The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Ion and Isotope Determination
2.3. Source Apportionment Using the Bayesian Model
2.4. Complementary Analysis
3. Results and Discussion
3.1. Ion Component Characteristics and Stoichiometric Relationship
3.1.1. Ion Component Characteristics
3.1.2. Ion Stoichiometric Relationships
3.2. Composition and Sources of Sulfate Isotopes
3.2.1. Composition of Sulfate Isotopes
3.2.2. Source Apportionment of Sulfate
3.3. Composition and Sources of Nitrate Isotopes
3.3.1. Composition of Nitrate Isotopes
3.3.2. Nitrate Formation Pathways
3.3.3. Source Apportionment of Nitrate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent Advances in Understanding Secondary Organic Aerosol: Implications for Global Climate Forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef]
- Qu, Y.; Milliez, M.; Musson-Genon, L.; Carissimo, B. Modelling Radiative and Convective Thermal Exchanges over a European City Center and Their Effects on Atmospheric Dispersion. Sustainability 2022, 14, 7295. [Google Scholar] [CrossRef]
- Hsu, S.; Liu, S.C.; Kao, S.; Jeng, W.; Huang, Y.; Tseng, C.; Tsai, F.; Tu, J.; Yang, Y. Water-soluble Species in the Marine Aerosol from the Northern South China Sea: High Chloride Depletion Related to Air Pollution. J. Geophys. Res. 2007, 112, 2007JD008844. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Jiang, G.; Xie, K. Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry. Sustainability 2024, 16, 6642. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Tripathee, L.; Guo, J.; Yang, W.; Guo, J. Influence of Spring Dust Storm on Atmospheric Particulate-Bound Mercury in a Typical Inland City of Northern China: Characteristics, Sources, and Risk Assessment. Sustainability 2024, 16, 4096. [Google Scholar] [CrossRef]
- Walters, W.W.; Michalski, G.; Böhlke, J.K.; Alexander, B.; Savarino, J.; Thiemens, M.H. Assessing the Seasonal Dynamics of Nitrate and Sulfate Aerosols at the South Pole Utilizing Stable Isotopes. JGR Atmos. 2019, 124, 8161–8177. [Google Scholar] [CrossRef]
- Elliott, E.M.; Kendall, C.; Wankel, S.D.; Burns, D.A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J. Nitrogen Isotopes as Indicators of NOx Source Contributions to Atmospheric Nitrate Deposition Across the Midwestern and Northeastern United States. Environ. Sci. Technol. 2007, 41, 7661–7667. [Google Scholar] [CrossRef]
- Luo, L.; Wu, S.; Zhang, R.; Wu, Y.; Li, J.; Kao, S. What Controls Aerosol δ15N-NO3−? NOx Emission Sources vs. Nitrogen Isotope Fractionation. Sci. Total Environ. 2023, 871, 162185. [Google Scholar] [CrossRef]
- Luo, L.; Liao, T.; Zhang, X.; Wu, Y.; Li, J.; Zhang, R.; Zheng, Z.; Kao, S.-J. Quantifying the Formation Pathways of Nitrate in Size-Segregated Aerosols during Winter Haze Pollution. Gondwana Res. 2023, 115, 71–80. [Google Scholar] [CrossRef]
- Yang, S.; Luo, L.; Li, Y.; Wang, C.; Lu, B.; Xu, S.; Kao, S. Dry deposition fluxes, formation mechanisms and sources of nitrate in total suspended particles in springtime on Dongsha Island, South China Sea. J. Earth Environ. 2023, 14, 193–206. (In Chinese) [Google Scholar]
- Xiao, H.; Zhu, R.; Pan, Y.; Guo, W.; Zheng, N.; Liu, Y.; Liu, C.; Zhang, Z.; Wu, J.; Kang, C.; et al. Differentiation Between Nitrate Aerosol Formation Pathways in a Southeast Chinese City by Dual Isotope and Modeling Studies. JGR Atmos. 2020, 125, e2020JD032604. [Google Scholar] [CrossRef]
- Inomata, Y.; Ohizumi, T.; Saito, T.; Morohashi, M.; Yamashita, N.; Takahashi, M.; Sase, H.; Takahashi, K.; Kaneyasu, N.; Fujihara, M.; et al. Estimating Transboundary Transported Anthropogenic Sulfate Deposition in Japan Using the Sulfur Isotopic Ratio. Sci. Total Environ. 2019, 691, 779–788. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Sun, R.; Jiang, H.; Zong, Z.; Tian, C.; Xie, L.; Li, Q.; Jia, W.; Peng, P.; et al. Regional Characteristics of Atmospheric δ34S-SO42− over Three Parts of Asia Monitored by Quartz Wool-Based Passive Samplers. Sci. Total Environ. 2021, 778, 146107. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Tan, Y.; Wang, X.; Tian, C.; Li, J.; Fang, Y.; Chen, Y.; Cui, S.; Zhang, G. Dual-Modelling-Based Source Apportionment of NOx in Five Chinese Megacities: Providing the Isotopic Footprint from 2013 to 2014. Environ. Int. 2020, 137, 105592. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.-W.; Xie, L.-H.; Long, A.-M.; Ye, F.; Pan, Y.-P.; Li, D.-N.; Long, Z.-H.; Chen, L.; Xiao, H.-Y.; Liu, C.-Q. Use of Isotopic Compositions of Nitrate in TSP to Identify Sources and Chemistry in South China Sea. Atmos. Environ. 2015, 109, 70–78. [Google Scholar] [CrossRef]
- Tostevin, R.; Turchyn, A.V.; Farquhar, J.; Johnston, D.T.; Eldridge, D.L.; Bishop, J.K.B.; McIlvin, M. Multiple Sulfur Isotope Constraints on the Modern Sulfur Cycle. Earth Planet. Sci. Lett. 2014, 396, 14–21. [Google Scholar] [CrossRef]
- Amrani, A.; Said-Ahmad, W.; Shaked, Y.; Kiene, R.P. Sulfur Isotope Homogeneity of Oceanic DMSP and DMS. Proc. Natl. Acad. Sci. USA 2013, 110, 18413–18418. [Google Scholar] [CrossRef]
- Rempillo, O.; Seguin, A.M.; Norman, A.-L.; Scarratt, M.; Michaud, S.; Chang, R.; Sjostedt, S.; Abbatt, J.; Else, B.; Papakyriakou, T.; et al. Dimethyl Sulfide Air-Sea Fluxes and Biogenic Sulfur as a Source of New Aerosols in the Arctic Fall. J. Geophys. Res. 2011, 116, D00S04. [Google Scholar] [CrossRef]
- Xu, Y. Source Analysis of Sulfate in Atmospheric Particulate Matter Based on Sulfur Isotope. Ph.D. Dissertation, North China Electric Power University, Beijing, China, 2023. (In Chinese). [Google Scholar]
- Zhang, H.; Hu, A.; Lu, C.; Zhang, G. Sulfur isotopic composition of acid deposition in South China Regions and its environmental significance. China Environ. Sci. 2002, 22, 165–169. (In Chinese) [Google Scholar]
- Guo, Z.; Shi, L.; Chen, S.; Jiang, W.; Wei, Y.; Rui, M.; Zeng, G. Sulfur Isotopic Fractionation and Source Appointment of PM2.5 in Nanjing Region around the Second Session of the Youth Olympic Games. Atmos. Res. 2016, 174–175, 9–17. [Google Scholar] [CrossRef]
- Fibiger, D.L.; Hastings, M.G. First Measurements of the Nitrogen Isotopic Composition of NOx from Biomass Burning. Environ. Sci. Technol. 2016, 50, 11569–11574. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Shi, X.; Sun, Z.; Tian, C.; Li, J.; Fang, Y.; Gao, H.; Zhang, G. Nitrogen Isotopic Composition of NOx from Residential Biomass Burning and Coal Combustion in North China. Environ. Pollut. 2022, 304, 119238. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Liu, X.-Y. Nitrogen Isotope Signatures of Oxidized Nitrogen Species from Biomass Burning. Appl. Geochem. 2023, 150, 105569. [Google Scholar] [CrossRef]
- Felix, J.D.; Elliott, E.M.; Shaw, S.L. Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission Inventories. Environ. Sci. Technol. 2012, 46, 3528–3535. [Google Scholar] [CrossRef]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Böhlke, J.K.; Hilkert, A. Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method. Anal. Chem. 2002, 74, 4905–4912. [Google Scholar] [CrossRef]
- Ding, S.; Chen, Y.; Li, Q.; Li, X.-D. Using Stable Sulfur Isotope to Trace Sulfur Oxidation Pathways during the Winter of 2017–2019 in Tianjin, North China. Int. J. Environ. Res. Public Health 2022, 19, 10966. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Yu, M.; Xie, F.; Zhang, Y. Anthropogenic Emission Sources of Sulfate Aerosols in Hangzhou, East China: Insights from Isotope Techniques with Consideration of Fractionation Effects between Gas-to-Particle Transformations. Environ. Sci. Technol. 2022, 56, 3905–3914. [Google Scholar] [CrossRef]
- Giesemann, A.; Jaeger, H.-J.; Norman, A.L.; Krouse, H.R.; Brand, W.A. Online Sulfur-Isotope Determination Using an Elemental Analyzer Coupled to a Mass Spectrometer. Anal. Chem. 1994, 66, 2816–2819. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, R.; Song, C.-B.; Peng, J.-F.; Guo, W.; Liu, Y.; Zheng, N.; Xiao, H.; Xiao, H.-Y. Changes in Nitrate Accumulation Mechanisms as PM2.5 Levels Increase on the North China Plain: A Perspective from the Dual Isotopic Compositions of Nitrate. Chemosphere 2021, 263, 127915. [Google Scholar] [CrossRef]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian Stable Isotope Mixing Models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef]
- Luo, L.; Kao, S.; Wu, Y.; Zhang, X.; Lin, H.; Zhang, R.; Xiao, H. Stable Oxygen Isotope Constraints on Nitrate Formation in Beijing in Springtime. Environ. Pollut. 2020, 263, 114515. [Google Scholar] [CrossRef] [PubMed]
- Saksakulkrai, S.; Chantara, S.; Shi, Z. Airborne Particulate Matter in Southeast Asia: A Review on Variation, Chemical Compositions and Source Apportionment. Environ. Chem. 2023, 19, 401–431. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, L. Chemical Processes in Sea-Salt Chloride Depletion Observed at a Canadian Rural Coastal Site. Atmos. Environ. 2012, 46, 189–194. [Google Scholar] [CrossRef]
- Sturges, W.T.; Shaw, G.E. Halogens in Aerosols in Central Alaska. Atmos. Environ. Part A. Gen. Top. 1993, 27, 2969–2977. [Google Scholar] [CrossRef]
- Ghahreman, R.; Norman, A.-L.; Abbatt, J.P.D.; Levasseur, M.; Thomas, J.L. Biogenic, Anthropogenic and Sea Salt Sulfate Size-Segregated Aerosols in the Arctic Summer. Atmos. Chem. Phys. 2016, 16, 5191–5202. [Google Scholar] [CrossRef]
- Ishino, S.; Hattori, S.; Savarino, J.; Legrand, M.; Albalat, E.; Albarede, F.; Preunkert, S.; Jourdain, B.; Yoshida, N. Homogeneous Sulfur Isotope Signature in East Antarctica and Implication for Sulfur Source Shifts through the Last Glacial-Interglacial Cycle. Sci. Rep. 2019, 9, 12378. [Google Scholar] [CrossRef]
- Lin, C.T.; Baker, A.R.; Jickells, T.D.; Kelly, S.; Lesworth, T. An Assessment of the Significance of Sulphate Sources over the Atlantic Ocean Based on Sulphur Isotope Data. Atmos. Environ. 2012, 62, 615–621. [Google Scholar] [CrossRef]
- Calhoun, J.A.; Bates, T.S.; Charlson, R.J. Sulfur Isotope Measurements of Submicrometer Sulfate Aerosol Particles over the Pacific Ocean. Geophys. Res. Lett. 1991, 18, 1877–1880. [Google Scholar] [CrossRef]
- Norman, A.-L.; Anlauf, K.; Hayden, K.; Thompson, B.; Brook, J.R.; Li, S.-M.; Bottenheim, J. Aerosol Sulphate and Its Oxidation on the Pacific NW Coast: S and O Isotopes in PM2.5. Atmos. Environ. 2006, 40, 2676–2689. [Google Scholar] [CrossRef]
- Akata, N.; Yanagisawa, F.; Kotani, T.; Ueda, A. Ten-Year Observation of Sulfur Isotopic Composition of Sulfate in Aerosols Collected at Tsuruoka, a Coastal Area on the Sea of Japan in Northern Japan. Geochem. J. 2010, 44, 571–577. [Google Scholar] [CrossRef]
- Olson, E.; Michalski, G.; Welp, L.; Larrea Valdivia, A.E.; Reyes Larico, J.; Salcedo Peña, J.; Fang, H.; Magara Gomez, K.; Li, J. Mineral Dust and Fossil Fuel Combustion Dominate Sources of Aerosol Sulfate in Urban Peru Identified by Sulfur Stable Isotopes and Water-Soluble Ions. Atmos. Environ. 2021, 260, 118482. [Google Scholar] [CrossRef]
- Rabinovich, A.L.; Grinenko, V.A. Sulfate Sulfur Isotope Ratios for USSR River Water. Geochem. Int. 1979, 16, 68–79. [Google Scholar]
- Mukai, H.; Tanaka, A.; Fujii, T.; Zeng, Y.; Hong, Y.; Tang, J.; Guo, S.; Xue, H.; Sun, Z.; Zhou, J.; et al. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environ. Sci. Technol. 2001, 35, 1064–1071. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, Q.; Chen, S.; Zhu, B.; Zhang, Y.; Yu, J.; Guo, Z. Study on Pollution Behavior and Sulfate Formation during the Typical Haze Event in Nanjing with Water Soluble Inorganic Ions and Sulfur Isotopes. Atmos. Res. 2019, 217, 198–207. [Google Scholar] [CrossRef]
- Han, X.; Lang, Y.; Guo, Q.; Li, X.; Ding, H.; Li, S. Enhanced Oxidation of SO2 by H2O2 during Haze Events: Constraints From Sulfur Isotopes. JGR Atmos. 2022, 127, e2022JD036960. [Google Scholar] [CrossRef]
- Xiao, H.-W.; Xiao, H.-Y.; Luo, L.; Shen, C.-Y.; Long, A.-M.; Chen, L.; Long, Z.-H.; Li, D.-N. Atmospheric Aerosol Compositions over the South China Sea: Temporal Variability and Source Apportionment. Atmos. Chem. Phys. 2017, 17, 3199–3214. [Google Scholar] [CrossRef]
- Yang, J.-Y.T.; Hsu, S.-C.; Dai, M.H.; Hsiao, S.S.-Y.; Kao, S.-J. Isotopic Composition of Water-Soluble Nitrate in Bulk Atmospheric Deposition at Dongsha Island: Sources and Implications of External N Supply to the Northern South China Sea. Biogeosciences 2014, 11, 1833–1846. [Google Scholar] [CrossRef]
- Altieri, K.E.; Fawcett, S.E.; Hastings, M.G. Reactive Nitrogen Cycling in the Atmosphere and Ocean. Annu. Rev. Earth Planet. Sci. 2021, 49, 523–550. [Google Scholar] [CrossRef]
- Zhen, S.; Luo, M.; Shao, Y.; Xu, D.; Ma, L. Application of Stable Isotope Techniques in Tracing the Sources of Atmospheric NOx and Nitrate. Processes 2022, 10, 2549. [Google Scholar] [CrossRef]
- Chen, M.; Niu, H.; Xiang, Y. A Study of Chemical Processes of Nitrate in Atmospheric Aerosol and Snow Based on Stable Isotopes. Atmosphere 2023, 15, 59. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, F.; Luo, X.; Song, L.; Wang, X.; Zhang, Y.; Wu, J.; Xiao, Z.; Cao, F.; Bi, X.; et al. Quantification of NO Sources Contribution to Ambient Nitrate Aerosol, Uncertainty Analysis and Sensitivity Analysis in a Megacity. Sci. Total Environ. 2024, 926, 171583. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ye, X.; Lv, Z.; Yao, Y.; Chen, Y.; Zhou, Y.; Chen, J. Dual Isotopic Evidence of δ15N and δ18O for Priority Control of Vehicle Emissions in a Megacity of East China: Insight from Measurements in Summer and Winter. Sci. Total Environ. 2024, 931, 172918. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Bei, N.; Hu, B.; Wu, J.; Liu, S.; Li, X.; Wang, R.; Liu, Z.; Shen, Z.; Li, G. Wintertime Nitrate Formation Pathways in the North China Plain: Importance of N2O5 Heterogeneous Hydrolysis. Environ. Pollut. 2020, 266, 115287. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Huang, W.; Cui, S.; Gao, B.; Zhai, Y. Productive and Consumptive Emission Characteristics of Energy-Related Nitrogen Oxides in Eastern Chinese Cities. Ecosyst. Health Sustain. 2024, 10, 0226. [Google Scholar] [CrossRef]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Sessions, W.R.; Simpas, J.B.; Uy, S.N.; Boyd, T.J.; Atwood, S.A.; Blake, D.R.; et al. Observations of the Temporal Variability in Aerosol Properties and Their Relationships to Meteorology in the Summer Monsoonal South China Sea/East Sea: The Scale-Dependent Role of Monsoonal Flows, the Madden–Julian Oscillation, Tropical Cyclones, Squall Lines and Cold Pools. Atmos. Chem. Phys. 2015, 15, 1745–1768. [Google Scholar] [CrossRef]
- Sun, Z.; Zong, Z.; Tan, Y.; Tian, C.; Liu, Z.; Zhang, F.; Sun, R.; Chen, Y.; Li, J.; Zhang, G. Characterization of the Nitrogen Stable Isotope Composition (δ15N) of Ship-Emitted NOx. Atmos. Chem. Phys. 2023, 23, 12851–12865. [Google Scholar] [CrossRef]
- Deng, M.; Wang, C.; Yang, C.; Li, X.; Cheng, H. Nitrogen and Oxygen Isotope Characteristics, Formation Mechanism, and Source Apportionment of Nitrate Aerosols in Wuhan, Central China. Sci. Total Environ. 2024, 921, 170715. [Google Scholar] [CrossRef]
- Michalski, G.; Bhattacharya, S.K.; Mase, D.F. Oxygen Isotope Dynamics of Atmospheric Nitrate and Its Precursor Molecules. In Handbook of Environmental Isotope Geochemistry: Vol I; Baskaran, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 613–635. ISBN 978-3-642-10637-8. [Google Scholar]
- Walters, W.W.; Michalski, G. Theoretical Calculation of Oxygen Equilibrium Isotope Fractionation Factors Involving Various NO Molecules, OH, and H2O and Its Implications for Isotope Variations in Atmospheric Nitrate. Geochim. Cosmochim. Acta 2016, 191, 89–101. [Google Scholar] [CrossRef]
- Stark, H.; Brown, S.S.; Goldan, P.D.; Aldener, M.; Kuster, W.C.; Jakoubek, R.; Fehsenfeld, F.C.; Meagher, J.; Bates, T.S.; Ravishankara, A.R. Influence of Nitrate Radical on the Oxidation of Dimethyl Sulfide in a Polluted Marine Environment. J. Geophys. Res. 2007, 112, 2006JD007669. [Google Scholar] [CrossRef]
- Kamezaki, K.; Hattori, S.; Iwamoto, Y.; Ishino, S.; Furutani, H.; Miki, Y.; Uematsu, M.; Miura, K.; Yoshida, N. Tracing the Sources and Formation Pathways of Atmospheric Particulate Nitrate over the Pacific Ocean Using Stable Isotopes. Atmos. Environ. 2019, 209, 152–166. [Google Scholar] [CrossRef]
- Walters, W.W.; Tharp, B.D.; Fang, H.; Kozak, B.J.; Michalski, G. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources. Environ. Sci. Technol. 2015, 49, 11363–11371. [Google Scholar] [CrossRef]
- Li, D.; Wang, X. Nitrogen Isotopic Signature of Soil-Released Nitric Oxide (NO) after Fertilizer Application. Atmos. Environ. 2008, 42, 4747–4754. [Google Scholar] [CrossRef]
- Felix, J.D.; Elliott, E.M. Isotopic Composition of Passively Collected Nitrogen Dioxide Emissions: Vehicle, Soil and Livestock Source Signatures. Atmos. Environ. 2014, 92, 359–366. [Google Scholar] [CrossRef]
- Hoering, T. The Isotopic Composition of the Ammonia and the Nitrate Ion in Rain. Geochim. Cosmochim. Acta 1957, 12, 97–102. [Google Scholar] [CrossRef]
- Walters, W.W.; Michalski, G. Theoretical Calculation of Nitrogen Isotope Equilibrium Exchange Fractionation Factors for Various NOy Molecules. Geochim. Cosmochim. Acta 2015, 164, 284–297. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Sun, Z.; Jiang, H.; Tian, C.; Zhang, G. High Contribution of Anthropogenic Combustion Sources to Atmospheric Inorganic Reactive Nitrogen in South China Evidenced by Isotopes. Atmos. Chem. Phys. 2023, 23, 6395–6407. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Tian, C.; Zong, Z.; Liu, Q.; Jiang, H.; Li, T.; Li, J.; Jiang, H.; Zhao, S.; et al. Sources and Formation of Atmospheric Nitrate Over China–Indochina Peninsula in Spring: A Perspective From Oxygen and Nitrogen Isotopic Compositions Based on Passive Air Samplers. Front. Environ. Sci. 2022, 10, 897555. [Google Scholar] [CrossRef]
SO42− | Na+ | NH4+ | NO3− | Cl− | K+ | Mg2+ | Ca2+ | δ34S-SO42− | δ15N-NO3− | δ18O-NO3− | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easterly winds | Mean | 2.13 | 0.56 | 0.35 | 0.28 | 0.28 | 0.04 | 0.08 | 0.07 | 9.04 | −1.80 | 54.19 |
SD | 1.09 | 0.48 | 0.25 | 0.48 | 0.48 | 0.01 | 0.08 | 0.07 | 2.20 | 2.18 | 7.07 | |
Southwesterly winds | Mean | 1.48 | 0.32 | 0.26 | 0.07 | 0.09 | 0.02 | 0.05 | 0.05 | 8.36 | 0.20 | 50.07 |
SD | 0.67 | 0.20 | 0.18 | 0.09 | 0.11 | 0.02 | 0.03 | 0.04 | 1.21 | 2.16 | 7.33 | |
Total | Mean | 1.81 | 0.44 | 0.31 | 0.18 | 0.18 | 0.03 | 0.06 | 0.06 | 8.71 | −0.89 | 52.32 |
SD | 0.95 | 0.38 | 0.22 | 0.35 | 0.36 | 0.02 | 0.06 | 0.05 | 1.80 | 2.35 | 7.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gao, M.; Sun, X.; Liang, B.; Sun, C.; Sun, Q.; Ni, X.; Ou, H.; Mai, S.; Zhou, S.; et al. The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea. Sustainability 2024, 16, 8733. https://doi.org/10.3390/su16208733
Zhang Y, Gao M, Sun X, Liang B, Sun C, Sun Q, Ni X, Ou H, Mai S, Zhou S, et al. The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea. Sustainability. 2024; 16(20):8733. https://doi.org/10.3390/su16208733
Chicago/Turabian StyleZhang, Yongyun, Min Gao, Xi Sun, Baoling Liang, Cuizhi Sun, Qibin Sun, Xue Ni, Hengjia Ou, Shixin Mai, Shengzhen Zhou, and et al. 2024. "The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea" Sustainability 16, no. 20: 8733. https://doi.org/10.3390/su16208733
APA StyleZhang, Y., Gao, M., Sun, X., Liang, B., Sun, C., Sun, Q., Ni, X., Ou, H., Mai, S., Zhou, S., & Zhao, J. (2024). The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea. Sustainability, 16(20), 8733. https://doi.org/10.3390/su16208733