Promoting the Economic Sustainability of Small-Scale Farmers Through Versatile Machinery in the Republic of Korea
Abstract
:1. Introduction
2. Literature Review
2.1. Agricultural Machinery in Small-Scale Farming
2.2. The Economic Value of Small-Scale Farming
3. Materials and Methods
3.1. Selection and Integration of Farming Steps
3.2. Machinery Capacity
3.3. Cost Analysis Framework
3.3.1. Purchasing Cost
3.3.2. Annual Usage Cost
3.3.3. Substituted Labor Cost
3.3.4. Crop Production
3.3.5. Production Cost
4. Results
4.1. Annual Usage Costs
4.2. Cost Benefits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takeshima, H. Agricultural mechanization and gendered labour activities across sectors: Micro-evidence from multi-country farm household data. J. Agric. Econ. 2023, 75, 425–456. [Google Scholar] [CrossRef]
- Durczak, K.; Ekielski, A.; Kozlowski, R.; Zelazinski, T.; Pilarski, K. A computer system supporting agricultural machinery and farm tractor purchase decisions. Heliyon 2020, 6, e05039. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.H.; Lambert, D.M.; Ripberger, J.T. Public willingness to pay for farmer adoption of best management practices. J. Agric. Appl. Econ. 2022, 54, 224–241. [Google Scholar] [CrossRef]
- Vemireddy, V.; Choudhary, A. A systematic review of labor-saving technologies: Implications for women in agriculture. Glob. Food Secur. 2021, 29, 100541. [Google Scholar] [CrossRef]
- Guimaraes, P.P.; da Silva, L.L.; do Carmo, F.C.D.A.; Quirino, N.I.L. Analysis of the Brazilian market for agricultural tractors between 2012–2018. Pesqui. Agrar. E Ambient. 2022, 10, 95–101. [Google Scholar]
- Sorensen, J.A.; Jenkins, P.L. Bayes, B.; Purschwitz, M.; May, J.J.; Madden, E. Increases in ROPS pricing from 2006–2012 and the impact on ROPS demand. J. Agric. Saf. Health 2013, 19, 115–124. [Google Scholar]
- Herranz-Matey, I.; Ruiz-Garcia, L. A New Method and Model for the Estimation of Residual Value of Agricultural Tractors. Agriculture 2023, 13, 409. [Google Scholar] [CrossRef]
- Edwards, W. Replacement Strategies for Farm Machinery; Iowa State University: Ames, IA, USA, 2019. [Google Scholar]
- Kastens, T.L. Farm Machinery Operation Cost Calculations; Kansas State University, Agricultural Experiment Station and Cooperative Extension Service: Manhatan, KS, USA, 1997. [Google Scholar]
- Calcante, A.; Fontanini, L.; Mazzetto, F. Repair and maintenance costs of 4WD tractors in Northern Italy. Trans. ASABE 2013, 56, 355–362. [Google Scholar] [CrossRef]
- Mishra, D.; Satapathy, S. Reliability and Maintenance of agricultural machinery by MCDM approach. Int. J. Syst. Assur. Eng. Manag. 2021, 14, 135–146. [Google Scholar] [CrossRef]
- Benni, N.E.; Irek, J.; Finger, R.; Mack, G.; Ammann, J. Citizens’ perceptions of agricultural policy goals-evidence from Switzerland. Food Policy 2024, 125, 102643. [Google Scholar] [CrossRef]
- Just, D.R. On the policy relevance of agricultural economics. Eur. Rev. Agric. Econ. 2023, 50, 1256–1276. [Google Scholar] [CrossRef]
- Yang, S.; Li, W. The impact of socialized agricultural machinery services on the labor transfer of maize growers. Agriculture 2023, 13, 1249. [Google Scholar] [CrossRef]
- Bastidas-Orrego, L.M.; Jaramillo, N.; Castillo-Grisales, J.A.; Ceballos, Y.F. A systematic review of the evaluation of agricultural policies: Using prisma. Heliyon 2023, 9, e20292. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Paudel, K.P.; Devadoss, S. Economic openness, financial bias, and the urban-rural income gap. Rev. Dev. Econ. 2023, 28, 242–263. [Google Scholar] [CrossRef]
- Huo, C.; Chen, L. The impact of land transfer policy on sustainable agricultural development in China. Sci. Rep. 2024, 14, 7064. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Parkhi, C.M. Climate risk and technology adoption in the Midstream of crop value chains: Evidence from Nigerian maize traders. J. Agric. Econ. 2020, 72, 158–179. [Google Scholar] [CrossRef]
- Tester, C.A.; Popp, M.P.; Kemper, N.P.; Nalley, L.L.; West, G. Impact of weather and herd size management on beef cow profitability. J. Agric. Appl. Econ. 2019, 51, 545–567. [Google Scholar] [CrossRef]
- Zheng, P.; Maharjan, K.L. Does rural labor transfer impact Chinese agricultural carbon emission efficiency? A substitution perspective of agricultural machinery. Sustainability 2024, 16, 5870. [Google Scholar] [CrossRef]
- Silveira, F.D.; Machado, F.M.; Farias, M.S.D.; Schlosser, J.F. Fuel consumption by agricultural machinery: A review of pollutant emission control technologies. Cienc. Rural 2022, 53, e20220029. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Cai, X. Can green electrification expansion to rice cultivation reduce agricultural methane emissions in China? J. Clean. Prod. 2024, 434, 139906. [Google Scholar] [CrossRef]
- Chatzopoulos, T.; Lippert, C. Adaptation and Climate Change Impacts: A Structural Ricardian Analysis of Farm Types in Germany. J. Agric. Econ. 2014, 66, 537–554. [Google Scholar] [CrossRef]
- Ribera, L.A.; Hons, F.M.; Richardson, J.W. An economic comparison between conventional and no-tillage farming systems in Burleson County, Texas. Agron. J. 2004, 96, 415–424. [Google Scholar] [CrossRef]
- Llewellyn, R.S.; D’Emden, F.H.; Kuehne, G. Extensive use of no-tillage in grain growing regions of Australia. Field Crops Res. 2012, 132, 204–212. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Saving Money, Time and Soil: The Economics of No-Till Farming. Washington, DC. Available online: https://www.usda.gov/media/blog/2017/11/30/saving-money-time-and-soil-economics-no-till-farming (accessed on 29 February 2024).
- Fredenburg, P. Conservation Agriculture: Opportunities for Intensified Farming and Environmental Conservation in Dry Areas. 2012. Available online: https://repo.mel.cgiar.org/items/f007f2ec-4d80-4238-93b8-501d9c505f5f (accessed on 29 February 2024).
- El-Shater, T.; Yigezu, Y.A.; Mugera, A.; Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S.; Aw-Hassan, A. Does Zero Tillage Improve the Livelihoods of Smallholder Cropping Farmers? J. Agric. Econ. 2015, 67, 154–172. [Google Scholar] [CrossRef]
- Laukkanen, M.; Nauges, C. Environmental and production cost impacts of no-till: Estimates from observed behavior. In Proceedings of the 114th EAAE Seminar ‘Structural Change in Agriculture’, Berlin, Germany, 15–16 April 2010. [Google Scholar]
- Agussabti, A.; Romano, R.; Rahmaddiansyah, R.; Isa, R.M. Factors affecting risk tolerance among small-scale seasonal commodity farmers and strategies for its improvement. Heliyon 2020, 6, e05847. [Google Scholar] [CrossRef]
- Koo, Y.M.; Kim, B.M. Field capacity and cost analyses of an integrated tractor implement for flat ridge preparation. J. Agric. Life Sci. 2018, 52, 137–149. [Google Scholar] [CrossRef]
- Upadhyaya, V.; Shankar, M.; Kumar, N.; Karinka, S. Design and development of multipurpose power tiller gear box for paddy cultivation. Mater. Today Proc. 2022, 52, 2148–2153. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Kim, W.S.; Siddique, M.A.A.; Kim, Y.J.; Jung, Y.J.; Baek, S.M.; Baek, S.Y.; Kim, Y.S.; Lim, R.G. Simulation of the rollover angle of a self-propelled radish harvester for different load conditions. Appl. Sci. 2022, 12, 10733. [Google Scholar] [CrossRef]
- Jeyakumar, R.; Ramachadran, N.; Aravind, J.A.; Ajithkumar, M.; Kumar, K.A.; Dhivakar, M. Development and conception of versatile agricultural machine. Mater. Today Proc. 2021, 37, 2582–2586. [Google Scholar] [CrossRef]
- Kim, S.; Jang, M.; Nam, J. Economical analysis comparing the working cost and field capacity of a tractor-mounted multi-working machine and individual machines. J. Agric. Life Environ. Sci. 2022, 34, 152–159. [Google Scholar]
- Korea Agriculture Technology Promotion Agency (KOAT). Standard Test of the Agricultural Machinery. Available online: https://lab.koat.or.kr (accessed on 1 August 2024).
- Thi, V.H.T.; Zhou, W. A systematic analysis of the development of agricultural modernization and its effect on crop production in Northeastern China. Sustainability 2024, 16, 5055. [Google Scholar] [CrossRef]
- Dhillon, R.; Moncur, Q. Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Paudel, G.P.; Bahadur KC, D.; Rahut, D.B.; Khanal, N.P.; Justice, S.E.; McDonald, A.J. Smallholder farmers’ willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal. Technol. Soc. 2019, 59, 101196. [Google Scholar] [CrossRef]
- Devkota, R.; Pant, L.P.; Gartaula, H.N.; Patel, K.; Gauchan, D.; Hambly-Odame, H.; Thapa, B.; Raizada, M.N. Responsible agricultural mechanization innovation for the sustainable development of Nepal’s hillside farming system. Sustainability 2020, 12, 374. [Google Scholar] [CrossRef]
- Wang, S.; Jin, M.; Liu, L.; Cao, F. Impact of China’s main grain-producing areas on agricultural carbon emissions: A sustainable development perspective. Sustainability 2024, 16, 4607. [Google Scholar] [CrossRef]
- Quaicoe, O.; Asiseh, F.; Aloka, A.S. Enhancing year-round profitability for small-scale ranchers: An economic analysis of integrated cattle and mushroom production system. Sustainability 2024, 16, 5320. [Google Scholar] [CrossRef]
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L.; Chookolingo, B. How much of the world’s food do smallholders produce? Glob. Food Secur. 2018, 17, 64–72. [Google Scholar] [CrossRef]
- Lowder, S.K.; Sanchez, M.V.; Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 2021, 142, 105455. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Passel, S.V.; Lebailly, P. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef]
- Bezus, R.; Samofal, O. Challenges of small-scale farming in Ukraine. AgroLife Sci. J. 2019, 8, 35–42. [Google Scholar]
- Ha, Y.; Hong, D.; Park, K. Modeling of a small group scale TMR plant for beef cattle and dairy farm in Korea (II): Performance test and cost analysis of the model plant. J. Biosyst. Eng. 2010, 35, 91–99. [Google Scholar] [CrossRef]
- Park, J. Bio-Production Machinery Engineering; CIR Press: Seoul, Republic of Korea, 2008. [Google Scholar]
- Pan, L. Who is vouching for the input voucher? Decentralized targeting and elite capture in Tanzania. World Dev. 2012, 40, 1619–1633. [Google Scholar] [CrossRef]
- Malimi, K. Agricultural input subsidies, extension services, and farm labour productivity nexus: Evidence from maize farmers in Tanzania. J. Agric. Econ. 2023, 74, 874–898. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). Agricultural Machinery Support Project in 2023. Available online: https://www.rda.go.kr/young/custom/policy/view.do?sId=8647 (accessed on 20 February 2024).
- Campbell, J.D. Straight-line method of depreciation. Account. Rev. 1951, 26, 40–42. [Google Scholar]
- National Institute of Agricultural Sciences (NIAS). A Study of Useful Life for Agricultural Machinery. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201700006515# (accessed on 24 July 2024).
- Lee, W.Y.; Kim, S.R.; Jung, D.H.; Chang, D.I.; Lee, D.H.; Kim, Y.H. Optimum size selection and machinery costs analysis for farm machinery systems. J. Biosyst. Eng. 1991, 16, 384–398. [Google Scholar]
- Kim, T.J. Development of a 50 kW Class Crawler-Type Agricultural Driving-Platform with Controllable Tread. Ph.D. Thesis, Chungnam National University, Daejeon, Republic of Korea, August. 2023. [Google Scholar]
- Oil Price Information Network (OPINet). The Average Cost of Tax-Free Oil in 2023. Available online: https://www.opinet.co.kr/user/main/mainView.do (accessed on 20 July 2024).
- Ha, Y. Modeling of a Small Scale TMR Plant with the Use of Round Bale. Ph.D. Thesis, Kyungpook National University, Daegu Metropolitan City, Republic of Korea, 2006. [Google Scholar]
- Hong, J.; Cho, K.; Cho, M.; Park, H.; Hong, S.; Choi, Y.; Shin, S.; Cho, C. Study on integrated mechanization system for harvest and postharvest operation of once-over-harvest pepper. In Proceedings of the KSAM 2006 Conference, Monterey, CA, USA, 3–6 December 2006; Volume 11, pp. 184–189. [Google Scholar]
- Rural Development Administration (RDA). Agricultural Income Data Collection in 2015 for Improving Management. Available online: https://amis.rda.go.kr/portal/ap/mn/incomeAnalysisLst/lst (accessed on 1 July 2024).
- Gyeongsangbuk-do Agricultural Research and Extension Service (GARES). Cultivation and Management Characteristics of Hot Pepper in Yeongyang. Available online: https://gba.go.kr/index.do?menu_id=00000146 (accessed on 5 May 2024).
- Lavik, M.S.; Lien, G.; Korsaeth, A.; Hardaker, B.J. Comparison of conventional and IPM cropping systems: A risk efficiency analysis. J. Agric. Appl. Econ. 2022, 52, 385–397. [Google Scholar] [CrossRef]
- Soltani, G.R. Cost-size relationships and traditional farmers’ economic behavior. J. Agric. Appl. Econ. 1976, 8, 151–156. [Google Scholar] [CrossRef]
- Debrah, G.; Adanu, K. Does the inverse farm size-productivity hypothesis hold beyond five hectares? Evidence from Ghana. J. Agric. Appl. Econ. 2022, 54, 548–559. [Google Scholar] [CrossRef]
- Keller, A.J.; Boland, M.A.; Cakir, M. The impact of an increase to a minimum wage on the Iowa egg industry. J. Agric. Appl. Econ. 2022, 54, 357–374. [Google Scholar] [CrossRef]
Versatile Machinery | ||
---|---|---|
operating speed, km/h (S) | rotary tillage | 2.0 |
ridge formation | 2.0 | |
mulching | 2.0 | |
harvest | 2.16 | |
transportation | 35.0 | |
operating width, m (W) | rotary tillage | 1.3 |
ridge formation | 1.3 | |
mulching | 1.3 | |
harvest | 1.4 | |
transportation | 1.3 | |
coverage efficiency () | rotary tillage | 0.89 |
ridge formation | 0.7 | |
mulching | 0.5 | |
harvest | 0.7 | |
transportation | 0.7 | |
Factors | ||
actual rate of operating time () | rotary tillage | 0.89 |
ridge formation | 0.8 | |
mulching | 0.7 | |
harvest | 0.75 | |
transportation | 0.8 | |
actual rate of operating day () | rotary tillage | 0.89 |
ridge formation | 0.89 | |
mulching | 0.9 | |
harvest | 0.65 | |
transportation | 0.75 | |
daily operating time, h () | rotary tillage | 8 |
ridge formation | 8 | |
mulching | 8 | |
harvest | 8 | |
transportation | 8 | |
days of the field operating season, day () | rotary tillage | 30 |
ridge formation | 25 | |
mulching | 20 | |
harvest | 20 | |
transportation | 30 |
Parameter | Cost, Thousand KRW | ||
---|---|---|---|
Conventional method | Driving machine | 27,340 | |
Implement | Rotary tillage | 2500 | |
Ridge formation | 4000 | ||
Mulching | 3000 | ||
Harvesting machine | 67,238 | ||
Transporting vehicle | 27,340 | ||
Integration | Versatile machine [Rotary tillage + Ridge formation + Mulching] | 12,500 | |
Attachment | Harvest | 13,670 | |
Transportation | 4557 |
Operation | Required Hour per Unit Area, h/10a | Labor Cost, KRW/h | Reference |
---|---|---|---|
Harvest | 95.4 | 13.875 | [60] |
Transportation | 9.3 | [61] |
Conventional Method | Integrated_1 | ||||
---|---|---|---|---|---|
Rotary Tillage (A) | Ridge Formation (B) | Mulching (C) | A + B + C | ||
Fixed costs | Depreciation | 1280.12 | 1398.87 | 1319.70 | 989.58 |
Repair | 970.20 | 1060.20 | 1000.20 | 750.00 | |
Interest | 3565.48 | 3896.23 | 3675.73 | 2756.25 | |
Tax | - | - | |||
Insurance | 16.17 | 17.67 | 16.67 | 12.50 | |
Housing | 161.70 | 176.70 | 166.70 | 125.00 | |
Subtotal (1) | 5993.67 | 6549.67 | 6179.00 | 4633.33 | |
Variable costs | Annual operating time, h | 169 | 100 | 50 | 50 |
Fuel | 13.51 | 5.14 | |||
Lubrication | 2.02 | 0.77 | |||
Labor | 13.87 | 13.87 | |||
Cost of machine use per hour | 32.53 | 60.07 | 113.35 | 85.00 | |
Subtotal (2) | 10,466.17 | 8947.00 | 7137.50 | 5239.00 | |
Sum of 1 and 2 | 16,459.84 | 15,496.67 | 13,316.50 | 9872.33 | |
Machinery capacity, ha | 43.99 | 25.91 | 13.10 | 11.60 | |
Annual usage cost thousand KRW·ha−1 | 374.17 | 943.40 | 1016.52 | 851.06 | |
Total annual usage costs | 2334.09 |
Conventional Method | Integrated_2 | ||||
---|---|---|---|---|---|
Harvest | Transport | Harvest | Transport | ||
Fixed costs | Depreciation | 6387.61 | 2164.41 | 1298.65 | 432.91 |
Repair | 4034.28 | 1640.40 | 820.20 | 273.42 | |
Interest | 12,354.98 | 6028.47 | 2511.86 | 837.34 | |
Tax | |||||
Insurance | 67.24 | 27.34 | 13.67 | 4.55 | |
Housing | 672.40 | 273.40 | 136.70 | 45.57 | |
Subtotal (1) | 23,516.51 | 10,134.02 | 4781.08 | 1593.79 | |
Variable costs | Annual operating time, h | 80 | 143 | 80 | 143 |
Fuel | 13.51 | 7.59 | 11.58 | ||
Lubrication | 2.02 | 1.14 | 1.73 | ||
Labor | 13.87 | 13.87 | |||
Cost of machine use per hour | 285.76 | 65.00 | 58.09 | 9.56 | |
Subtotal (2) | 25,212.80 | 12,526.80 | 6821.60 | 5253.82 | |
Sum of 1 and 2 | 48,729.31 | 22,660.82 | 11,602.68 | 6847.61 | |
Machinery capacity, ha | 16.9 | 455.45 | 22.23 | ||
Annual usage cost thousand KRW·ha−1 | 2883.39 | 49.75 | 829.97 | ||
Total annual usage costs | 2933.14 |
Cultivation Area, ha | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Operation Method | 0.1 | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Integrated_1 | 8891.8 | 8925.9 | 8968.6 | 9053.8 | 9139.1 | 9224.4 | 9309.7 | 9395.0 | 9480.2 | 9565.5 | 9650.8 | 9736.1 |
Conventional_RT * | 11,502.7 | 11,547.9 | 11,604.4 | 11,717.4 | 11,830.4 | 11,943.4 | 12,056.4 | 12,169.4 | 12,282.4 | 12,395.4 | 12,508.4 | 12,621.4 |
Conventional_RF * | 12,568.8 | 12,614.2 | 12,670.9 | 12,784.4 | 12,897.9 | 13,011.4 | 13,124.9 | 13,238.4 | 13,351.9 | 13,465.3 | 13,578.8 | 13,692.3 |
Conventional_M * | 11,858.0 | 11,902.9 | 11,959.0 | 12,071.2 | 12,183.4 | 12,295.7 | 12,407.9 | 12,520.1 | 12,632.4 | 12,744.6 | 12,856.8 | 12,969.0 |
Total cost of conventional method | 35,929.6 | 36,065.1 | 36,234.4 | 36,573.1 | 36,911.9 | 37,250.6 | 37,589.3 | 37,928.0 | 38,266.7 | 38,605.4 | 38,944.1 | 39,282.9 |
Saving effect | 27,037.7 | 27,139.1 | 27,265.8 | 27,519.3 | 27,772.7 | 28,026.1 | 28,279.6 | 28,533.0 | 28,786.4 | 29,039.9 | 29,293.3 | 29,546.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Jung, H.; Kwon, S.; Jang, Y.; Woo, S.; Ha, Y. Promoting the Economic Sustainability of Small-Scale Farmers Through Versatile Machinery in the Republic of Korea. Sustainability 2024, 16, 10022. https://doi.org/10.3390/su162210022
Kang S, Jung H, Kwon S, Jang Y, Woo S, Ha Y. Promoting the Economic Sustainability of Small-Scale Farmers Through Versatile Machinery in the Republic of Korea. Sustainability. 2024; 16(22):10022. https://doi.org/10.3390/su162210022
Chicago/Turabian StyleKang, Seokho, Haesung Jung, Seunggwi Kwon, Youngyoon Jang, Seungmin Woo, and Yushin Ha. 2024. "Promoting the Economic Sustainability of Small-Scale Farmers Through Versatile Machinery in the Republic of Korea" Sustainability 16, no. 22: 10022. https://doi.org/10.3390/su162210022
APA StyleKang, S., Jung, H., Kwon, S., Jang, Y., Woo, S., & Ha, Y. (2024). Promoting the Economic Sustainability of Small-Scale Farmers Through Versatile Machinery in the Republic of Korea. Sustainability, 16(22), 10022. https://doi.org/10.3390/su162210022