Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials and Mix Design
2.2. Specimen Production Method and Maintenance
3. Results
3.1. Basic Mechanical Properties Test Results
3.2. Impact Resistance Test
3.2.1. Specimen Impact Damage Analysis
- —impact energy consumption (J);
- —number of impacts at final destruction of the specimen;
- —impact hammer quality (kg), 4.5 kg;
- g—gravitational acceleration (m/s2), 9.81 m/s2;
- h—drop height (m), 0.5 m.
3.2.2. Impact Resistance Analysis Based on Weibull Modeling
- —shape parameters;
- —characteristic life parameters.
- t—is the total number of tests for each group of specimens, which is 6;
- m—ordinal number.
3.2.3. Impact Damage Analysis
4. Freeze–Thaw Cycle Test Results
4.1. Freeze–Thaw Cycle Test Results
- the mass loss rate of concrete specimens after ΔW—N freeze–thaw cycles (%);
- —the mass of concrete specimen before the freeze–thaw cycle test (g);
- —the mass of concrete specimens after N freeze–thaw cycles (g).
4.2. Change in the Relative Dynamic Modulus of Elasticity of the Specimen
4.3. Freeze–Thaw Performance of Specimens under the GM (1,1) Model
4.3.1. Gray System GM (1,1) Model
4.3.2. Gray System GM (1,1) Model Parameters
4.3.3. Specimens Freeze–Thaw Damage Model
4.3.4. Error and Precision Analysis of GM (1,1) Model
5. Conclusions
- According to the mechanical property test, after the fine aggregates were replaced with 20% walnut shells of equal mass, the compressive strength, split tensile strength, and flexural strength of WS20 decreased by 31.17%, 12.09%, and 33.33%, respectively, compared with those of WS0. After mixing basalt fibers, the compressive strength of the B6F2WS20 group increased by 13.98%, the split tensile strength by 48.15%, and the flexural strength by 43.75% compared to those of the WS20 group. When the fiber length is 6 mm and the doping amount is 0.2%, the walnut shell mortar has optimal mechanical properties.
- According to the impact resistance test, compared with that of WS20, the impact energy consumption of B6F2WS20 increased by 142.11%. Similarly, the damage mode of the specimen changed from brittle damage to ductile damage, and the maximum number of impacts increased significantly. According to the freezing and thawing cycle test, after one hundred freezing and thawing cycles, the cumulative mass loss of B6F2WS20 was the smallest, at 2.21%, compared with that of WS20, at 50.89%.
- The impact damage prediction model was established based on the Weibull model, and the relative errors between the test values and the predicted values ranged from 0.35% to 0.9%. Through the establishment of the impact evolution equation, the life evolution trend of the specimen under repeated impact loading was obtained, and the damage process of the specimen was reasonably described.
- The GM (1,1) freeze–thaw damage prediction model was established with the mass damage rate and dynamic elastic modulus as the indices, and the average relative error between the experimental value and the predicted value was 2.19% at the maximum and 0.81% at the minimum. According to the accuracy analysis, the accuracy grade of each group of specimens is in the first tier, and the model accuracy is high.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prusty, J.K.; Patro, S.K. Properties of fresh and hardened concrete using agro-waste as partial replacement of coarse aggregate—A review. Constr. Build. Mater. 2015, 82, 101–113. [Google Scholar] [CrossRef]
- Sujatha, A.; Deepa, B.S. Properties of Coconut Shell Aggregate Concrete: A Review. In Advances in Civil Engineering; Springer: Singapore, 2020. [Google Scholar]
- Samadi, M.; Huseien, G.F.; Mohammadhosseini, H.; Lee, H.S.; Alyousef, R. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. J. Clean. Prod. 2020, 266, 121825. [Google Scholar] [CrossRef]
- Khankhaje, E.; Hussin, M.W.; Mirza, J.; Rafieizonooz, M.; Salim, M.R.; Siong, H.C.; Warid, M.N.M. On blended cement and geopolymer concretes containing palm oil fuel ash. Mater. Des. 2016, 89, 385–398. [Google Scholar] [CrossRef]
- Raheem, A.A.; Ikotun, B.D. Incorporation of agricultural residues as partial substitution for cement in concrete and mortar—A review. J. Build. Eng. 2020, 31, 101428. [Google Scholar] [CrossRef]
- Alengaram, U.J.; Mahmud, H.; Jumaat, M.Z. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Mater. Des. 2011, 32, 2143–2148. [Google Scholar] [CrossRef]
- Ijar, R.; Joseph, M.M.E. Properties of concrete with coconut shells as aggregate replacement. Int. J. Eng. Invent. 2016, 1, 21–31. [Google Scholar]
- Pandi, K.; Ganesan, K. Effect of Water Absorption and Sorptivity of Concrete with Partial Replacement of Cement by Cashew Nut Shell Ash. Aust. J. Basic Appl. Sci. 2015, 9, 311–316. [Google Scholar]
- Ketkukah, T.S.; Ndububa, E.E. Ground nut husk ash (gha) as a partial replacement of cement in mortar. Niger. J. Technol. 2006, 25, 84–90. [Google Scholar]
- Baran, Y.; Gke, H.S.; Durmaz, M. Physical and mechanical properties of cement containing regional hazelnut shell ash wastes. J. Clean. Prod. 2020, 259, 120965. [Google Scholar] [CrossRef]
- Tekin, I.; Dirikolu, Í.; Gke, H.S. A regional supplementary cementitious material for the cement industry: Pistachio shell ash. J. Clean. Prod. 2021, 285, 124810. [Google Scholar] [CrossRef]
- Tsado, T.Y.; Yewa, M.; Yaman, S.; Yewa, F. Effect of Sheanut Shell Ash as A Partial Replacement of Ordinary Portland Cement In Mortar. Int. J. Eng. Sci. Invent. 2014, 3, 1–5. [Google Scholar]
- Alrshoudi, F.; Alshannag, M. Suitability of Palm Frond Waste Ash as a Supplementary Cementitious Material. Arab. J. Sci. Eng. 2020, 45, 7967–7974. [Google Scholar] [CrossRef]
- Jannat, N.; Al-Mufti, R.L.; Hussien, A.; Abdullah, B.; Cotgrave, A. Utilisation of nut shell wastes in brick, mortar and concrete: A review. Constr. Build. Mater. 2021, 293, 123456. [Google Scholar] [CrossRef]
- Srikanth, G.; Fernando, A.; Selvaranjan, K.; Gamage, J.; Ekanayake, L. Development of a Plastering mortar using waste bagasse and rice husk ashes with sound Mechanical and Thermal properties. Case Stud. Constr. Mater. 2022, 16, e00956. [Google Scholar] [CrossRef]
- Parashar, A.K.; Gupta, A. Investigation of the effect of bagasse ash, hooked steel fibers and glass fibers on the mechanical properties of concrete. Mater. Today Proc. 2020, 44, 801–807. [Google Scholar] [CrossRef]
- Sakir, S.; Raman, S.N.; Safiuddin, M.; Kaish, A.B.M.A.; Mutalib, A.A. Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction. Sustainability 2020, 12, 3888. [Google Scholar] [CrossRef]
- Mohammadhosseini, H.; Tahir, M.M. Production of sustainable fibre-reinforced concrete incorporating waste chopped metallic film fibres and palm oil fuel ash. Sadhana-Acad. Proc. Eng. Sci. 2018, 43, 156. [Google Scholar] [CrossRef]
- Hilal, N.; Mohammed Ali, T.K.; Tayeh, B.A. Properties of environmental concrete that contains crushed walnut shell as partial replacement for aggregates. Arab. J. Geosci. 2020, 13, 812. [Google Scholar] [CrossRef]
- Abdulwahid, M.Y.; Abdullah, S.F. The utilization of walnut shells as a partial replacement of sand in mortar mixes. Struct. Concr. 2020, 22, E300–E307. [Google Scholar] [CrossRef]
- Aadi, A.S.; Mohammed, A.A.; Ali, T.K.M.; Hilal, N.N. Ultra-Fine Treated and Untreated Walnut Shell Ash Incorporated Cement Mortar: Properties and Environmental Impact Assessments. Ann. Chim. Sci. Matériaux 2022, 46, 313–321. [Google Scholar] [CrossRef]
- Huang, Z.; Ou, Z.; Luo, W.; Wang, F. Study on the properties of walnut shell lightweight aggregate concrete reinforced with plastic fiber. Concr. Cem. Prod. 2022, 000, 60–64. [Google Scholar]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Chernil’nik, A.; El’shaeva, D. Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete. Materials 2023, 16, 1752. [Google Scholar] [CrossRef]
- Venkatesan, B.; Lijina, V.J.; Kannan, V.; Dhevasenaa, P.R. Partial replacement of fine aggregate by steel slag and coarse aggregate by walnut shell in concrete. Mater. Today Proc. 2020, 37, 1761–1766. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, G.; Chen, L. Pet Fiber Reinforced Wet-Mix Shotcrete with Walnut Shell as Replaced Aggregate. Appl. Sci. 2017, 7, 345. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Guo, Z.S.; Hao, N.; Wang, L.M.; Chen, J.X. Review of basalt-fiber-reinforced cement-based composites in china: Their dynamic mechanical properties and durability. Mech. Compos. Mater. 2019, 55, 107–120. [Google Scholar] [CrossRef]
- Banthia, N.; Zanotti, C.; Sappakittipakorn, M. Sustainable fiber reinforced concrete for repair applications. Constr. Build. Mater. 2014, 67, 405–412. [Google Scholar] [CrossRef]
- Luhar, S.; Gourav, S. A review paper on self healing concrete. J. Soc. Mater. Sci. Jpn. 2015, 5, 53–58. [Google Scholar]
- Zanotti, C.; Banthia, N.; Plizzari, G. A study of some factors affecting bond in cementitious fiber reinforced repairs. Cem. Concr. Res. 2014, 63, 117–126. [Google Scholar] [CrossRef]
- Chen, X.F.; Kou, S.C.; Xing, F. Effect of Agriculture and Construction Wastes on the Properties of Magnesium Oxychloride Cement Mortar with Tourmaline Powder. Materials 2018, 12, 115. [Google Scholar] [CrossRef]
- Chen, H.; Xie, C.; Fu, C.; Liu, J.; Wu, D. Orthogonal Analysis on Mechanical Properties of Basalt–Polypropylene Fiber Mortar. Materials 2020, 13, 2937. [Google Scholar] [CrossRef] [PubMed]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. Proc. Abstr. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Adesina, A. Performance of cementitious composites reinforced with chopped basalt fibres—An overview. Constr. Build. Mater. 2021, 266, 120970. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B Eng. 2005, 36B, 504–512. [Google Scholar] [CrossRef]
- Sateshkumar, S.K.; Awoyera, P.O.; Kandasamy, T.; Nagaraj, S.; Ponnusamy, B. Impact resistance of high strength chopped basalt fibre-reinforced concrete. Rev. Construcción 2018, 17, 240–249. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Y.; Zhang, Y.; Castro, C. Effect of macro polypropylene fiber and basalt fiber on impact resistance of basalt fiber-reinforced polymer-reinforced concrete. Struct. Concr. 2020, 22, 503–515. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Zhu, B.; Lyu, X.; Gao, X.; Liang, C. Mechanical Properties and Freeze-Thaw Durability of Basalt Fiber Reactive Powder Concrete. Appl. Sci. 2020, 10, 5682. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Z.; Zhao, B.; Zhang, J.; Zou, X. Experimental Study on Mechanical Properties of Basalt Fiber Concrete after Cryogenic Freeze-Thaw Cycles. Polymers 2023, 15, 196. [Google Scholar] [CrossRef]
- Zhao, Y.-R.; Wang, L.; Lei, Z.-K.; Han, X.-F.; Shi, J.-N. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018, 163, 460–470. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, J.; Zhao, Z.; Sun, M. Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles. Sustainability 2023, 15, 7965. [Google Scholar] [CrossRef]
- Zhong, C.; Chen, X.; Mao, W.; Xing, S.; Chen, J.; Zhou, J. Experimental Study on Flexural Fatigue Resistance of Recycled Fine Aggregate Concrete Incorporating Calcium Sulfate Whiskers. Sustainability 2023, 15, 16357. [Google Scholar] [CrossRef]
- Liu, H.; Luo, G.; Zhou, P.; Wei, H.; Li, W.; Yu, D. Flexural-Fatigue Properties of Sustainable Pervious Concrete Pavement Material Containing Ground Tire Rubber and Silica Fume. Sustainability 2019, 11, 4467. [Google Scholar] [CrossRef]
- Meng, J.; Xu, Z.; Liu, Z.; Chen, S.; Wang, C.; Zhao, B.; Zhou, A. Experimental Study on the Mechanics and Impact Resistance of Multiphase Lightweight Aggregate Concrete. Sustainability 2022, 14, 9606. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, B.; Kong, X.; Fu, Y. Investigation of Impact Resistance of High-Performance Polypropylene Fiber-Reinforced Recycled Aggregate Concrete. Crystals 2022, 12, 669. [Google Scholar] [CrossRef]
- Xiao, Q.H.; Cao, Z.Y.; Guan, X.; Li, Q.; Liu, X.L. Damage to recycled concrete with different aggregate substitution rates from the coupled action of freeze-thaw cycles and sulfate attack. Constr. Build. Mater. 2019, 221, 74–83. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, W.; Liu, C. An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China. Sustainability 2023, 15, 3669. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Li, M.S. Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model. Sustainability 2022, 14, 2431. [Google Scholar] [CrossRef]
- Ding, C.; Liu, T. Risk Decision for a Port Shore Power Supply System Based on Cumulative Prospect Theory and an Improved Gray Target. Sustainability 2023, 15, 14318. [Google Scholar] [CrossRef]
- Song, X.; Zhang, W.; Ge, Z.; Huang, S.; Huang, Y.; Xiong, S. A Study of the Influencing Factors on the Carbon Emission Trading Price in China Based on the Improved Gray Relational Analysis Model. Sustainability 2022, 14, 8002. [Google Scholar] [CrossRef]
- Qin, Y.; Guan, K.; Kou, J.; Ma, Y.; Zhou, H.; Zhang, X. Durability evaluation and life prediction of fiber concrete with fly ash based on entropy weight method and grey theory. Constr. Build. Mater. 2022, 327, 126918. [Google Scholar] [CrossRef]
- Yin, Y.; Fan, Y.; Ning, W. Research on the Prediction of Mechanical Response to Concrete under Sulfate Corrosion Based on the Grey Theory. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 022006. [Google Scholar] [CrossRef]
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Ministry of Housing and Urban Rural Development of the People’s Republic of China; China Architecture & Building Press: Beijing, China, 2019.
- CECS 13-2009; Test Method Standard for Fiber Concrete. China Plan Publishing House: Beijing, China, 2010.
- ACI Committee 544. Measurement of Properties of Fiber Reinforced Concrete. ACI Mater. J. 1998, 85, 83–93. [Google Scholar]
- JGJ 55-2011; Specification for Design Mix Proportion of Ordinary Concrete. China Academy of Building Research: Beijing, China, 2011.
- JGJT98-2010; Masonry Mortar Proportion Design Regulations. Ministry of Housing and Urban Rural Development of the People’s Republic of China; China Architecture & Building Press: Beijing, China, 2010.
- Wong, K.J.; Low, K.O.; Israr, H.A. Impact resistance of short bamboo fibre reinforced polyester concretes. Proc. Inst. Mech. Eng. Part L-J. Mater. Appl. 2017, 231, 683–692. [Google Scholar] [CrossRef]
- Yan, S.; Dong, Q.; Chen, X.; Li, J.; Wang, X.; Shi, B. An experimental and numerical study on the hybrid effect of basalt fiber and polypropylene fiber on the impact toughness of fiber reinforced concrete. Constr. Build. Mater. 2024, 411, 134270. [Google Scholar] [CrossRef]
- Yan, X.; Wang, F.; Luo, Y.; Liu, X.; Yang, Z.; Mao, H. Mechanical performance study of basalt-polyethylene fiber reinforced concrete under dynamic compressive loading. Constr. Build. Mater. 2023, 409, 133935. [Google Scholar] [CrossRef]
- Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr. Build. Mater. 2012, 37, 360–369. [Google Scholar] [CrossRef]
- Wang, C.; Fu, P.; Liu, Z.; Xu, Z.; Wen, T.; Zhu, Y.; Long, Y.; Jiang, J. Study of the Durability Damage of Ultrahigh Toughness Fiber Concrete Based on Grayscale Prediction and the Weibull Model. Buildings 2022, 12, 746. [Google Scholar] [CrossRef]
- Yan, B.; Huang, L.; Yan, L.; Gao, C.; Kasal, B. Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate. Constr. Build. Mater. 2017, 136, 265–276. [Google Scholar] [CrossRef]
- Yang, W.; Tang, Z.; Wu, W.; Zhang, K.; Yuan, J.; Li, H.; Feng, Z. Effect of different fibers on impermeability of steam cured recycled concrete. Constr. Build. Mater. 2022, 328, 127063. [Google Scholar] [CrossRef]
- Yao, X.; Pei, Z.; Zheng, H.; Guan, Q.; Wang, F.; Wang, S.; Ji, Y. Review of Mechanical and Temperature Properties of Fiber Reinforced Recycled Aggregate Concrete. Buildings 2022, 12, 1224. [Google Scholar] [CrossRef]
Testing Program | Specific Surface Area (m2/kg) | Initial Condensation Time (min) | Final Coagulation Time (min) | Cubic Compressive Strength (MPa) | Stability | |
---|---|---|---|---|---|---|
3 d | 28 d | |||||
Test results | 341 | 258 | 328 | 27.4 | 43.5 | Qualified |
Testing Program | Fineness (%) | Ablation (%) | Water Content (%) | Densities (g/cm3) | Packing Density (g/cm3) |
---|---|---|---|---|---|
Test results | 16 | 2.62 | 0.84 | 2.23 | 1.12 |
Testing Program | SiO2 (%) | Cauterization Reduction (%) | Water Demand Ratio (%) | 28 d Activity Index (%) | Chloride Ion Content (%) |
---|---|---|---|---|---|
Test results | 95.21 | 1.32 | 121 | 103 | 0.01 |
Length (mm) | Monofilament Diameter (μm) | Densities (g/cm3) | Modulus of Elasticity (Gpa) | Tensile Strength (MPa) | Breaking Elongation (mm) |
---|---|---|---|---|---|
3, 6, 9 | 7~15 | 2.63~2.65 | 91~110 | 3000~4800 | 2.5~3.0 |
No. | Materials (kg/m3) | Water Reducing (%) | BF | ||||||
---|---|---|---|---|---|---|---|---|---|
Cement | Fly Ash | Silica Fume | Quartz Sand | Walnut Shell | Water | Length (mm) | Dosage (%) | ||
WS0 | 769 | 333 | 47 | 656 | 0 | 345 | 1 | 0 | 0 |
WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 0 | 0 |
B3F1WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 3 | 0.1 |
B3F2WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 3 | 0.2 |
B3F3WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 3 | 0.3 |
B6F1WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 6 | 0.1 |
B6F2WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 6 | 0.2 |
B6F3WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 6 | 0.3 |
B9F1WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 9 | 0.1 |
B9F2WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 9 | 0.2 |
B9F3WS20 | 769 | 333 | 47 | 525 | 131 | 345 | 1 | 9 | 0.3 |
No. | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | Flexural Strength (MPa) |
---|---|---|---|
WS0 | 47.8 | 3.1 | 4.8 |
WS20 | 32.9 | 2.7 | 3.2 |
B3F1WS20 | 34.9 | 2.9 | 3.3 |
B3F2WS20 | 39.2 | 3.4 | 4.1 |
B3F3WS20 | 36.3 | 2.7 | 2.3 |
B6F1WS20 | 36.0 | 3.2 | 3.6 |
B6F2WS20 | 37.5 | 4.0 | 4.6 |
B6F3WS20 | 33.5 | 2.6 | 2.8 |
B9F1WS20 | 35.0 | 3.0 | 3.4 |
B9F2WS20 | 36.7 | 3.8 | 3.9 |
B9F3WS20 | 31.9 | 2.2 | 2.1 |
No. | ||||||
---|---|---|---|---|---|---|
a | b | c | d | e | f | |
WS0 | 256/257 | 178/178 | 240/241 | 193/194 | 187/188 | 275/276 |
WS20 | 130/131 | 126/126 | 151/152 | 108/108 | 165/166 | 231/231 |
B3F1WS20 | 174/175 | 222/223 | 369/369 | 320/321 | 241/242 | 233/233 |
B3F2WS20 | 185/186 | 202/204 | 401/403 | 282/283 | 333/334 | 289/291 |
B3F3WS20 | 209/210 | 277/278 | 310/312 | 347/348 | 222/222 | 255/256 |
B6F1WS20 | 263/264 | 266/267 | 304/306 | 351/352 | 389/390 | 247/248 |
B6F2WS20 | 342/344 | 397/398 | 545/547 | 425/427 | 202/204 | 285/286 |
B6F3WS20 | 246/247 | 269/270 | 255/256 | 381/382 | 312/313 | 323/324 |
B9F1WS20 | 254/255 | 142/143 | 278/278 | 368/370 | 247/248 | 391/392 |
B9F2WS20 | 306/308 | 268/270 | 341/342 | 279/280 | 383/385 | 212/213 |
B9F3WS20 | 354/356 | 231/232 | 261/262 | 201/203 | 189/190 | 271/272 |
No. | Average Number of Impact Resistance | |||
---|---|---|---|---|
W (J) | ||||
WS0 | 260 | 261 | 1 | 4900.095 |
WS20 | 152 | 152 | 0 | 3355.02 |
B3F1WS20 | 282 | 284 | 2 | 5760.923 |
B3F2WS20 | 270 | 271 | 1 | 6268.59 |
B3F3WS20 | 303 | 305 | 2 | 5981.648 |
B6F1WS20 | 366 | 368 | 2 | 6732.113 |
B6F2WS20 | 298 | 299 | 1 | 8122.68 |
B6F3WS20 | 280 | 281 | 1 | 6599.678 |
B9F1WS20 | 298 | 300 | 2 | 6202.373 |
B9F2WS20 | 251 | 253 | 2 | 6621.75 |
B9F3WS20 | 222 | 222 | 0 | 5584.343 |
No. | Regression Parameters | Correlation Coefficient | |
---|---|---|---|
γ | B | R2 | |
WS0 | 4.73433 | −25.98736 | 0.89859 |
WS20 | 3.2595 | −16.751 | 0.8863 |
B3F1WS20 | 3.29171 | −18.67995 | 0.9232 |
B3F2WS20 | 3.06077 | −17.64646 | 0.95392 |
B3F3WS20 | 4.62374 | −26.29862 | 0.96021 |
B6F1WS20 | 4.80745 | −27.89554 | 0.8811 |
B6F2WS20 | 2.66568 | −16.09102 | 0.98962 |
B6F3WS20 | 5.21677 | −30.13971 | 0.89344 |
B9F1WS20 | 2.41156 | −13.94561 | 0.89962 |
B9F2WS20 | 4.1787 | −24.2268 | 0.8738 |
B9F3WS20 | 3.86721 | −21.77233 | 0.91125 |
No. | 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|
WS0 | 289 | 252 | 224 | 195 | 150 |
WS20 | 220 | 181 | 152 | 124 | 153 |
B3F1WS20 | 375 | 308 | 262 | 213 | 147 |
B3F2WS20 | 419 | 339 | 283 | 228 | 153 |
B3F3WS20 | 354 | 307 | 273 | 236 | 181 |
B6F1WS20 | 394 | 344 | 307 | 267 | 207 |
B6F2WS20 | 572 | 449 | 365 | 284 | 180 |
B6F3WS20 | 379 | 335 | 301 | 265 | 210 |
B9F1WS20 | 459 | 351 | 279 | 212 | 128 |
B9F2WS20 | 402 | 345 | 302 | 257 | 192 |
B9F3WS20 | 346 | 292 | 254 | 213 | 156 |
No. | Measured Value | Predicted Value | Relative Error |
---|---|---|---|
WS0 | 222 | 224 | 0.009009 |
WS20 | 152 | 153 | 0.006579 |
B3F1WS20 | 261 | 262 | 0.0038314 |
B3F2WS20 | 284 | 283 | 0.003521 |
B3F3WS20 | 271 | 273 | 0.0073801 |
B6F1WS20 | 305 | 307 | 0.0065574 |
B6F2WS20 | 368 | 365 | 0.008152 |
B6F3WS20 | 299 | 301 | 0.006689 |
B9F1WS20 | 281 | 279 | 0.007117 |
B9F2WS20 | 300 | 302 | 0.0066667 |
B9F3WS20 | 253 | 254 | 0.0039526 |
No. | Two-Parameter Weibull Distribution Damage Evolution Equation |
---|---|
WS0 | |
WS20 | |
B3F1WS20 | |
B3F2WS20 | |
B3F3WS20 | |
B6F1WS20 | |
B6F2WS20 | |
B6F3WS20 | |
B9F1WS20 | |
B9F2WS20 | |
B9F3WS20 |
No. | Rate of Quality-Led Loss (%) | ||||
---|---|---|---|---|---|
0 Times | 25 Times | 50 Times | 75 Times | 100 Times | |
WS0 | 0 | −0.65 | 0.36 | 0.95 | 1.51 |
WS20 | 0 | −0.3 | 0.72 | 3.97 | 4.5 |
B3F1WS20 | 0 | −0.62 | 0.43 | 1.74 | 2.56 |
B3F2WS20 | 0 | −0.71 | 0.31 | 1.59 | 2.32 |
B3F3WS20 | 0 | −0.83 | 0.48 | 1.65 | 2.61 |
B6F1WS20 | 0 | −0.66 | 0.41 | 1.66 | 2.37 |
B6F2WS20 | 0 | −0.75 | 0.22 | 1.48 | 2.21 |
B6F3WS20 | 0 | −0.89 | 0.43 | 1.57 | 2.51 |
B9F1WS20 | 0 | −0.64 | 0.5 | 1.86 | 2.65 |
B9F2WS20 | 0 | −0.68 | 0.33 | 1.65 | 2.41 |
B9F3WS20 | 0 | −0.85 | 0.41 | 1.69 | 2.58 |
No. | Relative Dynamic Elastic Modulus (%) | ||||
---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |
WS0 | 100 | 96.34 | 91.59 | 84.21 | 76.65 |
WS20 | 100 | 92.12 | 85.39 | 74.32 | 70.02 |
B3F1WS20 | 100 | 95.59 | 90.59 | 83.14 | 75.87 |
B3F2WS20 | 100 | 96.21 | 92.3 | 84.48 | 76.98 |
B3F3WS20 | 100 | 94.21 | 91.89 | 83.04 | 74.21 |
B6F1WS20 | 100 | 95.44 | 90.62 | 82.21 | 75.4 |
B6F2WS20 | 100 | 96.21 | 92.32 | 84.31 | 77.4 |
B6F3WS20 | 100 | 93.17 | 88.24 | 79.98 | 73.23 |
B9F1WS20 | 100 | 96.34 | 91.12 | 82.66 | 75.68 |
B9F2WS20 | 100 | 96.92 | 92.21 | 83.76 | 76.41 |
B9F3WS20 | 100 | 94.33 | 91.31 | 81.26 | 72.32 |
No. | Freeze–Thaw Cycles (Times) | ||||
---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |
WS0 | 100 | 148.17 | 242.135 | 330.035 | 410.465 |
WS20 | 100 | 146.06 | 234.815 | 314.67 | 386.84 |
B3F1WS20 | 100 | 147.795 | 240.885 | 327.75 | 407.255 |
B3F2WS20 | 100 | 148.105 | 242.36 | 330.75 | 411.48 |
B3F3WS20 | 100 | 147.105 | 240.155 | 327.62 | 406.245 |
B6F1WS20 | 100 | 147.72 | 240.75 | 327.165 | 405.97 |
B6F2WS20 | 100 | 148.105 | 242.37 | 330.685 | 411.54 |
B6F3WS20 | 100 | 146.585 | 237.29 | 321.4 | 398.005 |
B9F1WS20 | 100 | 148.17 | 241.9 | 328.79 | 407.96 |
B9F2WS20 | 100 | 148.46 | 243.025 | 331.01 | 411.095 |
B9F3WS20 | 100 | 147.165 | 239.985 | 326.27 | 403.06 |
No. | Freeze–Thaw Cycles (Times) | ||||
---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |
WS0 | 100 | 196.34 | 287.93 | 372.14 | 448.79 |
WS20 | 100 | 192.12 | 277.51 | 351.83 | 421.85 |
B3F1WS20 | 100 | 195.59 | 286.18 | 369.32 | 445.19 |
B3F2WS20 | 100 | 196.21 | 288.51 | 372.99 | 449.97 |
B3F3WS20 | 100 | 194.21 | 286.1 | 369.14 | 443.35 |
B6F1WS20 | 100 | 195.44 | 286.06 | 368.27 | 443.67 |
B6F2WS20 | 100 | 196.21 | 288.53 | 372.84 | 450.24 |
B6F3WS20 | 100 | 193.17 | 281.41 | 361.39 | 434.62 |
B9F1WS20 | 100 | 196.34 | 287.46 | 370.12 | 445.8 |
B9F2WS20 | 100 | 196.92 | 289.13 | 372.89 | 449.3 |
B9F3WS20 | 100 | 194.33 | 285.64 | 366.9 | 439.22 |
No. | a, u Parameter | Relative Dynamic Elastic Modulus |
---|---|---|
WS0 | a = 0.076, u = 108.577 | |
WS20 | a = 0.0965, u = 106.584 | |
B3F1WS20 | a = 0.0767, u = 107.841 | |
B3F2WS20 | a = 0.0742, u = 108.497 | |
B3F3WS20 | a = 0.0789, u = 107.951 | |
B6F1WS20 | a = 0.0793, u = 108.149 | |
B6F2WS20 | a = 0.073, u = 108.233 | |
B6F3WS20 | a = 0.0809, u = 105.973 | |
B9F1WS20 | a = 0.081, u = 109.278 | |
B9F2WS20 | a = 0.0795, u = 109.868 | |
B9F3WS20 | a = 0.0883, u = 109.456 |
No. | Relative Dynamic Elastic Modulus (%) | ||||
---|---|---|---|---|---|
0 (Times) | 25 (Times) | 50 (Times) | 75 (Times) | 100 (Times) | |
WS0 | 100 | 97.29 | 90.2 | 83.63 | 77.54 |
WS20 | 100 | 92.4 | 83.9 | 76.18 | 69.17 |
B3F1WS20 | 100 | 96.43 | 89.31 | 82.72 | 76.61 |
B3F2WS20 | 100 | 97.42 | 90.46 | 83.99 | 77.99 |
B3F3WS20 | 100 | 96.22 | 88.92 | 82.17 | 75.94 |
B6F1WS20 | 100 | 96.35 | 89.01 | 82.22 | 75.95 |
B6F2WS20 | 100 | 97.34 | 90.48 | 84.11 | 78.19 |
B6F3WS20 | 100 | 94.03 | 86.72 | 79.98 | 73.76 |
B9F1WS20 | 100 | 97.18 | 89.62 | 82.64 | 76.21 |
B9F2WS20 | 100 | 97.97 | 90.47 | 83.56 | 77.17 |
B9F3WS20 | 100 | 96.31 | 88.17 | 80.72 | 73.89 |
Precision Evaluation Coefficient | Accuracy Class | |||
---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | |
C | <0.35 | 0.35~0.50 | 0.50~0.65 | 0.65~0.80 |
P | >0.95 | 0.95~0.80 | 0.80~0.70 | 0.70~0.60 |
Test index | WS0 | WS20 | B3F1WS20 | B3F2WS20 |
C | 0.133 | 0.145 | 0.117 | 0.167 |
P | 1 | 1 | 1 | 1 |
Accuracy class | Level 1 | Level 1 | Level 1 | Level 1 |
Test index | B3F3WS20 | B6F1WS20 | B6F2WS20 | B6F3WS20 |
C | 0.258 | 0.125 | 0.159 | 0.119 |
P | 1 | 1 | 1 | 1 |
Accuracy class | Level 1 | Level 1 | Level 1 | Level 1 |
Test index | B9F1WS20 | B9F2WS20 | B9F3WS20 | |
C | 0.114 | 0.138 | 0.234 | |
P | 1 | 1 | 1 | |
Accuracy class | Level 1 | Level 1 | Level 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Qiu, K.; Yang, B.; Ai, J.; Zhou, A. Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells. Sustainability 2024, 16, 824. https://doi.org/10.3390/su16020824
Peng S, Qiu K, Yang B, Ai J, Zhou A. Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells. Sustainability. 2024; 16(2):824. https://doi.org/10.3390/su16020824
Chicago/Turabian StylePeng, Shiwei, Kaixin Qiu, Bowei Yang, Jifeng Ai, and An Zhou. 2024. "Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells" Sustainability 16, no. 2: 824. https://doi.org/10.3390/su16020824
APA StylePeng, S., Qiu, K., Yang, B., Ai, J., & Zhou, A. (2024). Experimental Study on the Durability Performance of Sustainable Mortar with Partial Replacement of Natural Aggregates by Fiber-Reinforced Agricultural Waste Walnut Shells. Sustainability, 16(2), 824. https://doi.org/10.3390/su16020824