How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions
Abstract
:1. Introduction
- How can the socio-technical transitions literature help trace the origins and magnitude of sustainability problems to be addressed and identify the factors that influence transition processes?
- How can the socio-technical transitions literature help foster innovations towards a specific goal or mission and design pathways for its attainment?
- How can the socio-technical transitions literature highlight the required intervention points and ways to assess their impact towards the desired STS state?
2. Methodology
3. Socio-Technical System Transitions: Why Are They So Complex?
3.1. Multi-Actor
3.2. Multi-Factor
3.2.1. Endogenous Factors
3.2.2. Exogenous Factors and Multi-System Interactions
4. Frameworks to Analyze Innovation and Transformation Processes
4.1. The Multi-Level Perspective and Transition Pathways
4.2. The Technological Innovation System
4.3. The Mission-Oriented Innovation System (MIS)
4.4. The Sustainability-Oriented Innovation System (SoIS)
5. Methods and Approaches for Sustainability Transition Governance
5.1. Transition Management Approaches
5.2. Knowledge Co-Production through Learning and Experimentation
5.3. Strategic Niche Management
5.4. Modelling Methods
6. Synthesis of Transition Frameworks for Policy Design
Details of the Three Phases of the Policy Design and Implementation
7. Conclusions
- Baseline Assessment: What are the origins and magnitudes of the problems to be addressed? What are their drivers?
- Target Visioning and Pathway Design: What are the feasible targets that will enjoy collective support? Which innovations can foster transition towards the specific goal or mission, and carve out the pathways corresponding to the elimination of the original problem?
- Implementation and Evaluation of Policy Interventions: How should the policy vision be realised? What are the possible intervention points to transition to the target STS state? How can sustainability transition performance be assessed for refinement of policy design?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geels, F.W.; Kemp, R. Dynamics in socio-technical systems: Typology of change processes and contrasting case studies. Technol. Soc. 2007, 29, 441–455. [Google Scholar] [CrossRef]
- Geels, F.W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res. Pol. 2004, 33, 897–920. [Google Scholar] [CrossRef]
- Savaget, P.; Geissdoerfer, M.; Kharrazi, A.; Evans, S. The theoretical foundations of sociotechnical systems change for sustainability: A systematic literature review. J. Clean. Prod. 2019, 206, 878–892. [Google Scholar] [CrossRef]
- Späth, P.; Rohracher, H. Local demonstrations for global transitions—Dynamics across governance levels fostering socio-technical regime change towards sustainability. Eur. Plann. Stud. 2012, 20, 461–479. [Google Scholar] [CrossRef]
- Kemp, R. Technology and the transition to environmental sustainability: The problem of technological regime shifts. Futures 1994, 26, 1023–1046. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. The dynamics of socio-technical transitions: A sociotechnical perspective. In Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change; Grin, J., Rotmans, J., Loorbach, D., Eds.; Routledge: New York, NY, USA, 2010; pp. 9–87. [Google Scholar]
- Markard, J.; Geels, F.W.; Raven, R. Challenges in the acceleration of sustainability transitions. Environ. Res. Lett. 2020, 15, 081001. [Google Scholar] [CrossRef]
- Hou, F.; Chen, X.; Chen, X.; Yang, F.; Ma, Z.; Zhang, S.; Liu, C.; Zhao, Y.; Guo, F. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean. Prod. 2021, 289, 125137. [Google Scholar] [CrossRef]
- Lopez, G.; Aghahosseini, A.; Bogdanov, D.; Mensah, T.N.O.; Ghorbani, N.; Caldera, U.; Rivero, A.P.; Kissel, J.; Breyer, C. Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. J. Clean. Prod. 2021, 293, 126195. [Google Scholar] [CrossRef]
- Carrard, N.; Jayathilake, N.; Willetts, J. Life-cycle costs of a resource-oriented sanitation system and implications for advancing a circular economy approach to sanitation. J. Clean. Prod. 2021, 307, 127135. [Google Scholar] [CrossRef]
- Morone, P.; Falcone, P.M.; Lopolito, A. How to promote a new and sustainable food consumption model: A fuzzy cognitive map study. J. Clean. Prod. 2019, 208, 563–574. [Google Scholar] [CrossRef]
- Al-Jayyousi, O.; Amin, H.; Al-Saudi, H.A.; Aljassas, A.; Tok, E. Mission-Oriented Innovation Policy for Sustainable Development: A Systematic Literature Review. Sustainability 2023, 15, 13101. [Google Scholar] [CrossRef]
- Durrani, N.; Qanay, G.; Mir, G.; Helmer, J.; Polat, F.; Karimova, N.; Temirbekova, A. Achieving SDG 4, Equitable quality education after COVID-19: Global evidence and a case study of Kazakhstan. Sustainability 2023, 15, 14725. [Google Scholar] [CrossRef]
- UN. The Sustainable Development Goals Report 2023; Special Edition; UN: New York, NY, USA, 2023. [Google Scholar]
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Caniglia, G.; Luederitz, C.; von Wirth, T.; Fazey, I.; Martin-López, B.; Hondrila, K.; König, A.; von Wehrden, H.; Schäpke, N.; Laubichler, M. A pluralistic and integrated approach to action-oriented knowledge for sustainability. Nat. Sustain. 2021, 4, 93–100. [Google Scholar] [CrossRef]
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F. An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef]
- van den Bergh, J.; Kivimaa, P.; Raven, R.; Rohracher, H.; Truffer, B. Celebrating a decade of EIST: What’s next for transition studies? Environ. Innov. Soc. Transit. 2021, 41, 18–23. [Google Scholar] [CrossRef]
- Loorbach, D.; Frantzeskaki, N.; Huffenreuter, R.L. Transition management: Taking stock from governance experimentation. J. Corp. Citizsh. 2015, 58, 48–66. [Google Scholar] [CrossRef]
- Oliver, T.H.; Benini, L.; Borja, A.; Dupont, C.; Doherty, B.; Grodzińska-Jurczak, M.; Iglesias, A.; Jordan, A.; Kass, G.; Lung, T. Knowledge architecture for the wise governance of sustainability transitions. Environ. Sci. Policy 2021, 126, 152–163. [Google Scholar] [CrossRef]
- Bauwens, T.; Reike, D.; Calisto-Friant, M. Science for sale? Why academic marketization is a problem and what sustainability research can do about it. Environ. Innov. Soc. Transit. 2023, 48, 100749. [Google Scholar] [CrossRef]
- Kirchherr, J. Bullshit in the sustainability and transitions literature: A provocation. Circ. Econ. Sustain. 2023, 3, 167–172. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing integrative literature reviews: Using the past and present to explore the future. Hum. Resour. Dev. Rev. 2016, 15, 404–428. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing integrative literature reviews: Guidelines and examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Whittemore, R.; Knafl, K. The integrative review: Updated methodology. J. Adv. Nurs. 2005, 52, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Greenhalgh, T.; Westhorp, G.; Buckingham, J.; Pawson, R. RAMESES publication standards: Meta-narrative reviews. J. Adv. Nurs. 2013, 69, 987–1004. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.M. Transforming large socio-technical systems towards sustainability: On the role of users and future visions for the uptake of city logistics and combined heat and power generation. Innov. Eur. J. Soc. Sci. Res. 2003, 16, 155–175. [Google Scholar] [CrossRef]
- Elzen, B.; Wieczorek, A.J. Transitions towards sustainability through system innovation. Technol. Forecast. Soc. Chang. 2005, 6, 651–661. [Google Scholar] [CrossRef]
- Chakori, S.; Aziz, A.A.; Smith, C.; Dargusch, P. Untangling the underlying drivers of the use of single-use food packaging. Ecolog. Econ. 2021, 185, 107063. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Rok, A. Co-producing urban sustainability transitions knowledge with community, policy and science. Environ. Innov. Soc. Transit. 2018, 29, 47–51. [Google Scholar] [CrossRef]
- Clark, W.C.; Van Kerkhoff, L.; Lebel, L.; Gallopin, G.C. Crafting usable knowledge for sustainable development. Proc. Natl. Acad. Sci. USA 2016, 113, 4570–4578. [Google Scholar] [CrossRef]
- Geels, F.W. A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies. J. Transp. Geogr. 2012, 24, 471–482. [Google Scholar] [CrossRef]
- Grin, J.; Rotmans, J.; Schot, J. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change; Routledge: Abington, UK, 2010. [Google Scholar]
- Simoens, M.C.; Leipold, S.; Fuenfschilling, L. Locked in unsustainability: Understanding lock-ins and their interactions using the case of food packaging. Environ. Innov. Soc. Transit. 2022, 45, 14–29. [Google Scholar] [CrossRef]
- Kanger, L.; Schot, J. Deep transitions: Theorizing the long-term patterns of socio-technical change. Environ. Innov. Soc. Transit. 2019, 32, 7–21. [Google Scholar] [CrossRef]
- Schot, J.; Kanger, L. Deep transitions: Emergence, acceleration, stabilization and directionality. Res. Pol. 2018, 47, 1045–1059. [Google Scholar] [CrossRef]
- Papachristos, G.; Sofianos, A.; Adamides, E. System interactions in socio-technical transitions: Extending the multi-level perspective. Environ. Innov. Soc. Transit. 2013, 7, 53–69. [Google Scholar] [CrossRef]
- Esfandabadi, Z.S.; Ravina, M.; Diana, M.; Zanetti, M.C. Conceptualizing environmental effects of carsharing services: A system thinking approach. Sci. Total Environ. 2020, 745, 141169. [Google Scholar] [CrossRef]
- Andersen, A.D.; Geels, F.W. Multi-system dynamics and the speed of net-zero transitions: Identifying causal processes related to technologies, actors, and institutions. Energy Res. Soc. Sci. 2023, 102, 103178. [Google Scholar] [CrossRef]
- Rosenbloom, D. Engaging with multi-system interactions in sustainability transitions: A comment on the transitions research agenda. Environ. Innov. Soc. Transit. 2020, 34, 336–340. [Google Scholar] [CrossRef]
- Papachristos, G. Towards multi-system sociotechnical transitions: Why simulate. Technol. Anal. Strateg. Manag. 2014, 26, 1037–1055. [Google Scholar] [CrossRef]
- Papachristos, G.; Adamides, E. A retroductive systems-based methodology for socio-technical transitions research. Technol. Forecast. Soc. Chang. 2016, 108, 1–14. [Google Scholar] [CrossRef]
- Bonsch, M.; Humpenöder, F.; Popp, A.; Bodirsky, B.; Dietrich, J.P.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Weindl, I.; Gerten, D. Trade-offs between land and water requirements for large-scale bioenergy production. Gcb Bioenergy 2016, 8, 11–24. [Google Scholar] [CrossRef]
- Dominković, D.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Luderer, G.; Pehl, M.; Arvesen, A.; Gibon, T.; Bodirsky, B.L.; de Boer, H.S.; Fricko, O.; Hejazi, M.; Humpenöder, F.; Iyer, G. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 2019, 10, 5229. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, M.; van Bodegom, A.; van der Linden, N.; de Rijke, H.; Verhagen, A.; Bucx, T.; Boccalon, A.; van der Zwaan, B. Operationalizing the WEF Nexus: Quantifying the Trade-Offs and Synergies between the Water, Energy and Food Sectors: Dutch Climate Solutions Research Programme; ECN: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Khan, N.; Sudhakar, K.; Mamat, R. Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. Sustainability 2021, 13, 12374. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Pol. 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Rip, A.; Kemp, R. Technological change. Hum. Choice Clim. Chang. 1998, 2, 327–399. [Google Scholar]
- Smith, A.; Voß, J.-P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Pol. 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Wang, C.; Lv, T.; Cai, R.; Xu, J.; Wang, L. Bibliometric analysis of multi-level perspective on sustainability transition research. Sustainability 2022, 14, 4145. [Google Scholar] [CrossRef]
- Geels, F.W. Understanding system innovations: A critical literature review and a conceptual synthesis. In System Innovation and the Transition to Sustainability: Theory, Evidence and Policy; Elzen, B., Geels, F.W., Green, K., Eds.; Edward Elgar: Cheltenham, UK, 2004; pp. 19–47. [Google Scholar] [CrossRef]
- Geels, F.W. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environ. Innov. Soc. Transit. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- Bosman, R.; Loorbach, D.; Frantzeskaki, N.; Pistorius, T. Discursive regime dynamics in the Dutch energy transition. Environ. Innov. Soc. Transit. 2014, 13, 45–59. [Google Scholar] [CrossRef]
- Geels, F.W.; Kern, F.; Fuchs, G.; Hinderer, N.; Kungl, G.; Mylan, J.; Neukirch, M.; Wassermann, S. The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014). Res. Pol. 2016, 45, 896–913. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Pol. 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Turnheim, B.; Berkhout, F.; Geels, F.; Hof, A.; McMeekin, A.; Nykvist, B.; van Vuuren, D. Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges. Glob. Environ. Chang. 2015, 35, 239–253. [Google Scholar] [CrossRef]
- Kanger, L.; Sovacool, B.K.; Noorkõiv, M. Six policy intervention points for sustainability transitions: A conceptual framework and a systematic literature review. Res. Pol. 2020, 49, 104072. [Google Scholar] [CrossRef]
- Ghosh, B.; Kivimaa, P.; Ramirez, M.; Schot, J.; Torrens, J. Transformative outcomes: Assessing and reorienting experimentation with transformative innovation policy. Sci. Public Policy 2021, 48, 739–756. [Google Scholar] [CrossRef]
- Markard, J.; Truffer, B. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Res. Pol. 2008, 37, 596–615. [Google Scholar] [CrossRef]
- Bergek, A.; Jacobsson, S.; Sandén, B.A. ‘Legitimation’ and ‘development of positive externalities’: Two key processes in the formation phase of technological innovation systems. Technol. Anal. Strateg. Manag. 2008, 20, 575–592. [Google Scholar] [CrossRef]
- Bergek, A.; Hekkert, M.; Jacobsson, S.; Markard, J.; Sandén, B.; Truffer, B. Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environ. Innov. Soc. Transit. 2015, 16, 51–64. [Google Scholar] [CrossRef]
- Carlsson, B.; Stankiewicz, R. On the nature, function and composition of technological systems. J. Evol. Econ. 1991, 1, 93–118. [Google Scholar] [CrossRef]
- Hellsmark, H.; Jacobsson, S. Opportunities for and limits to academics as system builders—The case of realizing the potential of gasified biomass in Austria. Energy Policy 2009, 37, 5597–5611. [Google Scholar] [CrossRef]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 2006, 34, 256–276. [Google Scholar] [CrossRef]
- Edquist, C.; Jöhnson, B. Institutions and Organisations in systems of innovation. In Systems of Innovation: Technologies, Institutions and Organizations; Pinter Publishers/Cassel Academic: London, UK, 1997; pp. 41–60. [Google Scholar]
- Johnson, A.; Jacobsson, S. Inducement and blocking mechanisms in the development of a new industry: The case of renewable energy technology in Sweden. In Technology and the Market: Demand, Users and Innovation; Coombs, R., Green, K., Walsh, V., Richards, A., Eds.; Edward Elgar Pub: Cheltenham, UK, 2001; pp. 89–111. [Google Scholar]
- Bergek, A.; Jacobsson, S.; Carlsson, B.; Lindmark, S.; Rickne, A. Analysing the dynamics and functionality of sectoral innovation systems. In Proceedings of the DRUID Tenth Anniversary Summer Conference 2005, Copenhagen, Denmark, 27–29 June 2005. [Google Scholar]
- Hekkert, M.P.; Suurs, R.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc. Chang. 2007, 74, 413–432. [Google Scholar] [CrossRef]
- Negro, S.O.; Hekkert, M.P.; Smits, R.E. Explaining the failure of the Dutch innovation system for biomass digestion—A functional analysis. Energy Policy 2007, 35, 925–938. [Google Scholar] [CrossRef]
- Kivimaa, P.; Kern, F. Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions. Res. Pol. 2016, 45, 205–217. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Janssen, M.J.; Wesseling, J.H.; Negro, S.O. Mission-oriented innovation systems. Environ. Innov. Soc. Transit. 2020, 34, 76–79. [Google Scholar] [CrossRef]
- Mazzucato, M. Mission-oriented innovation policies: Challenges and opportunities. Ind. Corp. Chang. 2018, 27, 803–815. [Google Scholar] [CrossRef]
- Adams, R.; Jeanrenaud, S.; Bessant, J.; Denyer, D.; Overy, P. Sustainability-oriented innovation: A systematic review. Int. J. Manag. Rev. 2016, 18, 180–205. [Google Scholar] [CrossRef]
- Klewitz, J.; Hansen, E.G. Sustainability-oriented innovation of SMEs: A systematic review. J. Clean. Prod. 2014, 65, 57–75. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management–an exploratory literature review. RD Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Fliaster, A.; Kolloch, M. Implementation of green innovations–The impact of stakeholders and their network relations. RD Manag. 2017, 47, 689–700. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Xavier, A.F.; Naveiro, R.M.; Aoussat, A.; Reyes, T. Systematic literature review of eco-innovation models: Opportunities and recommendations for future research. J. Clean. Prod. 2017, 149, 1278–1302. [Google Scholar] [CrossRef]
- Hansen, E.G.; Grosse-Dunker, F. Sustainability-Oriented Innovation; Encyclopedia of Corporate Social Responsibility: Heidelberg, Germany, 2012. [Google Scholar]
- Dewberry, E.; Sherwin, C. Visioning sustainability through design. Greener Manag. Int. 2002, 37, 125–138. [Google Scholar] [CrossRef]
- Hall, J.; Matos, S.; Silvestre, B.; Martin, M. Managing technological and social uncertainties of innovation: The evolution of Brazilian energy and agriculture. Technol. Forecast. Soc. Chang. 2011, 78, 1147–1157. [Google Scholar] [CrossRef]
- Hüsig, S. A typology for radical innovation projects based on an innovativeness framework. Int. J. Innov. Technol. Manag. 2014, 11, 1450023. [Google Scholar] [CrossRef]
- Altenburg, T.; Pegels, A. Sustainability-oriented innovation systems—Managing the green transformation. Innov. Dev. 2012, 2, 5–22. [Google Scholar] [CrossRef]
- Voss, J.-P.; Bauknecht, D.; Kemp, R. Reflexive Governance for Sustainable Development; Edward Elgar Publishing: Cheltenham, UK, 2006. [Google Scholar]
- Grin, J. Understanding transitions from a governance perspective. In Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change; Grin, J., Rotmans, J., Schot, J., Eds.; Routledge: New York, NY, USA, 2010; pp. 221–319. [Google Scholar]
- Frantzeskaki, N.; Loorbach, D.; Meadowcroft, J. Governing societal transitions to sustainability. Int. J. Sustain. Dev. 2012, 15, 19–36. [Google Scholar] [CrossRef]
- Könnölä, T.; Eloranta, V.; Turunen, T.; Salo, A. Transformative governance of innovation ecosystems. Technol. Forecast. Soc. Chang. 2021, 173, 121106. [Google Scholar] [CrossRef]
- Chaffin, B.C.; Garmestani, A.S.; Gunderson, L.H.; Benson, M.H.; Angeler, D.G.; Arnold, C.A.; Cosens, B.; Craig, R.K.; Ruhl, J.; Allen, C.R. Transformative environmental governance. Annu. Rev. Environ. Resour. 2016, 41, 399–423. [Google Scholar] [CrossRef]
- Loorbach, D.; Frantzeskaki, N.; Avelino, F. Sustainability transitions research: Transforming science and practice for societal change. Annu. Rev. Environ. Resour. 2017, 42, 599–626. [Google Scholar] [CrossRef]
- Ansell, C.; Gash, A. Collaborative governance in theory and practice. J. Public Adm. Res. Theory 2008, 18, 543–571. [Google Scholar] [CrossRef]
- Rotmans, J.; Kemp, R.; Van Asselt, M. More evolution than revolution: Transition management in public policy. Foresight 2001, 3, 15–31. [Google Scholar] [CrossRef]
- Loorbach, D. Transition management for sustainable development: A prescriptive, complexity-based governance framework. Governance 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Loorbach, D. Towards governing infrasystem transitions: Reinforcing lock-in or facilitating change? Technol. Forecast. Soc. Chang. 2010, 77, 1292–1301. [Google Scholar] [CrossRef]
- Williams, S.; Robinson, J. Measuring sustainability: An evaluation framework for sustainability transition experiments. Environ. Sci. Policy 2020, 103, 58–66. [Google Scholar] [CrossRef]
- Moldovan, F.; Moldovan, L.; Bataga, T. The Environmental Sustainability Assessment of an Orthopedics Emergency Hospital Supported by a New Innovative Framework. Sustainability 2023, 15, 13402. [Google Scholar] [CrossRef]
- Morone, P. Sustainability transition towards a biobased economy: Defining, measuring and assessing. Sustainability 2018, 10, 2631. [Google Scholar] [CrossRef]
- Neofytou, H.; Nikas, A.; Doukas, H. Sustainable energy transition readiness: A multicriteria assessment index. Renew. Sustain. Energy Rev. 2020, 131, 109988. [Google Scholar] [CrossRef]
- Garcia, C.L.; Cayzer, S. Assessment of the circular economy transition readiness at a national level. In The Circular Economy and the Global South: Sustainable Lifestyles and Green Industrial Development, 1st ed.; Routledge: New York, NY, USA, 2019; pp. 113–133. [Google Scholar]
- Loorbach, D.; Rotmans, J. The practice of transition management: Examples and lessons from four distinct cases. Futures 2010, 42, 237–246. [Google Scholar] [CrossRef]
- Kemp, R.; Rotmans, J. Transitioning policy: Co-production of a new strategic framework for energy innovation policy in the Netherlands. Pol. Sci. 2009, 42, 303–322. [Google Scholar] [CrossRef]
- Schröder, P.; Vergragt, P.; Brown, H.S.; Dendler, L.; Gorenflo, N.; Matus, K.; Quist, J.; Rupprecht, C.D.D.; Tukker, A.; Wennersten, R. Advancing sustainable consumption and production in cities-A transdisciplinary research and stakeholder engagement framework to address consumption-based emissions and impacts. J. Clean. Prod. 2019, 213, 114–125. [Google Scholar] [CrossRef]
- Norström, A.V.; Cvitanovic, C.; Löf, M.F.; West, S.; Wyborn, C.; Balvanera, P.; Bednarek, A.T.; Bennett, E.M.; Biggs, R.; de Bremond, A. Principles for knowledge co-production in sustainability research. Nat. Sustain. 2020, 3, 182–190. [Google Scholar] [CrossRef]
- Zurba, M.; Petriello, M.A.; Madge, C.; McCarney, P.; Bishop, B.; McBeth, S.; Denniston, M.; Bodwitch, H.; Bailey, M. Learning from knowledge co-production research and practice in the twenty-first century: Global lessons and what they mean for collaborative research in Nunatsiavut. Sustain. Sci. 2022, 17, 449–467. [Google Scholar] [CrossRef]
- Rauschmayer, F.; Bauler, T.; Schäpke, N. Towards a thick understanding of sustainability transitions—Linking transition management, capabilities and social practices. Ecol. Econ. 2015, 109, 211–221. [Google Scholar] [CrossRef]
- van Doren, D.; Driessen, P.P.; Runhaar, H.A.; Giezen, M. Learning within local government to promote the scaling-up of low-carbon initiatives: A case study in the City of Copenhagen. Energy Policy 2020, 136, 111030. [Google Scholar] [CrossRef]
- Argyris, C.; Schön, D.A. Organizational Learning: A Theory of Action Perspective. Reis 1997, 345–348. [Google Scholar] [CrossRef]
- Oses, U.; Rojí, E.; Gurrutxaga, I.; Larrauri, M. A multidisciplinary sustainability index to assess transport in urban areas: A case study of Donostia-San Sebastian, Spain. J. Environ. Plan. Manag. 2017, 60, 1891–1922. [Google Scholar] [CrossRef]
- Adomßent, M. Exploring universities’ transformative potential for sustainability-bound learning in changing landscapes of knowledge communication. J. Clean. Prod. 2013, 49, 11–24. [Google Scholar] [CrossRef]
- Ardoin, N.M.; Gould, R.K.; Kelsey, E.; Fielding-Singh, P. Collaborative and transformational leadership in the environmental realm. J. Environ. Policy Plan. 2015, 17, 360–380. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Chang. 2009, 19, 354–365. [Google Scholar] [CrossRef]
- Sotarauta, M. Shared leadership and dynamic capabilities in regional development. In Regionalism Contested; Routledge: Abingdon-on-Thames, UK, 2016; pp. 63–82. [Google Scholar]
- Kliem, D.; Scheidegger, A.; Kopainsky, B. Closing the mineral construction material cycle–An endogenous perspective on barriers in transition. Resour. Conserv. Recycl. 2021, 175, 105859. [Google Scholar] [CrossRef]
- Pluchinotta, I.; Pagano, A.; Vilcan, T.; Ahilan, S.; Kapetas, L.; Maskrey, S.; Krivtsov, V.; Thorne, C.; O’Donnell, E. A participatory system dynamics model to investigate sustainable urban water management in Ebbsfleet Garden City. Sustain. Cities Soc. 2021, 67, 102709. [Google Scholar] [CrossRef]
- Tourais, P.; Videira, N. A participatory systems mapping approach for sustainability transitions: Insights from an experience in the tourism sector in Portugal. Environ. Innov. Soc. Transit. 2021, 38, 153–168. [Google Scholar] [CrossRef]
- Varma, D.S.; Nandanan, K.; PC, V.R.; Soundharajan, B.; Pérez, M.L.; Sidharth, K.; Ramesh, M.V. Participatory design approach to address water crisis in the village of Karkatta, Jharkhand, India. Technol. Forecast. Soc. Chang. 2021, 172, 121002. [Google Scholar] [CrossRef]
- Neumann, V.A.; Hack, J. A Methodology of Policy Assessment at the Municipal Level: Costa Rica’s Readiness for the Implementation of Nature-Based-Solutions for Urban Stormwater Management. Sustainability 2019, 12, 230. [Google Scholar] [CrossRef]
- Kemp, R.; Ramani, S.V. Solution design through a stakeholder process as a new perspective for Environmental Economics with illustrations from Indian case studies. In A Research Agenda for Environmental Economics; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- Steger, C.; Hirsch, S.; Cosgrove, C.; Inman, S.; Nost, E.; Shinbrot, X.; Thorn, J.P.; Brown, D.G.; Grêt-Regamey, A.; Müller, B. Linking model design and application for transdisciplinary approaches in social-ecological systems. Glob. Environ. Chang. 2021, 66, 102201. [Google Scholar] [CrossRef]
- Buijs, A.E.; de Koning, S.; Mattijssen, T.J.; Smeding, I.W.; Smits, M.-J.; Steins, N.A. Civil society for sustainable change: Strategies of NGOs and active citizens to contribute to sustainability transitions. J. Environ. Plan. Manag. 2023, 1–22. [Google Scholar] [CrossRef]
- Nieminen, J.; Salomaa, A.; Juhola, S. Governing urban sustainability transitions: Urban planning regime and modes of governance. J. Environ. Plan. Manag. 2021, 64, 559–580. [Google Scholar] [CrossRef]
- Forrester, J. Policies, Decisions, and Information Sources for Modeling Modeling for Learning Organisations; Productivity Press: Portland, OR, USA, 1994; pp. 51–84. [Google Scholar]
- Ford, D.N.; Sterman, J.D. Expert knowledge elicitation to improve formal and mental models. Syst. Dyn. Rev. J. Syst. Dyn. Soc. 1998, 14, 309–340. [Google Scholar] [CrossRef]
- Bush, J.; Doyon, A. Tackling intersecting climate change and biodiversity emergencies: Opportunities for sustainability transitions research. Environ. Innov. Soc. Transit. 2021, 41, 57–59. [Google Scholar] [CrossRef]
- Schaefer, M.; Schmitt Olabisi, L.; Arola, K.; Poitra, C.M.; Matz, E.; Seigel, M.; Schelly, C.; Adesanya, A.; Bessette, D. Understanding Socio-Technological Systems Change through an Indigenous Community-Based Participatory Framework. Sustainability 2021, 13, 2257. [Google Scholar] [CrossRef]
- Inman, S.; Esquible, J.; Jones, M.; Bechtol, W.; Connors, B. Opportunities and impediments for use of local data in the management of salmon fisheries. Ecol. Soc. 2021, 26, 26. [Google Scholar] [CrossRef]
- Hoffmann, S.; Pohl, C.; Hering, J.G. Methods and procedures of transdisciplinary knowledge integration: Empirical insights from four thematic synthesis processes. Ecol. Soc. 2017, 22, 27. [Google Scholar] [CrossRef]
- Nagatsu, M.; Davis, T.; DesRoches, C.T.; Koskinen, I.; MacLeod, M.; Stojanovic, M.; Thorén, H. Philosophy of science for sustainability science. Sustain. Sci. 2020, 15, 1807–1817. [Google Scholar] [CrossRef]
- Gugerell, K.; Radinger-Peer, V.; Penker, M. Systemic knowledge integration in transdisciplinary and sustainability transformation research. Futures 2023, 150, 103177. [Google Scholar] [CrossRef]
- Gaziulusoy, I.; Erdoğan Öztekin, E. Design for sustainability transitions: Origins, attitudes and future directions. Sustainability 2019, 11, 3601. [Google Scholar] [CrossRef]
- Irwin, T. The emerging transition design approach. In Proceedings of the Design Research Society International Conference, Catalyst, Limerick, Ireland, 25—28 June 2018. [Google Scholar]
- Velter, M.; Bitzer, V.; Bocken, N.; Kemp, R. Boundary work for collaborative sustainable business model innovation: The journey of a Dutch SME. J. Bus. Models 2021, 9, 36–66. [Google Scholar] [CrossRef]
- Bush, R.E.; Bale, C.S. Energy planning tools for low carbon transitions: An example of a multicriteria spatial planning tool for district heating. J. Environ. Plan. Manag. 2019, 62, 2186–2209. [Google Scholar] [CrossRef]
- Truffer, B. User-led innovation processes: The development of professional car sharing by environmentally concerned citizens. Innov. Eur. J. Soc. Sci. Res. 2003, 16, 139–154. [Google Scholar] [CrossRef]
- Geels, F.; Raven, R. Non-linearity and expectations in niche-development trajectories: Ups and downs in Dutch biogas development (1973–2003). Technol. Anal. Strateg. Manag. 2006, 18, 375–392. [Google Scholar] [CrossRef]
- Schot, J.; Geels, F.W. Strategic niche management and sustainable innovation journeys: Theory, findings, research agenda, and policy. Technol. Anal. Strateg. Manag. 2008, 20, 537–554. [Google Scholar] [CrossRef]
- Kemp, R.; Schot, J.; Hoogma, R. Regime shifts to sustainability through processes of niche formation: The approach of strategic niche management. Technol. Anal. Strateg. Manag. 1998, 10, 175–198. [Google Scholar] [CrossRef]
- Grin, J.; Van de Graaf, H. Implementation as communicative action. Pol. Sci. 1996, 29, 291–319. [Google Scholar] [CrossRef]
- Köhler, J.; De Haan, F.; Holtz, G.; Kubeczko, K.; Moallemi, E.; Papachristos, G.; Chappin, E. Modelling sustainability transitions: An assessment of approaches and challenges. J. Artif. Soc. Soc. Simul. 2018, 21, 8. [Google Scholar] [CrossRef]
- Holtz, G.; Alkemade, F.; De Haan, F.; Köhler, J.; Trutnevyte, E.; Luthe, T.; Halbe, J.; Papachristos, G.; Chappin, E.; Kwakkel, J. Prospects of modelling societal transitions: Position paper of an emerging community. Environ. Innov. Soc. Transit. 2015, 17, 41–58. [Google Scholar] [CrossRef]
- Sterman, J. Business Dynamics: Systems Thinking and Modelling for a Complex World; Massachusetts Institute of Technology: Cambridge, MA, USA, 2002. [Google Scholar]
- Papachristos, G. A system dynamics model of socio-technical regime transitions. Environ. Innov. Soc. Transit. 2011, 1, 202–233. [Google Scholar] [CrossRef]
- Papachristos, G. System dynamics modelling and simulation for sociotechnical transitions research. Environ. Innov. Soc. Transit. 2019, 31, 248–261. [Google Scholar] [CrossRef]
- de Gooyert, V.; Rouwette, E.; van Kranenburg, H.; Freeman, E.; van Breen, H. Sustainability transition dynamics: Towards overcoming policy resistance. Technol. Forecast. Soc. Chang. 2016, 111, 135–145. [Google Scholar] [CrossRef]
- Papachristos, G. A mechanism based transition research methodology: Bridging analytical approaches. Futures 2018, 98, 57–71. [Google Scholar] [CrossRef]
- Li, F.G.; Strachan, N. Modelling energy transitions for climate targets under landscape and actor inertia. Environ. Innov. Soc. Transit. 2017, 24, 106–129. [Google Scholar] [CrossRef]
- Doukas, H.; Nikas, A.; González-Eguino, M.; Arto, I.; Anger-Kraavi, A. From integrated to integrative: Delivering on the Paris Agreement. Sustainability 2018, 10, 2299. [Google Scholar] [CrossRef]
- Vennix, J.A.; Akkermans, H.A.; Rouwette, E.A. Group model-building to facilitate organizational change: An exploratory study. Syst. Dyn. Rev. J. Syst. Dyn. Soc. 1996, 12, 39–58. [Google Scholar] [CrossRef]
- Vennix, J.A. Group model building. Syst. Dyn. 1996, 2, 123–132. [Google Scholar]
- Nabavi, E.; Daniell, K.A.; Najafi, H. Boundary matters: The potential of system dynamics to support sustainability? J. Clean. Prod. 2017, 140, 312–323. [Google Scholar] [CrossRef]
- Kotir, J.H.; Jagustovic, R.; Papachristos, G.; Zougmore, R.B.; Kessler, A.; Reynolds, M.; Ouedraog, M.; Ritsema, C.J.; Aziz, A.A.; Johnstone, R. Field experiences and lessons learned from applying participatory system dynamics modelling to sustainable water and agri-food systems. J. Clean. Prod. 2023, 434, 140042. [Google Scholar] [CrossRef]
- Scott, R.J.; Cavana, R.Y.; Cameron, D. Recent evidence on the effectiveness of group model building. Eur. J. Oper. Res. 2016, 249, 908–918. [Google Scholar] [CrossRef]
- Loorbach, D. Transition Management. New Mode of Governance for Sustainable Development; International Books: Utrecht, The Netherlands, 2007. [Google Scholar]
- Voß, J.-P.; Smith, A.; Grin, J. Designing long-term policy: Rethinking transition management. Pol. Sci. 2009, 42, 275–302. [Google Scholar] [CrossRef]
- Halbe, J.; Pahl-Wostl, C. A methodological framework to initiate and design transition governance processes. Sustainability 2019, 11, 844. [Google Scholar] [CrossRef]
- Poustie, M.S.; Frantzeskaki, N.; Brown, R.R. A transition scenario for leapfrogging to a sustainable urban water future in Port Vila, Vanuatu. Technol. Forecast. Soc. Chang. 2016, 105, 129–139. [Google Scholar] [CrossRef]
- Levoso, A.S.; Gasol, C.M.; Martínez-Blanco, J.; Durany, X.G.; Lehmann, M.; Gaya, R.F. Methodological framework for the implementation of circular economy in urban systems. J. Clean. Prod. 2020, 248, 119227. [Google Scholar] [CrossRef]
- Nevens, F.; Frantzeskaki, N.; Gorissen, L.; Loorbach, D. Urban Transition Labs: Co-creating transformative action for sustainable cities. J. Clean. Prod. 2013, 50, 111–122. [Google Scholar] [CrossRef]
- Hölscher, K.; Wittmayer, J.M.; Olfert, A.; Hirschnitz-Garbers, M.; Walther, J.; Schiller, G. Creating actionable knowledge one step at a time: An analytical framework for tracing systems and agency in niche innovation pathways. Environ. Innov. Soc. Transit. 2023, 46, 100682. [Google Scholar] [CrossRef]
- Holtz, G. The PSM approach to transitions: Bridging the gap between abstract frameworks and tangible entities. Technol. Forecast. Soc. Chang. 2012, 79, 734–743. [Google Scholar] [CrossRef]
- Haddad, C.R.; Bergek, A. Towards an integrated framework for evaluating transformative innovation policy. Res. Pol. 2023, 52, 104676. [Google Scholar] [CrossRef]
- Kemp, R.; Loorbach, D. Transition management: A reflexive governance approach. In Reflexive Governance for Sustainable Development; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2006; pp. 103–130. [Google Scholar]
- Quist, J. Backcasting for a Sustainable Future: The Impact After 10 Years; Eburon: Delft, The Netherlands, 2007. [Google Scholar]
- Luederitz, C.; Abson, D.J.; Audet, R.; Lang, D.J. Many pathways toward sustainability: Not conflict but co-learning between transition narratives. Sustain. Sci. 2017, 12, 393–407. [Google Scholar] [CrossRef]
- Hof, A.F.; van Vuuren, D.P.; Berkhout, F.; Geels, F.W. Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue. Technol. Forecast. Soc. Chang. 2020, 151, 119665. [Google Scholar] [CrossRef]
- Lazarevic, D.; Salo, H.; Kautto, P. Circular economy policies and their transformative outcomes: The transformative intent of Finland’s strategic policy programme. J. Clean. Prod. 2022, 379, 134892. [Google Scholar] [CrossRef]
- Mok, L.; Gaziulusoy, İ. Designing for sustainability transitions of aquaculture in Finland. J. Clean. Prod. 2018, 194, 127–137. [Google Scholar] [CrossRef]
Phases | 1. Baseline Assessment | 2. Target Visioning and Pathway Identification | 3. Implementation and Evaluation of Policy Interventions | |||
---|---|---|---|---|---|---|
Transition tasks… | 1.1 Analyze the problem to be addressed | 1.2 Mapping the socio-technical system(s) of focus | 2.1 Define sustainability goals targeted | 2.2 Design possible transition pathways | 3.1 Design and implement transition efforts | 3.2 Assess STS’s sustainability performance |
through… | Ex-post and present analysis of system’s trajectories and characteristics | Gaining orientation on stakeholders’ objectives, and building a multi-perspective view of the mechanisms and patterns of change | Setting program agenda, developing performance indicators, and continuous performance monitoring and evaluations | |||
Applicable frameworks and approaches | MLP, TIS, MIS, SNM, Knowledge co-production through learning | MIS, SoIS, and Transition governance methods and approaches | TM, Transition governance methods and approaches | |||
Policy design components | (i) Establishing a transition arena | (ii) Developing a vision (iii) Pathway development through back-casting techniques | (iv) Experimenting with pathway options (v) Monitoring, evaluation, and revisions | |||
Deliverables | Analysis of evidence-based narratives on the root causes of contemporary challenges past trajectories of STS | Mapping of STS elements, stabilising and de-stabilising forces corresponding TIS functions emerging technological and social innovations other factors that affect transition processes at different levels | Mapping of multiple perspectives for a shared long-term vision key priorities to catalyze systemic changes that integrate environmental, social, and economic considerations | Plan for scenarios and strategic actions based on leverage points ways to address path dependencies surrounding unsustainable system outcomes | Plan for a broader transformative agenda and potential intervention points systemic dialogue to set practical details and enhance learning | Design protocols for management with participatory methods evaluation troubleshooting integrating new knowledge for programme revision |
Type of Transition Pathway | Potential Intervention Points | Expected Outputs | Expected/Targeted Transformative Outcomes |
---|---|---|---|
1. Regime substitution (Sudden landscape pressure leads to rapid substitution of the regime by mature niches, e.g., shift from single-use plastic bags to reusable bags, from fossil fuels to renewable energy technologies) | - Stimulate different niches through support mechanisms, i.e., creation of innovation platforms, policy instruments - Manage the consequences stemming from the destabilisation of a regime | Rise of various alternatives for systems change, which break through and replace existing regimes, with minimal negative externalities and trade-offs | A. Building and nurturing niches: Shielding Learning Networking Navigating expectations B. Expanding and mainstreaming niches: Upscaling Replicating Circulating Institutionalising C. Opening up and unlocking regimes: De-aligning and destabilizing Unlearning and deep learning in regimes Strengthening regime–niche interactions Changing perceptions of landscape pressures |
2. Transformation, dealignment, and re-alignment (Disruptive landscape pressure in the context of immature niches leads regime actors to redirect their activities and create competition between niches, e.g., emergence of electric vehicles, plant-based alternatives in food systems) | Accelerate, stimulate, and/or scale up single niches and align different niches to each other | Links created between various niches, in a process of strengthening them to enter the markets | |
3. Reconfiguration (Disruptive landscape pressures direct the regime to adopt symbiotic niche innovations and change its structure, e.g., from traditional agriculture towards regenerative farming practices, from fast fashion to sustainable and circular fashion practices) | - Weaken the role of incumbent regime actors hindering transition - Support symbiotic niches that attempt to enter the regime to solve problems | Niches gradually trigger change in regime structure, e.g., through the introduction and/or banning of specific technologies, subsidies removal for certain industries, increased participation of niche actors in policy advisory | |
4. Regime Reproduction (In the absence of major landscape pressure, niches do not break through, and the regime continues to reproduce itself, e.g., continued reliance on fossil fuel-based energy sources, traditional gasoline-powered vehicles) | - Coordinate multi-regime interactions, both within and between systems that are interconnected within a societal challenge - Tilt the landscape by enabling change in the directionality of locally bounded socio-technical systems, incorporating symbiotic niche innovations and/or extending beyond specific niches and regimes | - Input–output relations between regimes are complementary and jointly address a societal challenge - Altered broader framework conditions at the landscape level that can trigger change at the regime and niche level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomai, M.; Ramani, S.V.; Papachristos, G. How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions. Sustainability 2024, 16, 690. https://doi.org/10.3390/su16020690
Tomai M, Ramani SV, Papachristos G. How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions. Sustainability. 2024; 16(2):690. https://doi.org/10.3390/su16020690
Chicago/Turabian StyleTomai, Maria, Shyama V. Ramani, and George Papachristos. 2024. "How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions" Sustainability 16, no. 2: 690. https://doi.org/10.3390/su16020690
APA StyleTomai, M., Ramani, S. V., & Papachristos, G. (2024). How Can We Design Policy Better? Frameworks and Approaches for Sustainability Transitions. Sustainability, 16(2), 690. https://doi.org/10.3390/su16020690