Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Empirical Model
2.2. Data and Variables
2.3. Estimation Methods
2.4. Model Selection for Scenario Analyses
3. Results
3.1. Empirical Findings
3.2. Scenario Analyses: Projections of Plastic Pollution
3.2.1. Scenario Description
- Business-as-usual (BAU) scenario: All explanatory variables increase with the same linear trend from 1996 to 2021 if their projections are unavailable. Furthermore, for countries where the explanatory variable values exceed a reasonable range and were considered outliers, an exponential trend or a limit is applied to obtain reasonable projections based on the consensus of authors. The same rule is applied to the other variables in all scenarios;
- Scenario A (slow GDP): GDP per capita grows at half the average annual rate of the BAU scenario for 2022–2050;
- Scenario B (change in population structure): The 15–64 age group grows twice as quickly compared to the average annual rate of the BAU scenario for 2022–2050;
- Scenario C (high-speed urbanization): The percentage of the population residing in urban areas doubles compared to the average annual rate of the BAU scenario for 2022–2050;
- Scenario D (high-speed urban primacy): The percentage of the urban population residing in the largest city of the country doubles compared to the average annual rate of the BAU scenario for 2022–2050.
3.2.2. Projections
Global Scale
Income Level
Key Countries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, S.J. Understanding plastics pollution: The role of economic development and technological research. Environ. Pollut. 2019, 249, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Issifu, I.; Sumaila, U.R. A review of the production, recycling and management of marine plastic pollution. J. Mar. Sci. Eng. 2020, 8, 945. [Google Scholar] [CrossRef]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- WWF-Australia. The Lifecycle of Plastics. Available online: https://wwf.org.au/blogs/the-lifecycle-of-plastics (accessed on 26 December 2023).
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Cordier, M.; Uehara, T. How much innovation is needed to protect the ocean from plastic contamination? Sci. Total Environ. 2019, 670, 789–799. [Google Scholar] [CrossRef]
- GESAMP. Sources, fate and effects of microplastics in the marine environment: A global assessment. In GESAMP Reports and Studies; Kershaw, P.J., Ed.; IMO Publishing: London, UK, 2015. [Google Scholar]
- Villarrubia-Gómez, P.; Cornell, S.E.; Fabres, J. Marine plastic pollution as a planetary boundary threat—The drifting piece in the sustainability puzzle. Mar. Policy 2018, 96, 213–220. [Google Scholar] [CrossRef]
- Woods, J.S.; Verones, F.; Jolliet, O.; Vázquez-Rowe, I.; Boulay, A.-M. A framework for the assessment of marine litter impacts in life cycle impact assessment. Ecol. Indic. 2021, 129, 107918. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Lau, L.-S.; Yii, K.-J.; Ng, C.-F.; Tan, Y.-L.; Yiew, T.-H. Environmental Kuznets curve (EKC) hypothesis: A bibliometric review of the last three decades. Energy Environ. 2023, 0958305X231177734. [Google Scholar] [CrossRef]
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Cordier, M.; Uehara, T.; Baztan, J.; Jorgensen, B.; Yan, H. Plastic pollution and economic growth: The influence of corruption and lack of education. Ecol. Econ. 2021, 182, 106930. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Wei, T. What STIRPAT tells about effects of population and affluence on the environment? Ecol. Econ. 2011, 72, 70–74. [Google Scholar] [CrossRef]
- York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y. Impacts of urbanization and technology on carbon dioxide emissions of Yangtze River economic Belt at two stages: Based on an extended STIRPAT model. Sustainability 2021, 13, 7022. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U.; Lean, H.H.; Somasundram, S. Unveiling the non-linear impact of sectoral output on environmental pollution in Malaysia. Environ. Sci. Pollut. Res. Int. 2022, 29, 7465–7488. [Google Scholar] [CrossRef]
- Jia, J.; Deng, H.; Duan, J.; Zhao, J. Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method—A case study in Henan Province, China. Ecol. Econ. 2009, 68, 2818–2824. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, W.; Zhang, M.; Cheng, B. Pollution haven or halo? The role of the energy transition in the impact of FDI on SO2 emissions. Sci. Total Environ. 2021, 763, 143002. [Google Scholar] [CrossRef]
- Yang, R.; Chen, W. Spatial correlation, influencing factors and environmental supervision on mechanism construction of atmospheric pollution: An empirical study on SO2 emissions in China. Sustainability 2019, 11, 1742. [Google Scholar] [CrossRef]
- Dong, Q.; Lin, Y.; Huang, J.; Chen, Z. Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data. China Econ. Rev. 2020, 59, 101381. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Yang, R.; Li, X.; Zhang, L.; Li, M. Decoupling water environment pressures from economic growth in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 122, 107314. [Google Scholar] [CrossRef]
- Charles-Edwards, E.; Wilson, T.; Bernard, A.; Wohland, P. How will COVID-19 impact Australia’s future population? A scenario approach. Appl. Geogr. 2021, 134, 102506. [Google Scholar] [CrossRef]
- Cole, M.A.; Neumayer, E. Examining the impact of demographic factors on air pollution. Popul. Environ. 2004, 26, 5–21. [Google Scholar] [CrossRef]
- Goel, R.K.; Herrala, R.; Mazhar, U. Institutional quality and environmental pollution: MENA countries versus the rest of the world. Econ. Syst. 2013, 37, 508–521. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. How population and energy price affect China’s environmental pollution? Energy Policy 2019, 129, 386–396. [Google Scholar] [CrossRef]
- Qin, B.; Wu, J. Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008. China Econ. Rev. 2015, 35, 220–231. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: London, UK, 2010. [Google Scholar]
- Feng, K.; Hubacek, K.; Guan, D. Lifestyles, technology and CO2 emissions in China: A regional comparative analysis. Ecol. Econ. 2009, 69, 145–154. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef]
- Hua, Y.; Xie, R.; Su, Y. Fiscal spending and air pollution in Chinese cities: Identifying composition and technique effects. China Econ. Rev. 2018, 47, 156–169. [Google Scholar] [CrossRef]
- Salim, R.; Rafiq, S.; Shafiei, S.; Yao, Y. Does urbanization increase pollutant emission and energy intensity? Evidence from some Asian developing economies. Appl. Econ. 2019, 51, 4008–4024. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, M.; Wang, Y.; Xu, L.; Malik, A. The impact of foreign direct investment on China’s carbon emissions through energy intensity and emissions trading system. Energy Econ. 2021, 97, 105212. [Google Scholar] [CrossRef]
- Pham, N.M.; Huynh, T.L.D.; Nasir, M.A. Environmental consequences of population, affluence and technological progress for European countries: A Malthusian view. J. Environ. Manag. 2020, 260, 110143. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Huang, Q.; Yue, H.; He, C.; Wang, C.; Zhang, H. Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model. J. Environ. Manag. 2020, 273, 111134. [Google Scholar] [CrossRef] [PubMed]
- Shi, A. The impact of population pressure on global carbon dioxide emissions, 1975–1996: Evidence from pooled cross-country data. Ecol. Econ. 2003, 44, 29–42. [Google Scholar] [CrossRef]
- Leitão, A. Corruption and the environmental Kuznets curve: Empirical evidence for sulfur. Ecol. Econ. 2010, 69, 2191–2201. [Google Scholar] [CrossRef]
- World Bank Group; Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018; Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 4 November 2023).
- World Bank Group; Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank Publications: Washington, DC, USA, 2012; Available online: https://openknowledge.worldbank.org/handle/10986/17388 (accessed on 4 November 2023).
- World Bank DataBank. World Governance Indicators. 2023. Available online: https://databank.worldbank.org/source/worldwide-governance-indicators (accessed on 4 November 2023).
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; SAGE Publications Ltd.: London, UK, 2012. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.; Thompson Publishing Learning: Boston, MA, USA, 1990. [Google Scholar]
- Baltagi, H.B. Econometric Analysis of Panel Data, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Kimino, S.; Saal, D.S.; Driffield, N. Macro determinants of FDI inflows to Japan: An analysis of source country characteristics. World Econ. 2007, 30, 446–469. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y. Regional model of EKC for air pollution: Evidence from the Republic of Korea. Energy Policy 2011, 39, 5840–5849. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Roca, J.; Padilla, E.; Farré, M.; Galletto, V. Economic growth and atmospheric pollution in Spain: Discussing the environmental Kuznets curve hypothesis. Ecol. Econ. 2001, 39, 85–99. [Google Scholar] [CrossRef]
- Sulemana, I.; James, H.S.; Rikoon, J.S. Environmental Kuznets Curves for air pollution in African and developed countries: Exploring turning point incomes and the role of democracy. J. Environ. Econ. Policy 2017, 6, 134–152. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.A.; Inekwe, J.; Ivanovski, K.; Smyth, R. The environmental Kuznets curve across Australian states and territories. Energy Econ. 2020, 90, 104869. [Google Scholar] [CrossRef]
- Dikareva, N.; Simon, K.S. Microplastic pollution in streams spanning an urbanisation gradient. Environ. Pollut. 2019, 250, 292–299. [Google Scholar] [CrossRef]
- Liddle, B. Consumption-driven environmental impact and age structure change in OECD countries: A cointegration-STIRPAT analysis. DemRes 2011, 24, 749–770. [Google Scholar] [CrossRef]
- Gifford, R.; Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: A review. Int. J. Psychol. 2014, 49, 141–157. [Google Scholar] [CrossRef]
- Hartley, B.L.; Pahl, S.; Veiga, J.; Vlachogianni, T.; Vasconcelos, L.; Maes, T.; Doyle, T.; d’Arcy Metcalfe, R.D.A.; Öztürk, A.A.; Di Berardo, M.; et al. Exploring public views on marine litter in Europe: Perceived causes, consequences and pathways to change. Mar. Pollut. Bull. 2018, 133, 945–955. [Google Scholar] [CrossRef]
- IPCC; Nakicenovic, N.; Swart, R. (Eds.) The Edinburgh Building Shaftesbury Road, Cambridge; Cambridge University Press: Cambridge, UK, 2000; p. 570. Available online: https://www.ipcc.ch/report/emissions-scenarios (accessed on 4 November 2023).
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Kooi, M.; Law, K.L.; Van Sebille, E. All is not lost: Deriving a top-down mass budget of plastic at sea. Environ. Res. Lett. 2017, 12, 114028. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wu, P.; Schartup, A.T.; Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl. Acad. Sci. USA 2021, 118, e2111530118. [Google Scholar] [CrossRef]
- Fan, Y.V.; Jiang, P.; Tan, R.R.; Aviso, K.B.; You, F.; Zhao, X.; Lee, C.T.; Klemeš, J.J. Forecasting plastic waste generation and interventions for environmental hazard mitigation. J. Hazard. Mater. 2022, 424, 127330. [Google Scholar] [CrossRef]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario planning: A tool for conservation in an uncertain world. Conserv. Biol. 2003, 17, 358–366. [Google Scholar] [CrossRef]
- D-Waste. Waste Atlas. 2016. Available online: http://www.atlas.d-waste.com (accessed on 4 November 2023).
- Ministry of the Environment Japan. G20 Report on Actions against Marine Plastic Litter: Third Information Sharing Based on the G20 Implementation Framework 2021, 2nd ed.; Ministry of the Environment: Tokyo, Japan, 2021. Available online: https://www.env.go.jp/press/files/en/938.pdf (accessed on 4 November 2023).
- Uehara, T. Can young generations recognize marine plastic waste as a systemic issue? Sustainability 2020, 12, 2586. [Google Scholar] [CrossRef]
- World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, The New Plastics Economy—Rethinking the future of plastics. 2016. Available online: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 4 November 2023).
- Liang, Y.; Tan, Q.; Song, Q.; Li, J. An analysis of the plastic waste trade and management in Asia. Waste Manag. 2021, 119, 242–253. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Lim, M.K.; Chen, W.-Q.; Sutherland, J.W. Structure of the global plastic waste trade network and the impact of China’s import Ban. Resour. Conserv. Recycl. 2020, 153, 104591. [Google Scholar] [CrossRef]
- Alpizar, F.; Carlsson, F.; Lanza, G.; Carney, B.; Daniels, R.C.; Jaime, M.; Ho, T.; Nie, Z.; Salazar, C.; Tibesigwa, B.; et al. A framework for selecting and designing policies to reduce marine plastic pollution in developing countries. Environ. Sci. Policy 2020, 109, 25–35. [Google Scholar] [CrossRef]
- Fadeeva, Z.; Van Berkel, R. Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives. J. Environ. Manag. 2021, 277, 111457. [Google Scholar] [CrossRef]
- Kirakozian, A. One without the other? Behavioural and incentive policies for household waste management. J. Econ. Surv. 2016, 30, 526–551. [Google Scholar] [CrossRef]
- Uehara, T.; Asari, M.; Sakurai, R. Knowing the rules can effectively enhance plastic waste separation on campus. Front. Sustain. 2022, 3, 1023605. [Google Scholar] [CrossRef]
- Uehara, T.; Asari, M.; Sakurai, R.; Cordier, M.; Kalyanasundaram, M. Behavioral barrier-based framework for selecting intervention measures toward sustainable plastic use and disposal. J. Clean. Prod. 2023, 384, 135609. [Google Scholar] [CrossRef]
- European Environment Agency. Preventing Plastic Waste in Europe; Publications Office of the European Union: Luxembourg, 2019; Available online: https://www.eea.europa.eu/publications/preventing-plastic-waste-in-europe/at_download/file (accessed on 4 November 2023).
- Grilli, G.; Curtis, J. Encouraging pro-environmental behaviours: A review of methods and approaches. Renew. Sustain. Energy Rev. 2021, 135, 110039. [Google Scholar] [CrossRef]
- De Mello, L.R. Foreign direct investment in developing countries and growth: A selective survey. J. Dev. Stud. 1997, 34, 1–34. [Google Scholar] [CrossRef]
- Bari, Q.H.; Mahbub Hassan, K.M.; Haque, R. Scenario of solid waste reuse in Khulna city of Bangladesh. Waste Manag. 2012, 32, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Burneo, D.; Cansino, J.M.; Yñiguez, R. Environmental and socioeconomic impacts of urban waste recycling as part of circular economy. The case of Cuenca (Ecuador). Sustainability 2020, 12, 3406. [Google Scholar] [CrossRef]
- Nielsen, T.D.; Hasselbalch, J.; Holmberg, K.; Stripple, J. Politics and the plastic crisis: A review throughout the plastic life cycle. WIREs Energy Environ. 2020, 9, e360. [Google Scholar] [CrossRef]
- Bolger, K.; Doyon, A. Circular cities: Exploring local government strategies to facilitate a circular economy. Eur. Plan. Stud. 2019, 27, 2184–2205. [Google Scholar] [CrossRef]
- Savini, F. The economy that runs on waste: Accumulation in the circular city. J. Environ. Policy Plan. 2019, 21, 675–691. [Google Scholar] [CrossRef]
- Williams, J. The role of spatial planning in transitioning to circular urban development. Urban Geogr. 2020, 41, 915–919. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Impact of China’s new-type urbanization on energy intensity: A city-level analysis. Energy Econ. 2021, 99, 105292. [Google Scholar] [CrossRef]
- Evans, M.C.; Ruf, C.S. Toward the detection and imaging of ocean microplastics with a spaceborne radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4202709. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Mertig, A.G. Global concern for the environment: Is affluence a prerequisite? J. Soc. Issues 1995, 51, 121–137. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- D’Amato, A.; Mazzanti, M.; Nicolli, F.; Zoli, M. Illegal waste disposal: Enforcement actions and decentralized environmental policy. Socio-Econ. Plan. Sci. 2018, 64, 56–65. [Google Scholar] [CrossRef]
- Santos, A.C.; Mendes, P.; Teixeira, M.R. Social life cycle analysis as a tool for sustainable management of illegal waste dumping in municipal services. J. Clean. Prod. 2019, 210, 1141–1149. [Google Scholar] [CrossRef]
- Tisserant, A.; Pauliuk, S.; Merciai, S.; Schmidt, J.; Fry, J.; Wood, R.; Tukker, A. Solid waste and the circular economy: A global analysis of waste treatment and waste footprints. J. Ind. Ecol. 2017, 21, 628–640. [Google Scholar] [CrossRef]
Variable | Definition | Unit of Measurement | Data Source |
---|---|---|---|
Plastic pollution (PP) | Annual discard of plastic waste inadequately managed; waste treatment categories consist of waste dumped openly, discarded in waterways and marine areas, “unaccounted for” (waste for which the treatment category is not specified), and “others” (a treatment type that does not fall into any of the categories defined by the World Bank [44]) | Metric ton | World Bank [44,45] |
Gross domestic product (GDP) per capita (GDPPC) | Gross domestic product: 2010 constant price divided by midyear population | USD | World Development Indicators (WDI) |
Population size (POP) | Midyear population | Number | WDI |
Population age group 1 (AGE1564) | Percentage of population aged 14–64 years in the total population | Percent | WDI |
Population age group 2 (AGE65) | Percentage of population aged 65 and over in the total population | Percent | WDI |
Population density (PDEN) | Number of people residing per square kilometer of land area | Number of people/square kilometer | WDI |
Urbanization level (URB) | Proportion of urban population in the total population | Percent | WDI |
Urban primacy (UPRI) | Percentage of the largest city’s population in the urban population | Percent | WDI |
Manufacturing sector (MAN) | Value-added output of the manufacturing sector (percentage of GDP) | Percent | WDI |
Service sector (SER) | Value-added output of the service sector (percentage of GDP) | Percent | WDI |
Control of corruption (COR) | Perceptions of the extent to which public power is exercised for private gain | Percentile rank, ranging from 0 (corruption is not controlled) to 100 (corruption is well-controlled) | WDI |
Variable | Model Specification | |||||
---|---|---|---|---|---|---|
(1) RE | (2) RE | (3) RE | (4) RE | (5) RE | (6) RE | |
lnGDPPC | 6.508 *** (1.398) | 6.512 *** (1.406) | 5.755 *** (1.551) | 5.2 *** (1.478) | 7.73 *** (1.523) | 5.063 ** (1.983) |
(lnGDPPC)2 | −0.375 *** (0.079) | −0.375 *** (0.079) | −0.328 *** (0.084) | −0.322 *** (0.081) | −0.444 *** (0.087) | −0.3 *** (0.105) |
lnPOP | 0.948 *** (0.104) | 0.948 *** (0.105) | 0.945 *** (0.098) | 0.931 *** (0.104) | 1.15 *** (0.186) | 1.052 *** (0.173) |
lnPDEN | 0.007 (0.131) | 0.06 (0.149) | ||||
lnAGE1564 | 5.072 ** (2.224) | 5.578 ** (2.458) | ||||
lnAGE65 | −1.486 *** (0.328) | −1.387 *** (0.354) | ||||
lnURB | 1.444 *** (0.553) | 0.824 (0.671) | ||||
lnUPRI | 0.986 ** (0.425) | 0.657 * (0.392) | ||||
lnMAN | −0.237 (0.316) | −0.238 (0.318) | 0.283 (0.311) | −0.424 (0.321) | −0.252 (0.374) | −0.069 (0.379) |
lnSER | −0.114 (0.886) | −0.129 (0.94) | 1.084 (0.882) | −0.252 (0.874) | −0.571 (1.031) | 0.557 (1.093) |
lnCOR | −0.657 ** (0.288) | −0.657 ** (0.289) | −0.52 * (0.272) | −0.581 ** (0.285) | −0.515 * (0.29) | −0.41 (0.275) |
Constant | −28.58 *** (6.818) | −28.56 *** (6.845) | −50.33 *** (8.48) | −26.04 *** (6.811) | −39.03 *** (8.307) | −53.65 *** (9.994) |
Turning point | 5866 | 5902 | 6458 | 3213 | 6033 | 4619 |
Coefficient of determination (R2) | 0.5491 | 0.5493 | 0.6266 | 0.5637 | 0.4605 | 0.5657 |
Akaike’s information criterion (AIC) | 1.412 | 1.423 | 1.233 | 1.396 | 1.429 | 1.266 |
Bayesian information criterion (BIC) | 1.539 | 1.569 | 1.399 | 1.542 | 1.591 | 1.509 |
Mean absolute error (MAE) | 1.343 | 1.344 | 1.262 | 1.339 | 1.309 | 1.201 |
Root mean squared forecast error (RMSFE) | 3.787 | 3.786 | 3.088 | 3.681 | 3.746 | 3.015 |
Observed | 174 | 174 | 170 | 173 | 148 | 148 |
Test statistics: | ||||||
F-test (POLS vs. FE) | 4.89 *** | 4.83 *** | 3.88 *** | 5.11 *** | 5.19 *** | 4.19 *** |
LM test (POLS vs. RE) | 45.28 *** | 44.16 *** | 40.25 *** | 48.12 *** | 43.95 *** | 39.3 *** |
Hausman test (FE vs. RE) | 4.49 | 4.9 | 3.4 | 7.9 | 2.97 | 8.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Cordier, M.; Uehara, T. Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications. Sustainability 2024, 16, 643. https://doi.org/10.3390/su16020643
Yan H, Cordier M, Uehara T. Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications. Sustainability. 2024; 16(2):643. https://doi.org/10.3390/su16020643
Chicago/Turabian StyleYan, Huijie, Mateo Cordier, and Takuro Uehara. 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications" Sustainability 16, no. 2: 643. https://doi.org/10.3390/su16020643
APA StyleYan, H., Cordier, M., & Uehara, T. (2024). Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications. Sustainability, 16(2), 643. https://doi.org/10.3390/su16020643