Comparison of Mechanized and Automated Technologies in the Scope of Cumulative Energy in Sustainable Milk Production
Abstract
:1. Introduction
2. Materials and Methods
- EC—cumulative energy intensity [MJ∙day−1∙LU−1];
- ECL—cumulative energy intensity for labor, [MJ∙day−1∙LU−1];
- ECF—cumulative energy intensity for fuel, [MJ∙day−1∙LU−1];
- ECE—cumulative energy intensity for electrical and mechanical energy, [MJ∙day−1∙LU−1];
- ECM—cumulative energy intensity for machinery, connected to weight, [MJ∙day−1∙LU−1];
- ECB—cumulative energy intensity for buildings, [MJ∙day−1∙LU−1];
- LU—livestock unit.
Statistical Analysis
3. Results
3.1. Technological Parameters Characterizing the Objects Tested
3.2. Results of the Statistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Common Agricultural Policy 2022–2027, European Commission. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 15 November 2023).
- Farm to Fork Strategy, European Commission. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 15 November 2023).
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Lyons, G.; Bartlett, J. Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms. Energies 2020, 13, 637. [Google Scholar] [CrossRef]
- Mazur, K.; Kierończyk, M. Animal welfare and methods of their improvement on example of cattle. In Doskonalenie Technologii Produkcji Rolnej, w Tym Energii Odnawialnej, z Uwzględnieniem Wymagań Zrównoważonego Rozwoju; Romaniuk, W., Ed.; ITP-PIB: Falenty, Poland, 2021; pp. 174–182. ISBN 978-83-65426-62-8. [Google Scholar]
- Piątek, M.; Bartkowiak, A.M. Effectiveness of using physical pretreatment of lignocellulosic biomass. J. Water Land Dev. 2023, 58, 62–69. [Google Scholar] [CrossRef]
- Kapłan, M.; Maj, G.; Klimek, K.E. The analysis of energy potential in vine leaves of the ‘Regent’ cultivar as bio-waste depending on the year of cultivation and the type of rootstock used. J. Water Land Dev. 2023, 58, 171–177. [Google Scholar] [CrossRef]
- Borek, K.; Romaniuk, W.; Roman, K.; Roman, M.; Kuboń, M. The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies 2021, 14, 2132. [Google Scholar] [CrossRef]
- Hryniewicz, M.; Roman, K. Simulations of fuels consumption in the CHP system based on modernised GTD-350 turbine engine. J. Water Land Dev. 2021, 51, 250255. [Google Scholar] [CrossRef]
- Skibko, Z.; Tymińska, M.; Romaniuk, W.; Borusiewicz, A. Impact of the Wind Turbine on the Parameters of the Electricity, Supply to an Agricultural Farm. J. Water Land Dev. 2021, 53, 7279. [Google Scholar] [CrossRef]
- Höhendinger, M.; Kern, S.; Stumpenhausen, J.; Treiber, M.; Bernhardt, H. Estimation of effects on the workload at dairy farms caused by automatization. In Proceedings of the 47th International Symposium: Actual Tasks on Agricultural Engineering, Opatija, Croatia, 5–7 March 2019; pp. 453–461. Available online: https://www.cabdirect.org/globalhealth/abstract/2019320219 (accessed on 10 December 2023).
- Aerts, J.; Kolenda, M.; Piwczyński, D.; Sitkowska, B.; Önder, H. Forecasting Milking Efficiency of Dairy Cows Milked in an Automatic Milking System Using the Decision Tree Technique. Animals 2022, 12, 1040. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, V.E.; Fadul-Pacheco, L. Future of dairy farming from the Dairy Brain perspective: Data integration, analytics, and applications. Int. Dairy J. 2021, 121, 105069. [Google Scholar] [CrossRef]
- Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction, Modelling, and Analyses. Energies 2020, 13, 1288. [Google Scholar] [CrossRef]
- Bernhardt, H.; Höhendinger, M.; Stumpenhausen, J. Development of the Technical Structure of the “Cow Energy” Concept. Agronomy 2021, 11, 1915. [Google Scholar] [CrossRef]
- Da Borso, F.; Chiumenti, A.; Sigura, M.; Pezzuolo, A. Influence of automatic feeding systems on design and management of dairy farms. J. Agric. Eng. 2017, 48, 48–52. [Google Scholar] [CrossRef]
- Cogato, A.; Brščić, M.; Guo, H.; Marinello, F.; Pezzuolo, A. Challenges and Tendencies of Automatic Milking Systems (AMS): A 20-Years Systematic Review of Literature and Patents. Animals 2021, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Alhomoch, F. Influence of Different Technical Elements and Settings in Automatic Milking Systems on the Quality of Dairy Cows’ Milk. Ph.D. Thesis, Humboldt University, Berlin, Germany, 2021. Available online: https://edoc.hu-berlin.de/bitstream/handle/18452/24337/dissertation_alhomoch_fadi.pdf?sequence=5 (accessed on 31 May 2021).
- Hogeveen, H.; Klaas, I.C.; Dalen, G.; Honig, H.; Zecconi, A.; Kelton, D.F.; Sánchez Mainar, M. Novel ways to use sensor data to improve mastitis management. J. Dairy Sci. 2021, 104, 11317–11332. [Google Scholar] [CrossRef] [PubMed]
- Bhoj, S.; Tarafdar, A.; Singh, M.; Gaur, G.K. Smart and Automatic Milking Systems: Benefits and Prospects. In Smart and Sustainable Food Technologies; Sehgal, S., Singh, B., Sharma, V., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Martin, T.; Gasselin, P.; Hostiou, N.; Feron, G.; Laurens, L.; Purseigle, F.; Ollivier, G. Robots and transformations of work in farm: A systematic review of the literature and a research agenda. Agron. Sustain. Dev. 2022, 42, 66. [Google Scholar] [CrossRef]
- Mathijs, E. Socio-economic aspects of automatic milking. In Automatic Milking—A Better Understanding; Academic Publishers: Wageningen, The Netherlands, 2004; pp. 46–55. [Google Scholar]
- Gaworski, M.; Kamińska, N.; Kic, P. Evaluation and optimization of milking in some Polish dairy farms differed in milking parlours. Agron. Res. 2017, 15, 112–122. [Google Scholar]
- Schick, M.; Moriz, C. Use of automatic milking systems in small-scale conditions. In Proceedings of the Bautagung Raumberg-Gumpenstein 2009, Technik in der Rinderhaltung, Emissionen, Rahmenbedingungen für die Schweinehaltung, Irdning, Austria, 27–28 May 2009; pp. 1–4. Available online: https://raumberg-gumpenstein.at/jdownloads/Tagungen/Bautagung/Bautagung_2009/3b_2008_bautagung_tagungsband_gesamt.pdf (accessed on 10 December 2023).
- Heitkämper, K.; Riegel, M.; Schick, M. Work economics and ergonomics in dairy farming. In Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), Québec City, QC, Canada, 13–17 June 2010; Agroscope Reckenholz-Tänikon: Ettenhausen, Switzerland, 2015; p. 7. Available online: https://library.csbe-scgab.ca/docs/meetings/2010/CSBE100312.pdf (accessed on 10 December 2023).
- Poulopoulou, I.; Nock, M.C.; Steinmayer, S.; Lambertz, C.; Gauly, M. How can working time analysis contribute to the production efficiency of dairy farms in mountain regions? Ital. J. Anim. Sci. 2018, 17, 489–498. [Google Scholar] [CrossRef]
- Bae, J.; Park, S.; Jeon, K.; Choi, J.Y. Autonomous System of TMR (Total Mixed Ration) Feed Feeding Robot for Smart Cattle Farm. Int. J. Precis. Eng. Manuf. 2023, 24, 423–433. [Google Scholar] [CrossRef]
- Peng, L.; Jiang, Z. Intelligent automatic pig feeding system based on PLC. Rev. Científica Fac. Cienc. Vet. 2020, 30, 2479–2490. [Google Scholar]
- Karn, P.; Sitikhu, P.; Somai, N. Automatic cattle feeding system. In Proceedings of the 2nd International Conference on Engineering and Technology, KEC Conference 2019, Lalitpur, Nepal, 26 September 2019. [Google Scholar]
- Fiedorowicz, G. Technika w Chowie Bydła z Podstawowymi Elementami Zootechniki; Monograph; Institute of Building, Mechanization and Electrification of Agriculture: Warsaw, Poland, 2007; ISBN 978-8-389806-18-5. [Google Scholar]
- Wójcicki, Z. Metodyka badania energochłonności produkcji rolniczej. Probl. Inżynierii Rol. 2015, 14, 17–29. [Google Scholar]
- Freiberger, F.; Klindtworht, K.; Baumeister, J.; Gierse, A.; Lehman, B.; Ohnesorge, M.; Harms, J.; Wendl, G. Automatisches Melken in Modernen Milchviesiällen; KTBL: Darmstadt, Germany, 2005; ss. 141. [Google Scholar]
- Pommer, R.; Pache, S.; Heber, I.; Rindfleisch, A. Automatische Melksysteme in Sachsen, Schriftenreihe; Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2013; Volume 10, Available online: publikationen.sachsen.de/bdb/artikel/18690/documents/25137 (accessed on 10 December 2023).
- Leola, A.; Priekulis, J.; Česna, J.; Gaworski, M. Trend of cow herd size in Baltic states. Agron. Res. 2021, 19, 1052–1059. [Google Scholar]
Technology | Number of LU (Milking Cows) | Housing System | Milking and Milk Cooling | Annual Milk Yield [dm3∙LU−1] | Building Area [m2] |
---|---|---|---|---|---|
CF-AM1 | 160 | Boxed, free-stall, deep slurry channels | 2 milking robots, producer 1 | 8500 | 2113 |
CF-AM2 | 83 | Boxed, free-stall, deep slurry channels | 1 milking robot, producer 2 | 7500 | 1298 |
CF-AM3 | 200 | Boxed, free-stall, deep slurry channels | 2 milking robots, producer 3 | 11,000 | 1543 |
CF-AM4 | 200 | Boxed, free-stall, deep slurry channels | 2 milking robots, producer 3 | 9300 | 4160 |
AF-AM5 | 170 | Boxed, free-stall, deep slurry channels | 3 milking robots, producer 3 | 10,500 | 1800 |
CF-AM6 | 230 | Boxed, free-stall, deep slurry channels | 4 milking robots, producer 1 | 11,903 | 2220 |
AF-AM7 | 320 | Boxed, free-stall, deep slurry channels | 4 milking robots, producer 1 | 11,400 | 3001 |
CF-CM | 200 | Boxed, free-stall, shallow litter | Fishbone2x8, producer 2 | 9500 | 2194 |
Technology | Treatment TII | Treatment TIII | ||
---|---|---|---|---|
CF-AM1 | Feeding wagon, tractor | Concentrates in milking robots | Robotic feed-scraper | Slurry tank, tractor |
CF-AM2 | Feeding wagon, tractor | Concentrates in milking robots | Robotic feed-scraper | Slurry tank, tractor |
CF-AM3 | Feeding wagon, tractor | Concentrates in milking robots | Robotic feed-scraper | Slurry tank, tractor |
CF-AM4 | Feeding wagon, tractor | Concentrates in milking robots | Robotic feed-scraper | Slurry tank, tractor |
AF-AM5 | TMR robot (fully automated), producer 3 | Concentrates in feeding robot | Feed pushed by PMR robot | Slurry tank, tractor |
CF-AM6 | Feeding wagon, tractor. Self-power loader | Concentrates in milking robots | Robotic feed-scraper | Slurry tank, tractor |
AF-AM7 | TMR robot. producer 2 | Concentrates in milking robots | Feed pushed by TMR robot | Slurry tank, tractor |
CF-CM | Self-power-feeding wagon | Robot used for concentrates | Robotic feed-scraper | Slurry tank, tractor |
Indicator | Indicator Value |
---|---|
Human work (L) | 40.00 MJ/rbh |
Electrical energy (E) | 13.60 MJ/k/Wh |
Diesel fuel (F) | 53.20 MJ/kg |
Buildings area (B) | 100.00 MJ/m2 |
Machinery and other equipment (W) | 110.00 MJ/kg |
Technology | TI | TII | TIII | Total Weight W(I+II+III) |
---|---|---|---|---|
CF-AM1 | 6340 | 10,370 | 26,608 | 43,318 |
CF-AM2 | 3170 | 15,935 | 10,920 | 30,025 |
CF-AM3 | 7240 | 15,780 | 23,814 | 46,834 |
CF-AM4 | 9180 | 14,083 | 15,300 | 38,563 |
AF-AM5 | 5540 | 11,075 | 16,778 | 33,393 |
CF-AM6 | 7970 | 20,965 | 11,495 | 40,430 |
AF-AM7 | 9180 | 10,725 | 18,435 | 38,340 |
CF-CM | 3190 | 12,558 | 11,660 | 27,408 |
Technology | FTII | FTIII | Total F |
---|---|---|---|
CF-AM1 | 0.059 | 0.047 | 0.106 |
CF-AM2 | 0.066 | 0.023 | 0.089 |
CF-AM3 | 0.098 | 0.032 | 0.130 |
CF-AM4 | 0.064 | 0.017 | 0.081 |
AF-AM5 | 0.022 | 0.002 | 0.024 |
CF-AM6 | 0.071 | 0.005 | 0.076 |
AF-AM7 | 0.042 | 0.007 | 0.049 |
CF-CM | 0.105 | 0.382 | 0.487 |
Technology | LI | LII | LIII | LIV | Total A | Total B * |
---|---|---|---|---|---|---|
CF-AM1 | 0.330 | 0.350 | 0.030 | 0.070 | 0.780 | 0.013 |
CF-AM2 | 1.080 | 0.600 | 0.070 | 0.170 | 1.920 | 0.032 |
CF-AM3 | 0.920 | 1.710 | 0.090 | 0.270 | 2.990 | 0.049 |
CF-AM4 | 0.570 | 0.430 | 0.001 | 0.100 | 1.101 | 0.018 |
AF-AM5 | 0.441 | 0.088 | 0.021 | 0.099 | 0.838 | 0.014 |
CF-AM6 | 0.391 | 0.478 | 0.022 | 0.081 | 1.701 | 0.028 |
AF-AM7 | 1.080 | 0.600 | 0.160 | 0.180 | 2.020 | 0.033 |
CF-CM | 2.040 | 0.710 | 0.350 | 0.310 | 3.410 | 0.057 |
Technology | EI | EII | EIII | EIV | Total |
---|---|---|---|---|---|
CF-AM1 | 1.207 | 0.459 | 0.005 | 0.167 | 1.838 |
CF-AM2 | 0.781 | 0.789 | 0.250 | 0.182 | 2.002 |
CF-AM3 | 0.735 | 1.848 | 0.605 | 0.121 | 3.309 |
CF-AM4 | 1.232 | 0.840 | 0.207 | 0.228 | 2.507 |
AF-AM5 | 0.629 | 0.237 | 0.020 | 0.089 | 0.974 |
CF-AM6 | 0.698 | 0.621 | 0.034 | 0.135 | 1.487 |
AF-AM7 | 0.648 | 0.446 | 0.022 | 0.111 | 1.227 |
CF-CM | 0.191 | 1.826 | 0.157 | 0.217 | 2.391 |
Technology | ECL | ECE | ECW | Total ECI |
---|---|---|---|---|
CF-AM1 | 0.220 | 0.562 | 16.415 | 17.197 |
CF-AM2 | 0.720 | 0.576 | 10.622 | 11.918 |
CF-AM3 | 0.613 | 0.545 | 9.996 | 11.154 |
CF-AM4 | 0.380 | 0.988 | 16.755 | 18.123 |
AF-AM5 | 0.294 | 0.726 | 8.554 | 9.574 |
CF-AM6 | 0.261 | 0.858 | 9.493 | 10.612 |
AF-AM7 | 0.720 | 0.432 | 8.813 | 9.965 |
CF-CM | 1.360 | 0.240 | 2.597 | 4.197 |
Technology | ECL | ECF | ECW | EcE | Total ECII |
---|---|---|---|---|---|
CF-AM1 | 0.233 | 3.139 | 0.919 | 6.242 | 10.534 |
CF-AM2 | 0.400 | 3.511 | 2.893 | 10.730 | 17.535 |
CF-AM3 | 1.140 | 5.214 | 1.189 | 25.133 | 32.675 |
CF-AM4 | 0.287 | 3.405 | 1.516 | 11.424 | 16.631 |
AF-AM5 | 0.059 | 1.170 | 1.451 | 3.223 | 5.903 |
CF-AM6 | 0.319 | 3.777 | 2.257 | 8.446 | 14.798 |
AF-AM7 | 0.400 | 2.234 | 0.505 | 6.066 | 9.205 |
CF-CM | 0.473 | 5.586 | 0.946 | 24.834 | 31.839 |
Technology | TIII | TIV | Total | ||||
---|---|---|---|---|---|---|---|
ECL | ECF | EcW | EcE | ECL | EcE | ECIII, ECIV | |
CF-AM1 | 0.020 | 2.500 | 2.358 | 0.068 | 0.047 | 2.271 | 7.265 |
CF-AM2 | 0.047 | 1.224 | 1.983 | 3.400 | 0.113 | 2.475 | 9.241 |
CF-AM3 | 0.060 | 1.702 | 1.794 | 8.228 | 0.180 | 1.646 | 13.611 |
CF-AM4 | 0.001 | 0.904 | 1.647 | 2.815 | 0.067 | 3.101 | 8.535 |
AF-AM5 | 0.014 | 0.106 | 2.198 | 0.272 | 0.066 | 1.210 | 3.867 |
CF-AM6 | 0.015 | 0.266 | 1.237 | 0.462 | 0.054 | 1.836 | 3.870 |
AF-AM7 | 0.107 | 0.372 | 0.868 | 0.299 | 0.120 | 1.510 | 3.276 |
CF-CM | 0.233 | 20.322 | 0.878 | 2.135 | 0.207 | 2.951 | 26.727 |
Number of Cows (LU) | LI | LII | LIII | LIV | |
---|---|---|---|---|---|
Number of cows (LU) | 1.000000 | −0.044422 | −0.001569 | 0.034495 | −0.057560 |
LI | −0.044422 | 1.000000 | 0.341633 | 0.949361 | 0.888941 |
LII | −0.001569 | 0.341633 | 1.000000 | 0.262262 | 0.702025 |
LIII | 0.034495 | 0.949361 | 0.262262 | 1.000000 | 0.829714 |
LIV | −0.057560 | 0.888941 | 0.702025 | 0.829714 | 1.000000 |
EI | 0.130708 | −0.740841 | −0.186054 | −0.783278 | −0.692538 |
EII | −0.052151 | 0.684515 | 0.793789 | 0.613860 | 0.867291 |
EIII | −0.132317 | 0.247463 | 0.899357 | 0.067359 | 0.597685 |
EIV | 0.039374 | 0.383204 | −0.060753 | 0.272763 | 0.159955 |
Number of Cows (LU) | ECI | ECII | ECIII | ECIV | Total | |
---|---|---|---|---|---|---|
Number of cows (LU) | 1.000000 | −0.206066 | −0.098138 | −0.153197 | −0.302002 | −0.207382 |
ECI | −0.206066 | 1.000000 | −0.382094 | −0.547886 | 0.151779 | −0.212472 |
ECII | −0.098138 | −0.382094 | 1.000000 | 0.850053 | 0.465418 | 0.954650 |
ECIII | −0.153197 | −0.547886 | 0.850053 | 1.000000 | 0.576802 | 0.887163 |
ECIV | −0.302002 | 0.151779 | 0.465418 | 0.576802 | 1.000000 | 0.658750 |
Total | −0.207382 | −0.212472 | 0.954650 | 0.887163 | 0.658750 | 1.000000 |
Number of Cows (LU) | ECL | ECF | ECE | ECW | ECB | Total EC | |
---|---|---|---|---|---|---|---|
Number of cows (LU) | 1.000000 | 0.166030 | −0.034603 | −0.203042 | −0.207774 | ||
ECL | 1.000000 | 0.166030 | −0.034603 | −0.203042 | −0.766384 | −0.204689 | −0.207774 |
ECF | 0.166030 | 1.000000 | 0.731569 | 0.555299 | −0.506961 | −0.535860 | 0.741805 |
ECE | −0.034603 | 0.731569 | 1.000000 | 0.403620 | −0.501544 | −0.255285 | 0.767138 |
ECW | −0.203042 | 0.555299 | 0.403620 | 1.000000 | −0.033313 | −0.006429 | 0.893724 |
ECW | −0.766384 | −0.506961 | −0.501544 | −0.033313 | 1.000000 | 0.461798 | −0.217048 |
ECB | −0.204689 | −0.535860 | −0.255285 | −0.006429 | 0.461798 | 1.000000 | −0.115588 |
Total | −0.207774 | 0.741805 | 0.767138 | 0.893724 | −0.217048 | −0.115588 | 1.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, K.E.; Barwicki, J.; Tseiko, V. Comparison of Mechanized and Automated Technologies in the Scope of Cumulative Energy in Sustainable Milk Production. Sustainability 2024, 16, 906. https://doi.org/10.3390/su16020906
Mazur KE, Barwicki J, Tseiko V. Comparison of Mechanized and Automated Technologies in the Scope of Cumulative Energy in Sustainable Milk Production. Sustainability. 2024; 16(2):906. https://doi.org/10.3390/su16020906
Chicago/Turabian StyleMazur, Kamila Ewelina, Jan Barwicki, and Vitalii Tseiko. 2024. "Comparison of Mechanized and Automated Technologies in the Scope of Cumulative Energy in Sustainable Milk Production" Sustainability 16, no. 2: 906. https://doi.org/10.3390/su16020906
APA StyleMazur, K. E., Barwicki, J., & Tseiko, V. (2024). Comparison of Mechanized and Automated Technologies in the Scope of Cumulative Energy in Sustainable Milk Production. Sustainability, 16(2), 906. https://doi.org/10.3390/su16020906