identification of Tire Debris in Heterogeneous Laboratory and Environmental Specimens. Mater. Charact. 2001, 46, 271–283. [Google Scholar] [CrossRef]
- Boulter, P.G. A Review of Emission Factors and Models for Road Vehicle Non-Exhaust Particulate Matter; TRL Limited: Berkshire, UK, 2005. [Google Scholar]
- Lorenčič, V. The Effect of Tire Age and Anti-Lock Braking System on the Coefficient of Friction and Braking Distance. Sustainability 2023, 15, 6945. [Google Scholar] [CrossRef]
- Lee, H.; Ju, M.; Kim, Y. Estimation of Emission of Tire Wear Particles (TWPs) in Korea. Waste Manag. 2020, 108, 154–159. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, Z.; Wang, H.; Luo, Y.; Yu, R.; Zhou, S.; Wang, Z.; Hu, G.; Xing, B. Machine Learning Application in Forecasting Tire Wear Particles Emission in China under Different Potential Socioeconomic and Climate Scenarios with Tire Microplastics Context. J. Hazard. Mater. 2023, 441, 129878. [Google Scholar] [CrossRef]
- Hann, S.; Sherrington, C.; Jamieson, O.; Hickman, M.; Kershaw, P.; Bapasola, A.; Cole, G. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (but Not Intentionally Added in) Products. In Report for DG Environment of the European Commission; Eunomia Research & Consulting Ltd.: Bristol, UK, 2018. [Google Scholar]
- Quantis. EA Plastic Leak Project: Methodological Guidelines; Quantis: Zürich, Switzerland, 2020; Available online: https://quantis-intl.com/plastic-leak-project-guidelines (accessed on 17 November 2023).
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Comparison of Tire and Road Wear Particle Concentrations in Sediment for Watersheds in France, Japan, and the United States by Quantitative Pyrolysis GC/MS Analysis. Environ. Sci. Technol. 2013, 47, 130710100101002. [Google Scholar] [CrossRef]
- Klöckner, P.; Seiwert, B.; Weyrauch, S.; Escher, B.I.; Reemtsma, T.; Wagner, S. Comprehensive Characterization of Tire and Road Wear Particles in Highway Tunnel Road Dust by Use of Size and Density Fractionation. Chemosphere 2021, 279, 130530. [Google Scholar] [CrossRef]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Schläfle, S.; Unrau, H.-J.; Gauterin, F. Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution. Atmosphere 2023, 14, 1780. [Google Scholar] [CrossRef]
- CEDR MICROPROOF (Micropollutants in Road RunOff). Measurements of Organic Micropollutants, Microplastics and Associated Substances from Road Transport; Deliverable 6.6; Transnational Road Research Programme: Utrecht, The Netherlands, 2019; Available online: https://www.cedr.eu/download/other_public_files/research_programme/call_2016/call_2016_water_quality/microproof/Microproof-D6.6-Measurements-of-organic-micropollutants-microplastics-and-associated-substances-from-road-transport.pdf (accessed on 17 November 2023).
- Kang, H.; Park, S.; Lee, B.; Kim, I.; Kim, S. Concentration of Microplastics in Road Dust as a Function of the Drying Period—A Case Study in G City, Korea. Sustainability 2022, 14, 3006. [Google Scholar] [CrossRef]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.-M.; Andersson-Sköld, Y. Concentrations of Tire Wear Microplastics and Other Traffic-Derived Non-Exhaust Particles in the Road Environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric Transport Is a Major Pathway of Microplastics to Remote Regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and Wonderful? Microplastics Prevail in Snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [PubMed]
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; Van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing Export of Land-Based Microplastics to the Estuary—Part I: Application of Integrated Geospatial Microplastic Transport Models to Assess Tire and Road Wear Particles in the Seine Watershed. Sci. Total Environ. 2019, 646, 1639–1649. [Google Scholar] [CrossRef]
- European TRWP Platform. Way Forward Report; European TRWP Platform: Brussels, Belgium, 2019; Available online: https://www.etrma.org/wp-content/uploads/2019/10/20200330-FINAL-Way-Forward-Report.pdf (accessed on 17 November 2023).
- Verschoor, A.; de Poorter, L.; Dröge, R.; Kuenen, J.; de Valk, E. Emission of Microplastics and Potential Mitigation Measures: Abrasive Cleaning Agents, Paints and Tyre Wear; National Institute for Public Health and the Environment (RIVM): Bilthoven, Netherlands, 2016.
- Quik, J.T.K.; Meesters, J.A.J.; Koelmans, A.A. A Multimedia Model to Estimate the Environmental Fate of Microplastic Particles. Sci. Total Environ. 2023, 882, 163437. [Google Scholar] [CrossRef] [PubMed]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and Road Wear Particles—A Calculation of Generation, Transport and Release to Water and Soil with Special Regard to German Roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef]
- Sieber, R.; Kawecki, D.; Nowack, B. Dynamic Probabilistic Material Flow Analysis of Rubber Release from Tires into the Environment. Environ. Pollut. 2020, 258, 113573. [Google Scholar] [CrossRef]
- Prenner, S.; Allesch, A.; Staudner, M.; Rexeis, M.; Schwingshackl, M.; Huber-Humer, M.; Part, F. Static Modelling of the Material Flows of Micro- and Nanoplastic Particles Caused by the Use of Vehicle Tyres. Environ. Pollut. 2021, 290, 118102. [Google Scholar] [CrossRef]
- ETRMA. In Europe 95% of All End of Life Tyres Were Collected and Treated in 2019; ETRMA: Bruxelles, Belgium, 2021; Available online: https://www.etrma.org/wp-content/uploads/2021/05/20210520_ETRMA_PRESS-RELEASE_ELT-2019.pdf (accessed on 17 November 2023).
- EuRIC AISBL. Mechanical Tyre Recycling Fact Sheet; EuRIC AISBL: Brussels, Belgium, 2022; Available online: https://euric.org/resource-hub/reports-studies/mechanical-tyre-recycling-factsheet (accessed on 17 November 2023).
- Sundt, P.; Schulze, P.-E.; Syversen, F. Sources of Microplastics-Pollution to the Marine Environment; Mepex Consult AS: Asker, Norway, 2014. [Google Scholar]
- Lassen, C.; Hansen, S.F.; Magnusson, K.; Hartmann, N.B.; Rehne Jensen, P.; Torkel, G.; Brinch, A. Microplastics: Occurrence, Effects and Sources of Releases to the Environment in Denmark; Danish Environmental Protection Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- Magnusson, K.; Eliasson, K.; Fråne, A.; Haikonen, K.; Hultén, J.; Olshammar, M.; Stadmark, J.; Voisin, A. Swedish Sources and Pathways for Microplastics to the Marine Environment: A Review of Existing Data; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Wang, T.; Li, B.; Zou, X.; Wang, Y.; Li, Y.; Xu, Y.; Mao, L.; Zhang, C.; Yu, W. Emission of Primary Microplastics in Mainland China: Invisible but Not Negligible. Water Res. 2019, 162, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. Paint Particles in the Marine Environment: An Overlooked Component of Microplastics. Water Res. X 2021, 12, 100110. [Google Scholar] [CrossRef] [PubMed]
- Urbanus, J.H.; Brunner, A.; Boersma, A.; Henke, S.; Kooter, I.; Lensen, S.; Parker, L.; Schwarz, A.; Imhof, P.; Dortmans, A.; et al. Microplastics Are Everywhere: 70% Reduction Achievable. 2022. Available online: https://www.tno.nl/en/sustainable/circular-plastics/microplastics-unknown-risks/reducing-microplastics/ (accessed on 17 November 2023).
- Goehler, L.O.; Moruzzi, R.B.; Tomazini Da Conceição, F.; Júnior, A.A.C.; Speranza, L.G.; Busquets, R.; Campos, L.C. Relevance of Tyre Wear Particles to the Total Content of Microplastics Transported by Runoff in a High-Imperviousness and Intense Vehicle Traffic Urban Area. Environ. Pollut. 2022, 314, 120200. [Google Scholar] [CrossRef] [PubMed]
- Goßmann, I.; Süßmuth, R.; Scholz-Böttcher, B.M. Plastic in the Air?! Spider Webs as Spatial and Temporal Mirror for Microplastics Including Tire Wear Particles in Urban Air. Sci. Total Environ. 2022, 832, 155008. [Google Scholar] [CrossRef] [PubMed]
- Kovochich, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Wagner, S.; Reemtsma, T.; Unice, K.M. Characterization of Individual Tire and Road Wear Particles in Environmental Road Dust, Tunnel Dust, and Sediment. Environ. Sci. Technol. Lett. 2021, 8, 1057–1064. [Google Scholar] [CrossRef]
- Gao, Z.; Cizdziel, J.V.; Wontor, K.; Clisham, C.; Focia, K.; Rausch, J.; Jaramillo-Vogel, D. On Airborne Tire Wear Particles along Roads with Different Traffic Characteristics Using Passive Sampling and Optical Microscopy, Single Particle SEM/EDX, and µ-ATR-FTIR Analyses. Front. Environ. Sci. 2022, 10, 1022697. [Google Scholar] [CrossRef]
- Kumar, A.; Elumalai, S.P. Influence of Road Paving on Particulate Matter Emission and Fingerprinting of Elements of Road Dust. Arch. Environ. Contam. Toxicol. 2018, 75, 424–435. [Google Scholar] [CrossRef]
- Venghaus, D.; Neupert, J.W.; Barjenbruch, M. Tire Wear Monitoring Approach for Hotspot Identification in Road Deposited Sediments from a Metropolitan City in Germany. Sustainability 2023, 15, 12029. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre Wear Particles: An Abundant yet Widely Unreported Microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef]
- Kunze, M.; Feißel, T.; Ivanov, V.; Bachmann, T.; Hesse, D.; Gramstat, S. Analysis of TRWP Particle Distribution in Urban and Suburban Landscapes, Connecting Real Road Measurements with Particle Distribution Simulation. Atmosphere 2022, 13, 1204. [Google Scholar] [CrossRef]
- Verschoor, A.J.; De Valk, E. Potential Measures against Microplastic Emissions to Water; RIMV Report 2017-0193; Bilthoven, The Netherlands, 2018; Available online: https://rivm.openrepository.com/handle/10029/622058 (accessed on 17 November 2023).
- Bertling, J.; Hamann, L.; Bertling, R. Kunststoffe in Der Umwelt: Mikro- und Makroplastik. Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik Umsicht. Oberhauser, Germany. 2018. Available online: https://www.s3rem.de/gallery/kunststoffe-id-umwelt-konsortialstudie-mikroplastik%20(1).pdf (accessed on 17 November 2023).
- Ryberg, M.W.; Hauschild, M.Z.; Wang, F.; Averous-Monnery, S.; Laurent, A. Global Environmental Losses of Plastics across Their Value Chains. Resour. Conserv. Recycl. 2019, 151, 104459. [Google Scholar] [CrossRef]
- Unsbo, H.; Rosengren, H.; Olshammar, M. Indicators for Microplastic Flow. 2022. Available online: https://smed.se/vatten/5321 (accessed on 17 November 2023).
- Schwarz, A.E.; Lensen, S.M.C.; Langeveld, E.; Parker, L.A.; Urbanus, J.H. Plastics in the Global Environment Assessed through Material Flow Analysis, Degradation and Environmental Transportation. Sci. Total Environ. 2023, 875, 162644. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, M.; Koelmans, A.A.; Besseling, E.; Kroeze, C. Export of Microplastics from Land to Sea. A Modelling Approach. Water Res. 2017, 127, 249–257. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Quality in Europe: 2019 Report; Publications office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-088-6. [Google Scholar]
- Matthaios, V.N.; Lawrence, J.; Martins, M.A.G.; Ferguson, S.T.; Wolfson, J.M.; Harrison, R.M.; Koutrakis, P. Quantifying Factors Affecting Contributions of Roadway Exhaust and Non-Exhaust Emissions to Ambient PM10–2.5 and PM2.5–0.2 Particles. Sci. Total Environ. 2022, 835, 155368. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A Harmonized PM Speciation and Source Apportionment in Five Southern European Cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef]
- Marinello, S.; Lolli, F.; Gamberini, R. Roadway Tunnels: A Critical Review of Air Pollutant Concentrations and Vehicular Emissions. Transp. Res. Part. D Transp. Environ. 2020, 86, 102478. [Google Scholar] [CrossRef]
- De Vito, S.; Del Giudice, A.; D’Elia, G.; Esposito, E.; Fattoruso, G.; Ferlito, S.; Formisano, F.; Loffredo, G.; Massera, E.; Bellucci, P.; et al. Correlating Air Pollution Concentrations and Vehicular Emissions in an Italian Roadway Tunnel by Means of Low Cost Sensors. Atmosphere 2023, 14, 679. [Google Scholar] [CrossRef]
- Panko, J.; Kreider, M.; Unice, K. Review of Tire Wear Emissions. In Non-Exhaust Emissions; Academic Press: London, UK, 2018; pp. 147–160. ISBN 978-0-12-811770-5. [Google Scholar]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-Exhaust Vehicle Emissions of Particulate Matter and VOC from Road Traffic: A Review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Umweltbundesamtes (UBA) Schwerpunkt. Gesunde Luft (Healthy Air); UBA: Darmstadt, Germany, 2019; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/2546/publikationen/sp_1-2019_web.pdf (accessed on 17 November 2023). (In German)
- Air Quality Expert Group (AQEG). Non-Exhaust Emissions from Road Traffic; Air Quality Expert Group (AQEG): London, UK, 2019. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1907101151_20190709_Non_Exhaust_Emissions_typeset_Final.pdf (accessed on 17 November 2023).
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of Airborne Concentrations of Tire and Road Wear Particles in Urban and Rural Areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development Tire Industry Project. 2005. Available online: https://www.wbcsd.org/sector-projects/tire-industry-project (accessed on 17 November 2023).
- Panko, J.; Hitchcock, K.; Fuller, G.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, H.; Lee, J.; Lee, S. Characterization of Non-Exhaust Coarse and Fine Particles from on-Road Driving and Laboratory Measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Svensson, N.; Engardt, M.; Gustafsson, M.; Andersson-Sköld, Y. Modelled Atmospheric Concentration of Tyre Wear in an Urban Environment. Atmos. Environ. X 2023, 20, 100225. [Google Scholar] [CrossRef]
- Rausch, J.; Jaramillo-Vogel, D.; Perseguers, S.; Schnidrig, N.; Grobéty, B.; Yajan, P. Automated Identification and Quantification of Tire Wear Particles (TWP) in Airborne Dust: SEM/EDX Single Particle Analysis Coupled to a Machine Learning Classifier. Sci. Total Environ. 2022, 803, 149832. [Google Scholar] [CrossRef]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Perseguers, S.; Gustafsson, M.; Strömvall, A.-M.; Andersson-Sköld, Y. Differentiating and Quantifying Carbonaceous (Tire, Bitumen, and Road Marking Wear) and Non-Carbonaceous (Metals, Minerals, and Glass Beads) Non-Exhaust Particles in Road Dust Samples from a Traffic Environment. Water Air Soil. Pollut. 2022, 233, 375. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Wei, N.; Song, C.; Peng, J.; Wu, L.; Mao, H. Identify the Contribution of Vehicle Non-Exhaust Emissions: A Single Particle Aerosol Mass Spectrometer Test Case at Typical Road Environment. Front. Environ. Sci. Eng. 2023, 17, 62. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Beddows, D.C.S.; Gietl, J.K.; Olatunbosun, O.A.; Yang, X.; Harrison, R.M. Characteristics of Tyre Dust in Polluted Air: Studies by Single Particle Mass Spectrometry (ATOFMS). Atmos. Environ. 2014, 94, 224–230. [Google Scholar] [CrossRef]
- Vanherle, K.; Lopez-Aparicio, S.; Grythe, H.; Lükewille, A.; Unterstaller, A.; Mayeres, I. Transport Non-Exhaust PM-Emissions: An Overview of Emission Estimates, Relevance, Trends and Policies; European Topic Centre on Air Pollution, Transport, Noise and Industrial Pollution: Kjeller, Norway, 2021. [Google Scholar]
- Jung, U.; Choi, S.-S. Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density. Polymers 2022, 14, 1005. [Google Scholar] [CrossRef] [PubMed]
- Luhana, L.; Sokhi, R.S.; Warner, L.; Mao, H.; Boulter, P.; McCrae, I.; Wright, J.; Osborn, D. Measurement of Non-Exhaust Particulate Matter; Deliverable 8 to Particulates Project: Berkshire, UK, 2004. [Google Scholar]
- Rauert, C.; Rødland, E.S.; Okoffo, E.D.; Reid, M.J.; Meland, S.; Thomas, K.V. Challenges with Quantifying Tire Road Wear Particles: Recognizing the Need for Further Refinement of the ISO Technical Specification. Environ. Sci. Technol. Lett. 2021, 8, 231–236. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Xu, J.; Sun, C.; He, W.; Huang, J.; Li, G. High-Value Utilization of Waste Tires: A Review with Focus on Modified Carbon Black from Pyrolysis. Sci. Total Environ. 2020, 742, 140235. [Google Scholar] [CrossRef]
- Evans, A.; Evans, R. The Composition of a Tyre: Typical Components; The Waste & Resources Action Programme: Banbury, UK, 2006. [Google Scholar]
- Rodgers, B. Tire Engineering: An Introduction; CRC press: Boca Raton, FL, USA, 2020; ISBN 978-1-00-302296-1. [Google Scholar]
- Rodgers, B.; Tallury, S.S.; Klingensmith, W. Rubber Compounding. In Kirk-Othmer Encyclopedia of Chemical Technology; Kirk-Othmer, Ed.; Wiley: Hoboken, NJ, USA, 2023; pp. 1–65. ISBN 978-0-471-48494-3. [Google Scholar]
- Councell, T.B.; Duckenfield, K.U.; Landa, E.R.; Callender, E. Tire-Wear Particles as a Source of Zinc to the Environment. Environ. Sci. Technol. 2004, 38, 4206–4214. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, S. Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environ. Sci. Technol. 2018, 52, 12153–12161. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Ge, Y.; Wen, Y.; Luo, J.; Yin, D.; Wang, C.; Wang, C. Emission Characteristics of Tyre Wear Particles from Light-Duty Vehicles. Atmosphere 2023, 14, 724. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, S.; Woo, S.-H. Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings. Int. J. Environ. Res. Public Health 2022, 19, 6006. [Google Scholar] [CrossRef]
- Güney, B. Investigation of Physical and Chemical Properties of Particulate Matter Caused by Vehicle Tire Wear. Int. J. Environ. Sci. Technol. 2023, 19, 6006. [Google Scholar] [CrossRef]
- Guo, Q.; Men, Z.; Liu, Z.; Niu, Z.; Fang, T.; Liu, F.; Wu, L.; Peng, J.; Mao, H. Chemical Characteristics of Fine Tire Wear Particles Generated on a Tire Simulator. Environ. Pollut. 2023, 336, 122399. [Google Scholar] [CrossRef]
- Rødland, E.S.; Gustafsson, M.; Jaramillo-Vogel, D.; Järlskog, I.; Müller, K.; Rauert, C.; Rausch, J.; Wagner, S. Analytical Challenges and Possibilities for the Quantification of Tire-Road Wear Particles. TrAC Trends Anal. Chem. 2023, 165, 117121. [Google Scholar] [CrossRef]
- Müller, K.; Hübner, D.; Huppertsberg, S.; Knepper, T.P.; Zahn, D. Probing the Chemical Complexity of Tires: Identification of Potential Tire-Borne Water Contaminants with High-Resolution Mass Spectrometry. Sci. Total Environ. 2022, 802, 149799. [Google Scholar] [CrossRef]
- Halsband, C.; Sørensen, L.; Booth, A.M.; Herzke, D. Car Tire Crumb Rubber: Does Leaching Produce a Toxic Chemical Cocktail in Coastal Marine Systems? Front. Environ. Sci. 2020, 8, 125. [Google Scholar] [CrossRef]
- Seiwert, B.; Klöckner, P.; Wagner, S.; Reemtsma, T. Source-Related Smart Suspect Screening in the Aqueous Environment: Search for Tire-Derived Persistent and Mobile Trace Organic Contaminants in Surface Waters. Anal. Bioanal. Chem. 2020, 412, 4909–4919. [Google Scholar] [CrossRef]
- ISO 20593:2017; Ambient Air—Determination of the Mass Concentration of Tire and Road Wear Particles (TRWP)—Pyrolysis-GC-MS Method. ISO: Geneva, Switzerland, 2017.
- ISO 21396:2017; Rubber—Determination of Mass Concentration of Tire and Road Wear Particles (TRWP) in Soil and Sediments—Pyrolysis-GC/MS Method. ISO: Geneva, Switzerland, 2017.
- Aatmeeyata; Sharma, M. Polycyclic Aromatic Hydrocarbons, Elemental and Organic Carbon Emissions from Tire-Wear. Sci. Total Environ. 2010, 408, 4563–4568. [Google Scholar] [CrossRef] [PubMed]
- Sadiktsis, I.; Bergvall, C.; Johansson, C.; Westerholm, R. Automobile Tires—A Potential Source of Highly Carcinogenic Dibenzopyrenes to the Environment. Environ. Sci. Technol. 2012, 46, 3326–3334. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, S.; Kroll, L.; Lippert, K.; Seidel, A. A Long-Term Study on the Content of Polycyclic Aromatic Hydrocarbons in Rubber from End-of-Life Tires of Passenger Cars and Trucks. Materials 2022, 15, 7017. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, A.M.P.; Calvo, A.I.; Baumgardner, D.; Amato, F.; Querol, X.; Pio, C.; Gustafsson, M. Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmos. Environ. 2020, 224, 117252. [Google Scholar] [CrossRef]
- Cuajungco, M.; Ramirez, M.; Tolmasky, M. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021, 9, 208. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, M.; Sheikh, T.M.M.; Mumtaz, M.Z.; Chohan, T.A.; Shamim, S.; Liu, Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front. Microbiol. 2022, 13, 900740. [Google Scholar] [CrossRef]
- Chen, W.-Q.; Zhang, X.-Y. 1,3-Butadiene: A Ubiquitous Environmental Mutagen and Its Associations with Diseases. Genes Environ. 2022, 44, 3. [Google Scholar] [CrossRef]
- Liao, C.; Kim, U.-J.; Kannan, K. A Review of Environmental Occurrence, Fate, Exposure, and Toxicity of Benzothiazoles. Environ. Sci. Technol. 2018, 52, 5007–5026. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- Bauer, A.; Siegrist, K.; Wolff, M.; Nield, L.; Brüning, T.; Upham, B.; Käfferlein, H.; Plöttner, S. The Carcinogenic Properties of Overlooked yet Prevalent Polycyclic Aromatic Hydrocarbons in Human Lung Epithelial Cells. Toxics 2022, 10, 28. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A Ubiquitous Tire Rubber–Derived Chemical Induces Acute Mortality in Coho Salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, D. Exposure to 6-PPD Quinone at Environmentally Relevant Concentrations Inhibits Both Lifespan and Healthspan in C. Elegans. Environ. Sci. Technol. 2023, 57, 19295–19303. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, D. Tire-Rubber Related Pollutant 6-PPD Quinone: A Review of Its Transformation, Environmental Distribution, Bioavailability, and Toxicity. J. Hazard. Mater. 2023, 459, 132265. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Kim, H.S.; Lee, J.H.; Lee, S.H. On-Road Chasing Measurement of Exhaust Particle Emissions from Diesel, CNG, LPG, and DME-Fueled Vehicles Using a Mobile Emission Laboratory. Int. J. Automot. Technol. 2014, 15, 543–551. [Google Scholar] [CrossRef]
- Park, I.; Kim, H.; Lee, S. Characteristics of Tire Wear Particles Generated in a Laboratory Simulation of Tire/Road Contact Conditions. J. Aerosol Sci. 2018, 124, 30–40. [Google Scholar] [CrossRef]
- Dahl, A.; Gharibi, A.; Swietlicki, E.; Gudmundsson, A.; Bohgard, M.; Ljungman, A.; Blomqvist, G.; Gustafsson, M. Traffic-Generated Emissions of Ultrafine Particles from Pavement–Tire Interface. Atmos. Environ. 2006, 40, 1314–1323. [Google Scholar] [CrossRef]
- Worek, J.; Badura, X.; Białas, A.; Chwiej, J.; Kawoń, K.; Styszko, K. Pollution from Transport: Detection of Tyre Particles in Environmental Samples. Energies 2022, 15, 2816. [Google Scholar] [CrossRef]
- Kovochich, M.; Liong, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Xi, L.; Kreider, M.L.; Unice, K.M. Chemical Mapping of Tire and Road Wear Particles for Single Particle Analysis. Sci. Total Environ. 2021, 757, 144085. [Google Scholar] [CrossRef]
- Klöckner, P.; Seiwert, B.; Eisentraut, P.; Braun, U.; Reemtsma, T.; Wagner, S. Characterization of Tire and Road Wear Particles from Road Runoff Indicates Highly Dynamic Particle Properties. Water Res. 2020, 185, 116262. [Google Scholar] [CrossRef]
- Kovochich, M.; Oh, S.C.; Lee, J.P.; Parker, J.A.; Barber, T.; Unice, K. Characterization of Tire and Road Wear Particles in Urban River Samples. Environ. Adv. 2023, 12, 100385. [Google Scholar] [CrossRef]
- Mathissen, M.; Scheer, V.; Vogt, R.; Benter, T. Investigation on the Potential Generation of Ultrafine Particles from the Tire–Road Interface. Atmos. Environ. 2011, 45, 6172–6179. [Google Scholar] [CrossRef]
- Foitzik, M.-J.; Unrau, H.-J.; Gauterin, F.; Dörnhöfer, J.; Koch, T. Investigation of Ultra Fine Particulate Matter Emission of Rubber Tires. Wear 2018, 394–395, 87–95. [Google Scholar] [CrossRef]
- Wilkinson, T.; Järlskog, I.; De Lima, J.A.; Gustafsson, M.; Mattsson, K.; Andersson Sköld, Y.; Hassellöv, M. Shades of Grey—Tire Characteristics and Road Surface Influence Tire and Road Wear Particle (TRWP) Abundance and Physicochemical Properties. Front. Environ. Sci. 2023, 11, 1258922. [Google Scholar] [CrossRef]
- Kayhanian, M.; McKenzie, E.R.; Leatherbarrow, J.E.; Young, T.M. Characteristics of Road Sediment Fractionated Particles Captured from Paved Surfaces, Surface Run-off and Detention Basins. Sci. Total Environ. 2012, 439, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, P.; Reemtsma, T.; Eisentraut, P.; Braun, U.; Ruhl, A.S.; Wagner, S. Tire and Road Wear Particles in Road Environment—Quantification and Assessment of Particle Dynamics by Zn Determination after Density Separation. Chemosphere 2019, 222, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Tonegawa, Y.; Sasaki, S. Development of Tire-Wear Particle Emission Measurements for Passenger Vehicles. Emiss. Control Sci. Technol. 2021, 7, 56–62. [Google Scholar] [CrossRef]
- Mattsson, K.; De Lima, J.A.; Wilkinson, T.; Järlskog, I.; Ekstrand, E.; Sköld, Y.A.; Gustafsson, M.; Hassellöv, M. Tyre and Road Wear Particles from Source to Sea. Micropl. Nanopl. 2023, 3, 14. [Google Scholar] [CrossRef]
- Hesse, D.; Feißel, T.; Kunze, M.; Bachmann, E.; Bachmann, T.; Gramstat, S. Comparison of Methods for Sampling Particulate Emissions from Tires under Different Test Environments. Atmosphere 2022, 13, 1262. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Swietlicki, E.; Bohgard, M.; Lindbom, J.; Ljungman, A. Properties and Toxicological Effects of Particles from the Interaction between Tyres, Road Pavement and Winter Traction Material. Sci. Total Environ. 2008, 393, 226–240. [Google Scholar] [CrossRef]
- Grigoratos, T.; Gustafsson, M.; Eriksson, O.; Martini, G. Experimental Investigation of Tread Wear and Particle Emission from Tyres with Different Treadwear Marking. Atmos. Environ. 2018, 182, 200–212. [Google Scholar] [CrossRef]
- Schläfle, S.; Unrau, H.-J.; Gauterin, F. Influence of Load Condition, Tire Type, and Ambient Temperature on the Emission of Tire–Road Particulate Matter. Atmosphere 2023, 14, 1095. [Google Scholar] [CrossRef]
- Andersson, J.; Campbell, M.; Marshall, I.; Kramer, L.; Norris, J. Measurement of Emissions from Brake and Tyre Wear; Final Report—Phase 1; Ricardo: Shoreham-by-Sea, UK, 2022. [Google Scholar]
- Oroumiyeh, F.; Zhu, Y. Brake and Tire Particles Measured from On-Road Vehicles: Effects of Vehicle Mass and Braking Intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.-C. Factors Affecting Non-Tailpipe Aerosol Particle Emissions from Paved Roads: On-Road Measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Beji, A.; Deboudt, K.; Khardi, S.; Muresan, B.; Lumière, L. Determinants of Rear-of-Wheel and Tire-Road Wear Particle Emissions by Light-Duty Vehicles Using on-Road and Test Track Experiments. Atmos. Pollut. Res. 2021, 12, 278–291. [Google Scholar] [CrossRef]
- Charbouillot, T.; Janet, D.C.; Schaal, P.; Beynier, I.; Boulat, J.-M.; Grandchamp, A.; Biesse, F. Methodology for the Direct Measurement of Tire Emission Factors. Sci. Total Environ. 2023, 863, 160853. [Google Scholar] [CrossRef]
- Feißel, T.; Kunze, M.; Hesse, D.; Ivanov, V.; Augsburg, K.; Gramstat, S. On-Road Vehicle Measurement of Tire Wear Particle Emissions and Approach for Emission Prediction. Tire Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle Emissions from 11 Non-Vehicle Exhaust Sources—A Review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef]
- Harrison, R.M.; Alghamdi, M.A. Measurement of Tyre Dust Particles in the Atmosphere Using Chemical Tracers. Atmos. Environ. 2023, 298, 119607. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of Motor Vehicle Particulate Emissions Sampling and Measurement: From Smoke and Filter Mass to Particle Number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Amaral, S.; de Carvalho, J.; Costa, M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wu, S.; Gao, J.; Li, Y.; An, Z.; Mao, B.; Tu, R.; Li, T. Impact of Vehicle Type, Tyre Feature and Driving Behaviour on Tyre Wear under Real-World Driving Conditions. Sci. Total Environ. 2022, 842, 156950. [Google Scholar] [CrossRef] [PubMed]
- Pohrt, R. Tire Wear Particle Hot Spots—Review Of Influencing Factors. FU Mech. Eng. 2019, 17, 17. [Google Scholar] [CrossRef]
- The European TRWP Platform Tyre and Road Wear Particles. 2018. Available online: https://www.csreurope.org/trwp (accessed on 17 November 2023).
- Li, Y.; Zuo, S.; Lei, L.; Yang, X.; Wu, X. Analysis of Impact Factors of Tire Wear. J. Vib. Control. 2012, 18, 833–840. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Zheng, D.; Schmerwitz, F.; Wriggers, P. An Advanced Abrasion Model for Tire Wear. Wear 2018, 396–397, 75–85. [Google Scholar] [CrossRef]
- ETRTO Tyre Abrasion Vehicle Load Normalization. Presented at the TF TA 7th Session, Online, 9 December 2022. Available online: https://wiki.unece.org/display/trans/TF+TA+session+7 (accessed on 17 November 2023).
- Woo, S.-H.; Jang, H.; Lee, S.-B.; Lee, S. Comparison of Total PM Emissions Emitted from Electric and Internal Combustion Engine Vehicles: An Experimental Analysis. Sci. Total Environ. 2022, 842, 156961. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Wang, W.; Wang, G. Research on The Key Influencing Factors of Road Wear for Battery Electric Vehicles Tyres. In Proceedings of the 2021 IEEE 9th International Conference on Traffic and Logistic Engineering (ICTLE), Macau, China, 9 August 2021; pp. 93–101. [Google Scholar]
- Tong, G.; Jin, X.X. Study on the Simulation of Radial Tire Wear Characteristics. WSEAS Trans. Syst. 2012, 11, 419–429. [Google Scholar]
- Lowne, R.W. The Effect of Road Surface Texture on Tyre Wear. Wear 1970, 15, 57–70. [Google Scholar] [CrossRef]
- Chang, X.; Huang, H.; Jiao, R.; Liu, J. Experimental Investigation on the Characteristics of Tire Wear Particles under Different Non-Vehicle Operating Parameters. Tribol. Int. 2020, 150, 106354. [Google Scholar] [CrossRef]
- TF TA Proposal for Supplement 02 to the 04 Series of Amendments to UN Regulation No. 117 (Tyre Rolling Resistance, Rolling Noise and Wet Grip). 2023. Available online: https://unece.org/transport/documents/2023/11/working-documents/tfta-proposal-supplement-02-04-series-amendments-un-1 (accessed on 17 November 2023).
- Yan, H.; Zhang, L.; Liu, L.; Wen, S. Investigation of the External Conditions and Material Compositions Affecting the Formation Mechanism and Size Distribution of Tire Wear Particles. Atmos. Environ. 2021, 244, 118018. [Google Scholar] [CrossRef]
- Sjödin, Å.; Ferm, M.; Björk, A.; Rahmberg, M.; Gudmundsson, A.; Swietlick, E.; Johansson, C.; Gustafsson, M.; Blomqvist, G. Wear Particles from Road Traffic—A Field, Laboratory and Modelling Study; IVL Swedish Environmental Research Institute: Göteborg, Sweden, 2010. [Google Scholar]
- Kienle, R.N.; Grosch, K.A.; Scott, C.E. Material Properties Affecting Traction and Wear of Passenger Tires; SAE: Warrendale, PA, USA, 1972; p. 720161. [Google Scholar] [CrossRef]
- Braghin, F.; Cheli, F.; Melzi, S.; Resta, F. Tyre Wear Model: Validation and Sensitivity Analysis. Meccanica 2006, 41, 143–156. [Google Scholar] [CrossRef]
- Cho, J.C.; Jung, B.C. Prediction of Tread Pattern Wear by an Explicit Finite Element Model. Tire Sci. Technol. 2007, 35, 276–299. [Google Scholar] [CrossRef]
- Wang, C.; Huang, H.; Chen, X.; Liu, J. The Influence of the Contact Features on the Tyre Wear in Steady-State Conditions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1326–1339. [Google Scholar] [CrossRef]
- Maître, O.L.; Süssner, M.; Zarak, C. Evaluation of Tire Wear Performance; SAE: Warrendale, PA, USA, 1998; p. 980256. [Google Scholar] [CrossRef]
- Smith, K.R.; Kennedy, R.H.; Knisley, S.B. Prediction of Tire Profile Wear by Steady-State FEM. Tire Sci. Technol. 2008, 36, 290–303. [Google Scholar] [CrossRef]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2005, 39, 699–706. [Google Scholar] [CrossRef]
- Woo, S.-H.; Jang, H.; Mun, S.-H.; Lim, Y.; Lee, S. Effect of Treadwear Grade on the Generation of Tire PM Emissions in Laboratory and Real-World Driving Conditions. Sci. Total Environ. 2022, 838, 156548. [Google Scholar] [CrossRef]
- Ha, J.U.; Bae, S.H.; Choi, Y.J.; Lee, P.-C.; Jeoung, S.K.; Song, S.; Choi, C.; Lee, J.S.; Kim, J.; Han, I.S. Control of Tire Wear Particulate Matter through Tire Tread Prescription. Polymers 2023, 15, 2795. [Google Scholar] [CrossRef]
- Dong, C.L.; Yuan, C.Q.; Bai, X.Q.; Yan, X.P.; Peng, Z. Tribological Properties of Aged Nitrile Butadiene Rubber under Dry Sliding Conditions. Wear 2015, 322–323, 226–237. [Google Scholar] [CrossRef]
- He, J.F.; Jin, X.X.; Hou, C.Y. Simulation Analysis and Research of Tire Wear. AMR 2011, 299–300, 1212–1216. [Google Scholar] [CrossRef]
- Aatmeeyata; Kaul, D.S.; Sharma, M. Traffic Generated Non-Exhaust Particulate Emissions from Concrete Pavement: A Mass and Particle Size Study for Two-Wheelers and Small Cars. Atmos. Environ. 2009, 43, 5691–5697. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Zhou, H.; Zhang, W.; Chen, Y.; Zhu, H. Analysis of the Effect of Wear on Tire Cornering Characteristics Based on Grounding Characteristics. World Electr. Veh. J. 2023, 14, 166. [Google Scholar] [CrossRef]
- Huang, H.; Chiu, Y.; Wang, C.; Jin, X. Three-Dimensional Global Pattern Prediction for Tyre Tread Wear. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 197–213. [Google Scholar] [CrossRef]
- Chen, X.; Xu, N.; Guo, K. Tire Wear Estimation Based on Nonlinear Lateral Dynamic of Multi-Axle Steering Vehicle. Int. J. Automot. Technol. 2018, 19, 63–75. [Google Scholar] [CrossRef]
- Schütte, J.; Sextro, W. Tire Wear Reduction Based on an Extended Multibody Rear Axle Model. Vehicles 2021, 3, 233–256. [Google Scholar] [CrossRef]
- Lee, S.W.; Jeong, K.M.; Kim, K.W.; Kim, J.H. Numerical Estimation of the Uneven Wear of Passenger Car Tires. World J. Eng. Technol. 2018, 06, 780–793. [Google Scholar] [CrossRef]
- Obereigner, G.; Shorten, R.; Del Re, L. Low Tyre Particle Control. In Proceedings of the 2020 IEEE 24th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 8 October 2020; pp. 757–762. [Google Scholar]
- Alexandrova, O.; Kaloush, K.E.; Allen, J.O. Impact of Asphalt Rubber Friction Course Overlays on Tire Wear Emissions and Air Quality Models for Phoenix, Arizona, Airshed. Transp. Res. Rec. 2007, 2011, 98–106. [Google Scholar] [CrossRef]
- Lepine, J.; Na, X.; Cebon, D. An Empirical Tire-Wear Model for Heavy-Goods Vehicles. Tire Sci. Technol. 2022, 50, 211–229. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Lu, T.-H.; Wang, W.-M.; Liao, C.-M. Assessing Regional Emissions of Vehicle-Based Tire Wear Particle from Macro-to Micro/Nano-Scales with Pandemic Lockdowns and Electromobility Scenarios Implications. Chemosphere 2023, 311, 137209. [Google Scholar] [CrossRef]
- IDIADA Study on Tyres Abrasion Test Method & Durability Investigation. Presented at the Task Force on Tyre Abrasion, Online, 2 September 2022; Document: TA-02-02 Study_ADAC_tyre_abrasion_110522. Available online: https://wiki.unece.org/display/trans/tf+ta+session+4 (accessed on 17 November 2023).
- UTAC ACEA. Tyre Performance Study Report. In Report AFFSAS1801813; GRBP-75-18; UTAC: Montlhéry, France, 2021. [Google Scholar]
- Emissions Analytics What’s in a Tyre? 2021. Available online: https://www.emissionsanalytics.com/news/whats-in-a-tyre (accessed on 17 November 2023).
- Silvestro, D. ADAC Tyre Test: Tyre Abrasion—On Road Tests. Presented at the Task Force on Tyre Abrasion, Online, 11 May 2022; Document: TA-02-02 Study_ADAC_tyre_abrasion_110522. Available online: https://wiki.unece.org/display/trans/tf+ta+session+2 (accessed on 17 November 2023).
- ADAC. ADAC Test. Summer Tyres in the Dimension 205/55 R16 91 V. Document TA-12-05. Presented at the TF TA Session 12th, Online, 28 April 2023. Available online: https://wiki.unece.org/display/trans/tf+ta+session+12 (accessed on 17 November 2023).
- Ullah, I.; Safdar, M.; Zheng, J.; Severino, A.; Jamal, A. Employing Bibliometric Analysis to Identify the Current State of the Art and Future Prospects of Electric Vehicles. Energies 2023, 16, 2344. [Google Scholar] [CrossRef]
- Simons, A. Road Transport: New Life Cycle Inventories for Fossil-Fuelled Passenger Cars and Non-Exhaust Emissions in Ecoinvent V3. Int. J. Life Cycle Assess. 2016, 21, 1299–1313. [Google Scholar] [CrossRef]
- Timmers, V.R.J.H.; Achten, P.A.J. Non-Exhaust PM Emissions from Electric Vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- ETRTO Tyre Abrasion 2021 Tests Preliminary Report. Online, 17 June 2022. Available online: https://wiki.unece.org/display/trans/tf+ta+session+3 (accessed on 17 November 2023).
- Silvestro, D. ADAC Tyre Test. Tyre Abrasion vs. Safety Performance. Presented at the Task Force on Tyre Abrasion, Online, 11 May 23; Document: TA-13-02 Study_ADAC_tyre_abrasion_safety. Available online: https://wiki.unece.org/display/trans/tf+ta+session+13 (accessed on 17 November 2023).
- ETRTO Market Share of TFTA Tyre Selection List. Document TA-10-06. Online, 10 March 2023. Available online: https://wiki.unece.org/display/trans/tf+ta+session+10 (accessed on 17 November 2023).
- ETRTO C1 Market Assessment. Document TA-18-03. Online, 13 November 2022. Available online: https://wiki.unece.org/display/trans/tf+ta+session+18 (accessed on 17 November 2023).
- Molden, N. How to Reduce Emissions of Micro Particles from Tyres to Minimise Health and Environmental Impact and Avoid Reputational Damage. Presented at the Automotive Tire Technology 2023, Munich, Germany, 24 January 2023. Available online: https://www.emissionsanalytics.com/news/presentation-how-to-reduce-emissions-of-micro-particles-from-tyres-to-minimise-health-and-environmental-impact-and-avoid-reputational-damage (accessed on 17 November 2023).
- Dodu, M. Tyre Abrasion Study for ACEA. Presented at 19th TFTA Meeting, Online, 13 December 2023; Document TA-19-03. Available online: https://wiki.unece.org/display/trans/tf+ta+session+19 (accessed on 17 November 2023).
- Troyanovskaya, I.; Grebenshchikova, O.; Erofeev, V. Measurements of Tire and Roadway Dust Particulates in Chelyabinsk. Eng. World 2022, 4, 27–33. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Kim, Y.; Choi, Y.; Woo, S.H. Effect of Tire Treadwear Rate on the Physical Characterization of Tire Wear Particles in Laboratory Measurements. KOSAE 2019, 35, 741–756. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, T.; Men, Z.; Wei, N.; Peng, J.; Du, T.; Zhang, X.; Ma, Y.; Wu, L.; Mao, H. Direct Measurement of Brake and Tire Wear Particles Based on Real-World Driving Conditions. Sci. Total Environ. 2024, 906, 167764. [Google Scholar] [CrossRef] [PubMed]
- Beddows, D.C.S.; Harrison, R.M. PM10 and PM2.5 Emission Factors for Non-Exhaust Particles from Road Vehicles: Dependence upon Vehicle Mass and Implications for Battery Electric Vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Harrison, R.M.; Gonet, T.; Maher, B.A.; Odling, N. Measurement of Road Traffic Brake and Tyre Dust Emissions Using Both Particle Composition and Size Distribution Data. Environ. Pollut. 2023, 331, 121830. [Google Scholar] [CrossRef] [PubMed]
- EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 1.A.3.b.vi-Vii Road Tyre and Brake Wear 2019. 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-vi/view (accessed on 17 November 2023).
- Williams, H. Non-Exhaust Emissions from Road Transport—Policy Briefing Note Produced by the TRANSITION Clean Air Network; Institute of Applied Health Research: Birmingham, UK, 2022; Available online: http://epapers.bham.ac.uk/4108/1/Non-Exhaust-Emissions-from-Road-Transport-TRANSITION-Clean-Air-Network.pdf (accessed on 17 November 2023).
- Johannesson, M.; Lithner, D. Potential Policy Instruments and Measures against Microplastics from Tyre and Road Wear: Mapping and Prioritisation; VTI: Stockholm, Sweden, 2022. [Google Scholar]
- Gehrke, I.; Schläfle, S.; Bertling, R.; Öz, M.; Gregory, K. Review: Mitigation Measures to Reduce Tire and Road Wear Particles. Sci. Total Environ. 2023, 904, 166537. [Google Scholar] [CrossRef] [PubMed]
- Valentini, F.; Pegoretti, A. End-of-Life Options of Tyres. A Review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Trudsø, L.L.; Nielsen, M.B.; Hansen, S.F.; Syberg, K.; Kampmann, K.; Khan, F.R.; Palmqvist, A. The Need for Environmental Regulation of Tires: Challenges and Recommendations. Environ. Pollut. 2022, 311, 119974. [Google Scholar] [CrossRef]
- Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. [Google Scholar] [CrossRef]
- Fořt, J.; Kobetičová, K.; Böhm, M.; Podlesný, J.; Jelínková, V.; Vachtlová, M.; Bureš, F.; Černý, R. Environmental Consequences of Rubber Crumb Application: Soil and Water Pollution. Polymers 2022, 14, 1416. [Google Scholar] [CrossRef] [PubMed]
- Armada, D.; Llompart, M.; Celeiro, M.; Garcia-Castro, P.; Ratola, N.; Dagnac, T.; De Boer, J. Global Evaluation of the Chemical Hazard of Recycled Tire Crumb Rubber Employed on Worldwide Synthetic Turf Football Pitches. Sci. Total Environ. 2022, 812, 152542. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Huang, H.; Pei, J.; Xu, Y.; Cao, J. A Methodology for Capturing Tire Wear Particles: Computational Particle Fluid Dynamics Modelling and Experimental Verification. Powder Technol. 2021, 384, 176–185. [Google Scholar] [CrossRef]
- Marchioni, M.; Fedele, R.; Raimondi, A.; Sansalone, J.; Becciu, G. Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT. Water Resour. Manag. 2022, 36, 1879–1895. [Google Scholar] [CrossRef]
- Jayakaran, A.; Knappenberger, T.; Stark, J.; Hinman, C. Remediation of Stormwater Pollutants by Porous Asphalt Pavement. Water 2019, 11, 520. [Google Scholar] [CrossRef]
- Dutta, A.; Torres, A.S.; Vojinovic, Z. Evaluation of Pollutant Removal Efficiency by Small-Scale Nature-Based Solutions Focusing on Bio-Retention Cells, Vegetative Swale and Porous Pavement. Water 2021, 13, 2361. [Google Scholar] [CrossRef]
- Svensson, N.; Lundberg, J.; Janhäll, S.; Kulovuori, S.; Gustafsson, M. Effects of a Porous Asphalt Pavement on Dust Suspension and PM10 Concentration. Transp. Res. Part D Transp. Environ. 2023, 123, 103921. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Lykkemark, J.; Andersen, T.R.; Vollertsen, J. Permeable Pavements: A Possible Sink for Tyre Wear Particles and Other Microplastics? Sci. Total Environ. 2023, 869, 161770. [Google Scholar] [CrossRef]
- CEDR. MICROPROOF (Micropollutants in Road RunOff): Efficiency of Treatment Systems). Deliverable 4.2; Transnational Road Research Programme: New York, NY, USA, 2019; Available online: https://www.cedr.eu/download/other_public_files/research_programme/call_2016/call_2016_water_quality/microproof/Microproof-D4.2-Efficiency-of-treatment-systems.pdf (accessed on 17 November 2023).
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A Review on the Effectiveness of Street Sweeping, Washing and Dust Suppressants as Urban PM Control Methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef]
- Liu, Y.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I. A Review on Effectiveness of Best Management Practices in Improving Hydrology and Water Quality: Needs and Opportunities. Sci. Total Environ. 2017, 601–602, 580–593. [Google Scholar] [CrossRef]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, G.; Spengler, J.D. Impact of Bicycle Route Type on Exposure to Traffic-Related Air Pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The Nexus between Air Pollution, Green Infrastructure and Human Health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef]
- Lin, S.-L.; Deng, Y.; Lin, M.-Y.; Huang, S.-W. Do the Street Sweeping and Washing Work for Reducing the Near-Ground Levels of Fine Particulate Matter and Related Pollutants? Aerosol Air Qual. Res. 2023, 23, 220338. [Google Scholar] [CrossRef]
- Li, M.; Wang, K.; Xiong, Y. Multiple Intermolecular Interaction to Improve the Abrasion Resistance and Wet Skid Resistance of Eucommia Ulmoides Gum/Styrene Butadiene Rubber Composite. Materials 2021, 14, 5246. [Google Scholar] [CrossRef]
- Araujo-Morera, J.; Hernández Santana, M.; Verdejo, R.; López-Manchado, M.A. Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers 2019, 11, 2122. [Google Scholar] [CrossRef] [PubMed]
- Ayar, M.; Dalkiran, A.; Kale, U.; Nagy, A.; Karakoc, T.H. Investigation of the Substitutability of Rubber Compounds with Environmentally Friendly Materials. Sustainability 2021, 13, 5251. [Google Scholar] [CrossRef]
- Papaioannou, G.; Jerrelind, J.; Drugge, L. Multi-Objective Optimisation of Tyre and Suspension Parameters during Cornering for Different Road Roughness Profiles. Appl. Sci. 2021, 11, 5934. [Google Scholar] [CrossRef]
- European Commission. Joint Research Centre. The Future of Road Transport: Implications of Automated, Connected, Low Carbon and Shared Mobility; Publications Office: Luxembourg, 2019.
- Mian, H.R.; Chhipi-Shrestha, G.; McCarty, K.; Hewage, K.; Sadiq, R. An Estimation of Tire and Road Wear Particles Emissions in Surface Water Based on a Conceptual Framework. Sci. Total Environ. 2022, 848, 157760. [Google Scholar] [CrossRef]
- Grigoratos, T. Regulation on Brake/Tire Composition. In Non-Exhaust Emissions; Academic Press: London, UK, 2018; pp. 89–100. ISBN 978-0-12-811770-5. [Google Scholar]
- European Commission Internal Market, Industry, Entrepreneurship and SMEs. Critical Raw Materials. 2023. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 17 November 2023).
- European Commission Circular Economy: Improving Design and End-of-Life Management of Cars for More Resource-Efficient Automotive Sector. Document COM(2023) 451 Final 2023/0284(COD). 2023. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3819 (accessed on 17 November 2023).
- U.S. Tire manufacturers What’s in a Tire. 2023. Available online: https://www.ustires.org/whats-tire-0 (accessed on 17 November 2023).
- Landi, D.; Vitali, S.; Germani, M. Environmental Analysis of Different End of Life Scenarios of Tires Textile Fibers. Procedia CIRP 2016, 48, 508–513. [Google Scholar] [CrossRef]
- JATMA. Tyre LCCO2 Calculation Guidelines Ver. 2.0; The Japan Automobile Tyre Manufacturers Association, Inc.: Tokyo, Japan, 2012; Available online: https://www.bridgestone.com/responsibilities/environment/reduce_co2/pdf/lcco2guidelines.pdf (accessed on 17 November 2023).
- Wik, A.; Dave, G. Occurrence and Effects of Tire Wear Particles in the Environment—A Critical Review and an Initial Risk Assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef]
- Baumann, W.; Ismeier, M. Kautschuk und Gummi; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-63788-9. [Google Scholar]
- Continental. Tyre Basics: Passenger Car Tyres; Report TDC 10/2013 0130 1620; Continental: Berlin, Germany, 2013. [Google Scholar]
- Bekhiti, M.; Trouzine, H.; Asroun, A. Properties of Waste Tire Rubber Powder. Eng. Technol. Appl. Sci. Res. 2014, 4, 669–672. [Google Scholar] [CrossRef]
Year | Ref. | No. of Tyres | PM10 mg/km | PM10/ Abrasion | PM2.5 mg/km | Pm2.5/ Abrasion | PM2.5/ PM10 | Comments |
---|---|---|---|---|---|---|---|---|
2005 | [188] | 2 | (9–11) | - | 1–2 | - | 0.11 | Road simulator |
2010 | [181] | 3 types | {0.9} | - | - | - | - | Up to 350 mg/km 1 |
2013 | [100] | 1 | - | - | - | - | 0.73 | On-road |
2018 | [156] | 5 | - | - | - | - | 0.45 | Road simulator |
2018 | [141] | 4 | (0.05) | 1.5% | 0.04 | 1.2% | 0.82 | Drum, abrasion 3.4 mg/km |
2018 | [116] | 1 | (0.01) | 0.3% | 0.00 | 0.1% | 0.55 | Drum, abrasion 3–9000 mg/km |
2019 | [218] | 5 | - | - | - | - | 0.70 | Drum |
2020 | [130] | 4 | 1.9 | - | - | - | - | Road simulator |
2021 | [180] | 1 | - | - | - | - | 0.25 | Abrasion device |
2021 | [152] | 1 | 1.7 | 3.7% | 1.3 | 3.3% | 0.76 | Drum-like |
2022 | [174] | 3 | 2.2 | - | 0.4 | - | 0.16 | Drum 2 |
2022 | [189] | 4 | 0.9 | - | 0.2 | - | 0.23 | Drum |
2023 | [162] | 3 | - | 2.4% 3 | - | 0.2% | 0.08 | On-road |
2024 | [219] | 9 | 0.4 | - | 0.1 | - | 0.15 | Drum |
Average | 2.2 (1.4) 4 | 2.5% | 0.5 | 1.6% | 0.42 | |||
Weighted average | 1.9 (1.1) 4 | 1.9% | 0.3 | 1.0% | 0.37 |
Regulation | Comments |
---|---|
Raw materials | |
EU Critical Raw Materials Act [250] | Refers to critical raw material supply disruption and vulnerabilities. Natural rubber is recognised as a critical raw material. |
Production of synthetic rubber and tyres | |
Directive 2010/75/EU | Industrial Emissions Directive: polymers are considered PLCs |
Regulation 1907/2006 (European chemical legislation REACH) | Manufacturers and importers must register substances of REACH list (PLCs are exempted) SVHCs with concentr. > 0.1%, quantity > 1 t/year are registered to ECHA 1 |
Directive 2005/69/EC | Max 1 mg/kg BaP or 10 mg/kg of the sum of the 8 listed PAHs |
Use | |
Regulation EU 2019/214 | General safety of motor vehicles |
Directive 2004/107/EC | BaP in air < 1 ng/m3 in PM10 averaged over a year |
Directive 2008/50/EC | Ambient Air Quality (AQ) standards for PM10 and PM2.5 and metals |
Directive 2016/2284/EU | National Emissions reduction Commitments (NEC) emission reduction commitments for Member States and the EU for PM2.5 2 |
Regulation EU 2019/214 | Tyre pressure monitoring systems (TPMSs) have been mandatory since 2012 |
Directive 2014/45/EU | Wheel alignment control is part of regular vehicle inspections |
Regulation EU 2020/740 | Tyre labelling on fuel efficiency (rolling resistance), safety (wet grip), and noise reduction |
Directive 2000/60/EC | Water Frame Directive priority list (tyre substances such as 6-PPD, aniline, and benzothiazole are not included) |
End of life and repurposing | |
Directive 1999/31/EC | Prohibits landfilling waste tyres |
Directive 2000/53/EC | Prevents waste from vehicles and their components (incl. tyres) 3 |
Decision 2000/532/EC | Rubber waste is non-hazardous |
Regulation EC 1907/2006 | <20 mg/kg PAHs in granules used as infill |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. https://doi.org/10.3390/su16020522
Giechaskiel B, Grigoratos T, Mathissen M, Quik J, Tromp P, Gustafsson M, Franco V, Dilara P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability. 2024; 16(2):522. https://doi.org/10.3390/su16020522
Chicago/Turabian StyleGiechaskiel, Barouch, Theodoros Grigoratos, Marcel Mathissen, Joris Quik, Peter Tromp, Mats Gustafsson, Vicente Franco, and Panagiota Dilara. 2024. "Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution" Sustainability 16, no. 2: 522. https://doi.org/10.3390/su16020522
APA StyleGiechaskiel, B., Grigoratos, T., Mathissen, M., Quik, J., Tromp, P., Gustafsson, M., Franco, V., & Dilara, P. (2024). Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability, 16(2), 522. https://doi.org/10.3390/su16020522