Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Substrates and Sample Preparation
2.2. Experimental Methodology
- ⮚
- Carbonation
- ⮚
- Oxidation
- ⮚
- Water gas Shift
- ⮚
- Methanation
- ⮚
- Steam reforming
2.3. Conversion Rate Calculation
3. Results and Discussion
3.1. Effects of Mineral Contents and Potassium Impregnation
3.2. Effects of Temperature
3.3. Effects of Steam Percentage
3.4. Determination of Kinetic Parameters
4. Conclusions
- (1)
- As for the impact of temperature, we noticed that there was an increase in reactivity up to 4 times just by increasing the temperature by 150 °C.
- (2)
- The increase in steam pressure also had a remarkable effect on the gasification process of the different samples, especially on the 100G NI sample, whose conversion and reactivity profiles were considerably influenced by this increase.
- (3)
- It can also be concluded that the inorganic elements, such as iron and silicon, could play a concurrent role with potassium by activating or inhibiting the gasification process.
- (4)
- K2CO3 concentration of 0.5 M could be considered the most efficient molarity for impregnation in the case of 100G and 0.1 M for the other samples with well-defined conditions of steam pressure and temperature.
- (5)
- Characteristic parameters of Arrhenius law were determined for all samples for the reference reactivity of 50% conversion. The activation energies of our samples, especially of 100G, are lower than those found in reported works in the literature, indicating the crucial role of potassium during catalysis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anvari, S.; Aguado, R.; Jurado, F.; Fendri, M.; Zaier, H.; Larbi, A.; Vera, D. Analysis of agricultural waste/byproduct biomass potential for bioenergy: The case of Tunisia. Energy Sustain. Dev. 2024, 78, 101367. [Google Scholar] [CrossRef]
- World Bioenergy Association. Statistics, Global Bioenergy; World Bioenergy Association: Stockholm, Sweden, 2020. [Google Scholar]
- Nunes Leonel, J.R. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results Eng. 2022, 14, 100408. [Google Scholar] [CrossRef]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 2012, 103, 249–258. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Elkadri, A.; Elfkih, S.; Sahnoun, H.; Abichou, M. Storage tanks’ olive mill wastewater management in Tunisia. Sustain. Water Resour. Manag. 2022, 8, 1. [Google Scholar] [CrossRef]
- Jenkins, B.M.; Baxter, L.L.; Miles Jr, T.R.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 2004, 45, 651–671. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Sutton, D.; Kelleher, B.; Ross, J.R. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 2001, 73, 155–173. [Google Scholar] [CrossRef]
- Fung, D.P.C.; Kim, S.D. Gasification kinetics of coals and wood. Korean J. Chem. Eng. 1990, 7, 109–114. [Google Scholar] [CrossRef]
- Park, J.H.; Park, H.W.; Choi, S.; Park, D.W. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system. Int. J. Hydrogen Energy 2016, 41, 16813–16822. [Google Scholar] [CrossRef]
- Lahijani, P.; Zainal, Z.A.; Mohammadi, M.; Mohamed, A.R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615–632. [Google Scholar] [CrossRef]
- Beagle, E.; Wang, Y.; Bell, D.; Belmont, E. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide. Bioresour. Technol. 2018, 251, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Vamvuka, D.; Teftiki, A.; Sfakiotakis, S. Increasing the reactivity of waste biochars during their co-gasification with carbon dioxide using catalysts and bio-oils. Thermochim. Acta 2021, 704, 179015. [Google Scholar] [CrossRef]
- Ricoul, F. Association D’un Procédé de Gazéification Avec Une Pile à Combustion Haute Température (SOFC) Pour la Production D’électricité à Partir de Biomasse. Ph.D. Thesis, Nantes Université, Nantes, France, 2016. [Google Scholar]
- Hervy, M. Valorisation de Chars Issus de Pyrogazéification de Biomasse Pour la Purification de Syngas: Lien Entre Propriétés Physico-chimiques, Procédé de Fonctionnalisation et Efficacité du Traitement. Ph.D. Thesis, Ecole Nationale des Mines d’Albi-Carmaux, Albi, France, 2016. [Google Scholar]
- Chin, B.L.F.; Yusup, S.; Al Shoaibi, A.; Kannan, P.; Srinivasakannan, C.; Sulaiman, S.A.; Herman, A.P. Effect of temperature on catalytic steam co-gasification of rubber seed shells and plastic HDPE residues. Chem. Eng. Trans. 2016, 52, 577–582. [Google Scholar]
- Lampropoulos, A.; Kaklidis, N.; Athanasiou, C.; Montes-Morán, M.A.; Arenillas, A.; Menéndez, J.A.; Binas, V.D.; Konsolakis, M.; Marnellos, G.E. Effect of Olive Kernel thermal treatment (torrefaction vs. slow pyrolysis) on the physicochemical characteristics and the CO2 or H2O gasification performance of as-prepared biochars. Int. J. Hydrogen Energy 2021, 46, 29126–29141. [Google Scholar] [CrossRef]
- Peres, A.P.; Lunelli, B.H.; Maciel FIlho, R. Application of biomass to hydrogen and syngas production. Chem. Eng. Trans. 2013, 32, 589–594. [Google Scholar]
- Sandvik, P. High-Pressure Natural Gas to Syngas Chemical Looping: Thermodynamic Modeling, Gas-to-Liquid Plant Integration, and Variable Reducer-Combustor Operating Pressure. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2019. [Google Scholar]
- Zhu, C.; Maduskar, S.; Paulsen, A.D.; Dauenhauer, P.J. Alkaline-Earth-Metal-Catalyzed Thin-Film Pyrolysis of Cellulose. ChemCatChem 2016, 8, 818–829. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Sharrock, P. A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 2013, 58, 305–317. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Song, Q.; Yao, Q.; Yang, R.M. Influence of the atmosphere on the transformation of alkali and alkaline earth metallic species during rice straw thermal conversion. Energy Fuels 2012, 26, 1892–1899. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, X.; Wu, C.; Wang, C.; Xie, J.; Zhou, Z.; Li, H. Effects of metal catalysts on CO2 gasification reactivity of biomass char. Biotechnol. Adv. 2009, 27, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Kramb, J.; DeMartini, N.; Perander, M.; Moilanen, A.; Konttinen, J. Modeling of the catalytic effects of potassium and calcium on spruce wood gasification in CO2. Fuel Process. Technol. 2016, 148, 50–59. [Google Scholar] [CrossRef]
- Dahou, T.; Defoort, F.; Jeguirim, M.; Dupont, C. Towards understanding the role of K during biomass steam gasification. Fuel 2020, 282, 118806. [Google Scholar] [CrossRef]
- Lajili, M.; Limousy, L.; Jeguirim, M. Physico-chemical properties and thermal degradation characteristics of agropellets from olive mill byproducts/sawdust blends. Fuel Process. Technol. 2014, 126, 215–221. [Google Scholar] [CrossRef]
- Kraiem, N.; Jeguirim, M.; Limousy, L.; Lajili, M.; Dorge, S.; Michelin, L.; Said, R. Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances. Energy 2014, 78, 479–489. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, L.; Guan, J.; Xiong, Q.A.; Zhang, S.; Jin, X. A review on biomass gasification: Effect of main parameters on char generation and reaction. Energy Fuels 2020, 34, 13438–13455. [Google Scholar] [CrossRef]
- Guizani, C.; Escudero Sanz, F.J.; Salvador, S. The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2. Fuel 2013, 108, 812–823. [Google Scholar] [CrossRef]
- Tagutchou, J.P.; Escudero Sanz, F.J.; Salvador, S. Gasification of woodchip particles: Experimental and numerical study of char–H2O, char–CO2, and char–O2 reactions. Chem. Eng. Sci. 2011, 66, 4499–4509. [Google Scholar]
- Laurendeau, N.M. Heterogeneous kinetics of coal char gasification and combustion. Prog. Energy Combust. Sci. 1978, 4, 221–270. [Google Scholar] [CrossRef]
- Ollero, P.; Serrera, A.; Arjona, R.; Alcantarilla, S. The CO2 gasification kinetics of olive residue. Biomass Bioenergy 2003, 24, 151–161. [Google Scholar] [CrossRef]
- Gómez-Barea, A.; Ollero, P.; Fernández-Baco, C. Diffusional effects in CO2 gasification experiments with single biomass char particles. 1. Experimental Investigation. Energy Fuels 2006, 20, 2202–2210. [Google Scholar] [CrossRef]
- DeGroot, W.F.; Shafizadeh, F. Kinetics of gasification of Douglas Fir and Cottonwood chars by carbon dioxide. Fuel 1984, 63, 210–216. [Google Scholar] [CrossRef]
- Gjernes, E.; Fjellerup, J.; Olsen, A. Combustion and Gasification of Coal and Straw under Pressurized Conditions; Forskningscenter Risoe: Roskilde, Denmark, 1995. [Google Scholar]
- Chen, G.; Yu, Q.; Sjöström, K. Reactivity of char from pyrolysis of birch wood. J. Anal. Appl. Pyrolysis 1997, 40, 491–499. [Google Scholar] [CrossRef]
- Stoltze, S.; Henriksen, U.; Lyngbech, T.; Christensen, O. Gasification of straw in a large-sample TGA. In Nordic Seminar on Solid Fuel Reactivity; Chalmers University of Technology: Gothenburg, Sweden, 1993; Volume 24. [Google Scholar]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Bouraoui, Z.; Dupont, C.; Jeguirim, M.; Limousy, L.; Gadiou, R. CO2 gasification of woody biomass chars: The influence of K and Si on char reactivity. Comptes Rendus. Chim. 2016, 19, 457–465. [Google Scholar] [CrossRef]
- Jacob, S.; Perez, D.D.S.; Dupont, C.; Commandré, J.M.; Broust, F.; Carriau, A.; Sacco, D. Short rotation forestry feedstock: Influence of particle size segregation on biomass properties. Fuel 2013, 111, 820–828. [Google Scholar] [CrossRef]
- Hognon, C.; Dupont, C.; Grateau, M.; Delrue, F. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: Influence of inorganic elements. Bioresour. Technol. 2014, 164, 347–353. [Google Scholar] [CrossRef]
- Dupont, C.; Jacob, S.; Marrakchy, K.O.; Hognon, C.; Grateau, M.; Labalette, F.; Perez, D.D.S. How inorganic elements of biomass influence char steam gasification kinetics. Energy 2016, 109, 430–435. [Google Scholar] [CrossRef]
- Cortazar, M.; Santamaria, L.; Lopez, G.; Alvarez, J.; Amutio, M.; Bilbao, J.; Olazar, M. Fe/olivine as primary catalyst in the biomass steam gasification in a fountain confined spouted bed reactor. J. Ind. Eng. Chem. 2021, 99, 364–379. [Google Scholar] [CrossRef]
- Zribi, M.; Lajili, M.; Escudero Sanz, F.J. Gasification of biofuels blended from olive mill solid wastes and pine sawdust under different carbon dioxide/nitrogen atmospheres. Fuel 2020, 282, 118822. [Google Scholar] [CrossRef]
- Elsaddik, M.; Nzihou, A.; Delmas, M.; Delmas, G.H. Steam gasification of cellulose pulp char: Insights on experimental and kinetic study with a focus on the role of silicon. Energy 2023, 271, 126997. [Google Scholar] [CrossRef]
- Mermoud, F. Gazéification de Charbon de Bois à la Vapeur d’eau: De la Particule Isolée Au Lit Fixe Continu. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2006. [Google Scholar]
- Tagutchou, J.P. Gazéification du Charbon de Plaquettes Forestières: Particule Isolée et lit Fixe Continu. Ph.D. Thesis, Université de Perpignan, Perpignan, France, 2008. [Google Scholar]
- Zribi, M.; Lajili, M.; Escudero Sanz, F.J. Hydrogen enriched syngas production via gasification of biofuels pellets/powders blended from olive mill solid wastes and pine sawdust under different water steam/nitrogen atmospheres. Int. J. Hydrogen Energy 2019, 44, 11280–11288. [Google Scholar] [CrossRef]
- Elorf, A.; Kandasamy, J.; Belandria, V.; Bostyn, S.; Sarh, B.; Gökalp, I. Heating rate effects on pyrolysis, gasification and combustion of olive waste. Biofuels 2021, 12, 1157–1164. [Google Scholar] [CrossRef]
- Bernardo, C.A.; Trimm, D.L. The kinetics of gasification of carbon deposited on nickel catalysts. Carbon 1979, 17, 115–120. [Google Scholar] [CrossRef]
- Müller, R.; Zedtwitz, P.V.; Wokaun, A.; Steinfeld, A. Kinetic investigation on steam gasification of charcoal under direct high-flux irradiation. Chem. Eng. Sci. 2003, 58, 5111–5119. [Google Scholar] [CrossRef]
- Ariffen, A.R.; Yusoff, N. Kinetic analysis of co-pyrolysis of biomass/sorbent mixtures at different ratios. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012117. [Google Scholar] [CrossRef]
Sawdust 100S | 100G | |
---|---|---|
Na | 10 | 3637 |
K | 1406 | 17,189 |
P | 64 | 615 |
Mn | 48 | 8 |
Fe | 49 | 197 |
Mg | 113 | 551 |
Si | 45 | 416 |
Ca | 1397 | 5301 |
Al | 34 | 226 |
Sample | 80%S/20%G | 60%S/40%G | 50%S/50%G | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conc. | NI | 0.1 M | 0.5 M | 1.5 M | NI | 0.1 M | 0.5 M | 1.5 M | NI | 0.1 M | 0.5 M | 1.5 M |
Al | 106 | 860 | 95.3 | 144 | 132 | 368 | 169 | 423 | 165 | 146 | 1574 | 213 |
As | <31 | <77 | <45 | <61 | <51 | <68 | <32 | <57 | <49 | <91 | <35 | <34 |
Ca | 2231 | 2033 | 1857 | 1496 | 3687 | 3138 | 3038 | 2651 | 3612 | 3391 | 2803 | 2229 |
Cd | <16 | <38 | <23 | <30 | <26 | <34 | <16 | <29 | <25 | <45 | <18 | <17 |
Co | <16 | 66.6 | <23 | <30 | <26 | 137 | <16 | <29 | <25 | <45 | <18 | <17 |
Cr | 18.4 | 59.3 | 60.9 | 54.4 | 84 | <34 | 19.9 | <29 | 53.8 | <45 | 24.3 | 24.5 |
Cu | <16 | <38 | <23 | <30 | <26 | <34 | <16 | <29 | <25 | <45 | <18 | <17 |
Fe | 172 | 558 | 331 | 297 | 447 | 564 | 198 | 208 | 372 | 247 | 265 | 205 |
Hg | <63 | <154 | <91 | <122 | <102 | <135 | <65 | <115 | <98 | <182 | <71 | <69 |
K | <6250 | 18,552 | 46,753 | 84,945 | <10,204 | 22,111 | 40,837 | 84,691 | <9804 | 19,938 | 38,893 | 118,968 |
Mg | 312 | 175 | 122 | 103 | 340 | 225 | 156 | 147 | 330 | 236 | 167 | 106 |
Mn | 25.7 | <38 | 25.8 | <30 | 25.5 | <34 | 21.6 | <29 | <49 | <45 | <18 | <17 |
Mo | <31 | <77 | <45 | <61 | <51 | <68 | <32 | <57 | <49 | <91 | <35 | <34 |
Na | 524 | 942 | 563 | 742 | 803 | 747 | 358 | 672 | 831 | 951 | 3275 | 424 |
Ni | <31 | 79.3 | <45 | <61 | <51 | 99.4 | <32 | <57 | <49 | <91 | 45.3 | <34 |
P | 417 | 913 | 498 | 621 | 566 | 632 | 318 | 546 | 564 | 831 | 360 | 334 |
Pb | <31 | <77 | <45 | <61 | <51 | <68 | <32 | <57 | <49 | <91 | <35 | <34 |
Sb | <31 | <77 | <45 | <61 | <51 | <68 | <32 | <57 | <49 | <91 | <35 | <34 |
Si | 928 | 1287 | 1037 | 762 | 1691 | 2094 | 1955 | 2670 | 2987 | 3104 | 43,754 | 2064 |
Ti | <16 | <38 | <23 | <30 | <26 | <34 | <16 | <29 | <25 | <45 | 22.7 | <17 |
V | <31 | <77 | <45 | <61 | <51 | <68 | <32 | <57 | <49 | <91 | <35 | <34 |
Zn | <16 | <38 | <23 | <30 | <26 | <34 | <16 | <29 | <25 | <45 | <18 | <17 |
Samples | N | C | H | S | O | |
---|---|---|---|---|---|---|
Sawdust 100%G | NI | 0.20 1.16 | 51.30 46.43 | 6.40 6.38 | 0.00 0.00 | 41.50 46.03 * |
0.1 M | 1.21 | 49.90 | 6.58 | 0.00 | 42.31 * | |
0.5 M | 0.74 | 41.54 | 5.79 | 0.00 | 51.93 * | |
1.5 M | 0.94 | 29.83 | 4.05 | 0.00 | 65.18 * | |
80%S–20%G | NI | 0.21 | 45.56 | 6.38 | 0.00 | 47.64 |
0.1 M | 0.21 | 43.98 | 6.21 | 0.00 | 46.68 | |
0.5 M | 0.20 | 41.15 | 5.88 | 0.00 | 43.76 | |
1.5 M | 0.16 | 37.11 | 5.10 | 0.00 | 40.20 | |
60%S–40%G | NI | 0.30 | 46.20 | 6.42 | 0.00 | 43.84 |
0.1 M | 0.29 | 44.30 | 6.03 | 0.00 | 42.70 | |
0.5 M | 0.27 | 42.02 | 6.06 | 0.00 | 42.90 | |
1.5 M | 0.23 | 37.81 | 5.20 | 0.00 | 39.86 | |
50%S–50%G | NI | 0.35 | 46.27 | 6.51 | 0.00 | 45.85 |
0.1 M | 0.34 | 45.38 | 6.42 | 0.00 | 44.16 | |
0.5 M | 0.29 | 39.56 | 5.55 | 0.00 | 39.89 | |
1.5 M | 0.23 | 34.09 | 4.74 | 0.00 | 45.71 |
Samples | N | C | H | S | O | |
---|---|---|---|---|---|---|
80%S–20%G | NI | 0.39 | 66.72 | 3.85 | n.r. | 25.8 |
0.1 M | 0.23 | 60.82 | 3.59 | n.r. | 21.5 | |
0.5 M | 0.18 | 47.98 | 4.14 | n.r. | 26.2 | |
1.5 M | 0.11 | 39.53 | 3.34 | n.r. | 26.4 |
Samples | Ea (kJ/mol) | R2 | Reaction Order (n) | A (s−1) | |
---|---|---|---|---|---|
100G | NI | 62.981 | 0.996 | 0.936 | 32.927 × 100 |
C = 0.1 M | 66.676 | 0.983 | 0.528 | 72.469 × 100 | |
C = 0.5 M | 46.293 | 0.939 | 0.276 | 1.594 × 100 | |
C = 1.5 M | 60.022 | 0.933 | −0.063 | 4.041 × 100 | |
50S50G | NI | 74.098 | 0.627 | 0.413 | 11.5853 × 101 |
C = 0.1 M | 62.787 | 0.740 | −0.574 | 3.482 × 100 | |
C = 0.5 M | 60.434 | 0.610 | 0.131 | 9.895 × 100 | |
C = 1.5 M | −70.777 | 0.962 | −0.052 | 2.923 × 105 | |
80S20G | NI | 133.721 | 0.999 | −0.671 | 4.700 × 103 |
C = 0.1 M | 28.754 | 0.957 | −0.583 | 73.196 × 10−3 | |
C = 0.5 M | 23.937 | 0.905 | −0.059 | 74.507 × 10−3 | |
C = 1.5 M | 1.697 | 0.703 | 0.619 | 33.357 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsibi, C.; Pozzobon, V.; Escudero-Sanz, J.; Lajili, M. Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas. Sustainability 2024, 16, 9040. https://doi.org/10.3390/su16209040
Nsibi C, Pozzobon V, Escudero-Sanz J, Lajili M. Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas. Sustainability. 2024; 16(20):9040. https://doi.org/10.3390/su16209040
Chicago/Turabian StyleNsibi, Chafaa, Victor Pozzobon, Javier Escudero-Sanz, and Marzouk Lajili. 2024. "Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas" Sustainability 16, no. 20: 9040. https://doi.org/10.3390/su16209040
APA StyleNsibi, C., Pozzobon, V., Escudero-Sanz, J., & Lajili, M. (2024). Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas. Sustainability, 16(20), 9040. https://doi.org/10.3390/su16209040