Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations
Abstract
:1. Introduction
2. Problem Statement and Research Objectives
- −
- Construct and test small-scale RC beams, including two beams with partial ECC replacement and one fully reinforced ECC beam, to identify failure modes and crack propagation patterns in the presence and absence of steel stirrups.
- −
- Perform numerical simulations to study the structural behavior of RC frames when ECC is introduced at different strategic locations, such as beam–column joints.
- −
- Investigate energy dissipation through hysteresis and assess the residual deflection ratios of these framed structures under cyclic loading conditions.
3. Experimental Investigation
3.1. Materials and Mix Design
3.1.1. Concrete Mix Design and Properties
3.1.2. Steel Reinforcement
3.1.3. ECC Mix Design and Properties
3.2. Geometry and Preparation of Test Specimens
3.3. Test Setup and Instrumentation
3.4. Results and Discussion
4. Modal Response and Nonlinear Performance of ECC and RC Framed Structures
4.1. Material Constitutive Models
4.1.1. Concrete Constitutive Model
4.1.2. Steel Constitutive Model
4.1.3. ECC Constitutive Model
4.2. Description of Frame Structures
4.3. Modal Analysis
4.4. Nonlinear Cyclic Quasi-Static Analysis
4.4.1. Load–Deformation Response
4.4.2. Hysteretic Energy Dissipation and Residual Deflection Ratio
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avcil, F.; Işık, E.; İzol, R.; Büyüksaraç, A.; Arkan, E.; Arslan, M.H.; Aksoylu, C.; Eyisüren, O.; Harirchian, E. Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Nat. Hazards 2024, 120, 2953–2991. [Google Scholar] [CrossRef]
- Achour, N.; Miyajima, M.; Kitaura, M.; Price, A. Earthquake-Induced Structural and Nonstructural Damage in Hospitals. Earthq. Spectra 2011, 27, 617–634. [Google Scholar] [CrossRef]
- Sucuoǧlu, H.; Erberik, A. Energy-based hysteresis and damage models for deteriorating systems. Earthq. Eng. Struct. Dyn. 2004, 33, 69–88. [Google Scholar] [CrossRef]
- Mieler, M.W.; Mitrani-Reiser, J. Review of the State of the Art in Assessing Earthquake-Induced Loss of Functionality in Buildings. J. Struct. Eng. 2017, 144, 04017218. Available online: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29ST.1943-541X.0001959 (accessed on 11 May 2022). [CrossRef]
- Williams, M.S.; Sexsmith, R.G. Seismic Damage Indices for Concrete Structures: A State-of-the-Art Review. Earthq. Spectra 1995, 11, 319–349. [Google Scholar] [CrossRef]
- ASCE/SEI. Seismic Evaluation and Retrofit of Existing Buildings; American Society of Civil Engineers: Washington, DC, USA, 2017. [Google Scholar]
- Loh, C.; Mao, C.; Huang, J.; Pan, T. System identification and damage evaluation of degrading hysteresis of reinforced concrete frames. Earthq. Eng. Struct. Dyn. 2011, 40, 623–640. [Google Scholar] [CrossRef]
- Yolsal-Çevikbilen, S.; Taymaz, T.; Irmak, T.S.; Erman, C.; Kahraman, M.; Özkan, B.; Eken, T.; Öcalan, T.; Doğan, A.H.; Altuntaş, C. Source geometry and rupture characteristics of the 20 February 2023 Mw 6.4 Hatay (Türkiye) earthquake at southwest edge of the East Anatolian Fault. Geochem. Geophys. Geosystems 2024, 25, e2023GC011353. [Google Scholar] [CrossRef]
- Mavroulis, S.; Argyropoulos, I.; Vassilakis, E.; Carydis, P.; Lekkas, E. Earthquake Environmental Effects and Building Properties Controlling Damage Caused by the 6 February 2023 Earthquakes in East Anatolia. Geosciences 2023, 13, 303. [Google Scholar] [CrossRef]
- Bilgili, L.; Çetinkaya, A.Y. Environmental impact assessment of earthquake-generated construction and demolition waste management: A life cycle perspective in Turkey. Environ. Syst. Decis. 2024, 44, 424–432. [Google Scholar] [CrossRef]
- Gonzalez, R.E.; Stephens, M.T.; Toma, C.; Dowdell, D. Incorporating potential environmental impacts in building seismic design decisions. Bull. Earthq. Eng. 2023, 21, 4385–4428. [Google Scholar] [CrossRef]
- Cuenca, E.; Ferrara, L. Self-healing capacity of fiber reinforced cementitious composites. State of the art and perspectives. KSCE J. Civ. Eng. 2017, 21, 2777–2789. [Google Scholar] [CrossRef]
- Yu, K.; Ding, Y.; Liu, J.; Bai, Y. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC). Cem. Concr. Compos. 2020, 106, 103459. [Google Scholar] [CrossRef]
- Abrishambaf, A.; Pimentel, M.; Nunes, S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites. Cem. Concr. Res. 2017, 97, 28–40. [Google Scholar] [CrossRef]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Altoubat, S.; Yazdanbakhsh, A.; Rieder, K.-A. Shear Behavior of Macro-Synthetic Fiber-Reinforced Concrete Beams without Stirrups. ACI Mater. J. 2009, 106, 381–389. [Google Scholar]
- Altoubat, S.A.; Lange, D.A. A New Look at Tensile Creep of Fiber-Reinforced Concrete. ACI Spec. Publ. Fiber Reinf. Concr. 2003, 216, 143–160. [Google Scholar] [CrossRef]
- Leblouba, M.; Al-Toubat, S.; Maalej, M. Engineered Cementitious Composites for Improved Crack-Width Control of FRC Beams—A Review. Spec. Publ. 2017, 319, 7.1–7.14. [Google Scholar] [CrossRef]
- Qudah, S.; Maalej, M. Application of Engineered Cementitious Composites (ECC) in interior beam–column connections for enhanced seismic resistance. Eng. Struct. 2014, 69, 235–245. [Google Scholar] [CrossRef]
- Zhang, J.; Maalej, M.; Quek, S.T. Performance of Hybrid-Fiber ECC Blast/Shelter Panels Subjected to Drop Weight Impact. J. Mater. Civ. Eng. 2007, 19, 855–863. [Google Scholar] [CrossRef]
- Leblouba, M.; Altoubat, S.; Karzad, A.; Maalej, M.; Barakat, S.; Metawa, A. Impact response and endurance of unreinforced masonry walls strengthened with cement-based composites. Structures 2022, 36, 262–279. [Google Scholar] [CrossRef]
- Altoubat, S.; Maalej, M.; Leblouba, M.; Karzad, A.S. Experimental study on the out-of-plane strengthening of unreinforced masonry walls using cement-based fiber composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 601, 012028. [Google Scholar] [CrossRef]
- Hasgul, U.; Yavas, A.; Birol, T.; Turker, K. Steel Fiber Use as Shear Reinforcement on I-Shaped UHP-FRC Beams. Appl. Sci. 2019, 9, 5526. [Google Scholar] [CrossRef]
- Sorelli, L.G.; Meda, A.; Plizzari, G.A. Bending and Uniaxial Tensile Tests on Concrete Reinforced with Hybrid Steel Fibers. J. Mater. Civ. Eng. 2005, 17, 519–527. [Google Scholar] [CrossRef]
- Stang, H.; Li, V.C. Classification of Fiber Reinforced Cementitious Materials for Structural Applications. In Proceedings of the 6th Rilem Symposium on Fibre-Rienfoced Concretes BEFIB 2004, Varenna, Italy, 20–22 September 2004. [Google Scholar]
- Yang, E.-H.; Li, V.C. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model. Constr. Build. Mater. 2010, 24, 130–139. [Google Scholar] [CrossRef]
- Singh, M.; Saini, B.; Chalak, H. Performance and composition analysis of engineered cementitious composite (ECC)—A review. J. Build. Eng. 2019, 26, 100851. [Google Scholar] [CrossRef]
- Said, S.H.; Razak, H.A. The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Mater. Des. 2015, 86, 447–457. [Google Scholar] [CrossRef]
- Kesner, K.; Billington, S.L. Investigation of Infill Panels Made from Engineered Cementitious Composites for Seismic Strengthening and Retrofit. J. Struct. Eng. 2005, 131, 1712–1720. [Google Scholar] [CrossRef]
- Kesner, K.E.; Billington, S.L.; Douglas, K.S. Cyclic Response of Highly Ductile Fiber-Reinforced Cement-Based Composites. ACI Mater. J. 2003, 100, 381–390. [Google Scholar] [CrossRef]
- Kesner, K.; Billington, S.L. Tension, Compression and Cyclic Testing of Engineered Cementitious Composite Materials. Art. No. MCEER-04-0002, March 2004. Available online: https://trid.trb.org/view/756217 (accessed on 11 May 2022).
- Yuan, F.; Pan, J.; Dong, L.; Leung, C.K.Y. Mechanical Behaviors of Steel Reinforced ECC or ECC/Concrete Composite Beams under Reversed Cyclic Loading. J. Mater. Civ. Eng. 2014, 26, 04014047. [Google Scholar] [CrossRef]
- Said, S.H.; Razak, H.A. Structural behavior of RC engineered cementitious composite (ECC) exterior beam–column joints under reversed cyclic loading. Constr. Build. Mater. 2016, 107, 226–234. [Google Scholar] [CrossRef]
- Yu, K.; Li, L.; Yu, J.; Wang, Y.; Ye, J.; Xu, Q. Direct tensile properties of engineered cementitious composites: A review. Constr. Build. Mater. 2018, 165, 346–362. [Google Scholar] [CrossRef]
- Cox, B.N.; Marshall, D.B. Crack Bridging in the Fatigue of Fibrous Composites. Fatigue Fract. Eng. Mater. Struct. 1991, 14, 847–861. [Google Scholar] [CrossRef]
- Li, V.C.; Maalej, M.; Hashida, T. Experimental determination of the stress-crack opening relation in fibre cementitious composites with a crack-tip singularity. J. Mater. Sci. 1994, 29, 2719–2724. [Google Scholar] [CrossRef]
- Maalej, M.; Li, V.C.; Hashida, T. Effect of Fiber Rupture on Tensile Properties of Short Fiber Composites. J. Eng. Mech. 1995, 121, 903–913. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Y.X.; Su, C.; Lo, S.R. Effect of Slip-Hardening Interface Behavior on Fiber Rupture and Crack Bridging in Fiber-Reinforced Cementitious Composites. J. Eng. Mech. 2015, 141, 04015035. [Google Scholar] [CrossRef]
- Fischer, G.; Li, V.C. Effect of Matrix Ductility on Deformation Behavior of Steel-Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions. ACI Struct. J. 2002, 99, 781–790. [Google Scholar] [CrossRef]
- ASTM C136; Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM: West Conshohocken, PA, USA, 2015.
- Maalej, M.; Li, V.C. Introduction of Strain-Hardening Engineered Cementitious Composites in Design of Reinforced Concrete Flexural Members for Improved Durability. ACI Struct. J. 1995, 92, 167–176. [Google Scholar] [CrossRef]
- Elnashai, A.; Papanikolaou, V.; Lee, D. Zeus-NL—A System for Inelastic Analysis of Structures-User Manual; Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2010. [Google Scholar]
- Gencturk, B.E. Multi-Objective Optimal Seismic Design of Buildings Using Advanced Engineering Materials; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2011. [Google Scholar]
- Gencturk, B.; Elnashai, A.S. Numerical modeling and analysis of ECC structures. Mater. Struct. 2013, 46, 663–682. [Google Scholar] [CrossRef]
- Martínez-Rueda, J.E.; Elnashai, A.S. Confined concrete model under cyclic load. Mater. Struct. 1997, 30, 139–147. [Google Scholar] [CrossRef]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Design Guide on the ACI 318 Building Code Requirements for Structural Concrete—CRSI Resource Materials. Available online: https://resources.crsi.org/resources/design-guide-aci-318-19-building-code/ (accessed on 11 May 2022).
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- 2000 International Building Code® (PDF Download). Available online: https://shop.iccsafe.org/2000-international-building-coder-pdf-download.html (accessed on 11 May 2022).
- ASCE 7 Standard. Available online: https://www.asce.org/publications-and-news/asce-7 (accessed on 11 May 2022).
- Publications:: FEMA, Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components—Applied Technology Council Online Store. Available online: https://store.atcouncil.org/index.php?dispatch=products.view&product_id=209 (accessed on 12 May 2022).
- Dominguez-Santos, D. Optimization and analysis of hysteretic energy dissipators in reinforced concrete frame structures of five, 10 and 15 stories. Int. J. Prot. Struct. 2024, 20414196241286157. [Google Scholar] [CrossRef]
- Pekgökgöz, R.K.; Avcil, F. Effect of steel fibres on reinforced concrete beam-column joints under reversed cyclic loading. Građevinar 2021, 73, 1185–1194. [Google Scholar]
Sieve Number | 20–10 mm | 10–5 mm | 5–0 mm | Dune Sand |
---|---|---|---|---|
1 in | 100 | 100 | 100 | 100 |
¾ in | 100 | 100 | 100 | 100 |
½ in | 46 | 100 | 100 | 100 |
3/8 in | 6 | 85 | 100 | 100 |
4 | 0 | 3 | 95 | 100 |
8 | 0 | 0 | 61 | 100 |
16 | 0 | 0 | 37 | 100 |
30 | 0 | 0 | 22 | 100 |
50 | 0 | 0 | 13 | 97 |
100 | 0 | 0 | 8 | 35 |
200 | 0 | 0 | 5 | 3 |
Material | Quantity (kg/m3) |
---|---|
Type I cement | 365 |
Coarse aggregate 20 mm | 646 |
Coarse aggregate 10 mm | 290 |
Fine aggregate 5 mm | 530 |
Dune sand | 369 |
ADVA flow admixture | 4 |
Water | 175 |
Nominal Diameter (mm) | Modulus of Elasticity (GPa) | Yield Stess (MPa) | Yield Strain (με) |
---|---|---|---|
8 | 200 | 490 | 2450 |
6 | 200 | 370 | 1850 |
Fiber Type | Fiber Length (µm) | Fiber Diameter (µm) | Young’s Modulus (GPa) | Tensile Strength (MPa) | Fiber Density (g/cm3) |
---|---|---|---|---|---|
Spectra® 900 | 12 | 39 | 66 | 2610 | 0.98 |
Material | Quantity (kg/m3) |
---|---|
Type I cement | 1260 |
Silica fume | 126 |
Super plasticizer | 25 |
Water | 416 |
Fibers | 20 |
Specimen | (kN/mm) | (mm) | (kN) |
Ultimate Load Pu (kN) | |
---|---|---|---|---|---|
RC-St | 31.9 | 2.1 | 10.5 | 67.0 | 72.7 |
RC-ECC | 26.8 | 2.6 | 3.7 | 69.8 | 72.7 |
RC-ECC-St | 30.4 | 2.5 | 8.7 | 76.0 | 79.6 |
ECC | 25.9 | 2.7 | 7.3 | 70.0 | 76.9 |
Parameter | Symbol | Unit | Value |
---|---|---|---|
Compressive strength | MPa | 45 | |
Tensile strength | MPa | 4.4 | |
Crushing strain | -- | 0.003 | |
Confined/unconfined confinement factor | -- | 1.2/1.0 |
Parameter | Symbol | Unit | Value |
---|---|---|---|
Yielding strength | MPa | 420 | |
Young’s modulus | GPa | 205 | |
Strain-hardening parameter | -- | 0.05 |
Material Properties | Symbol | Unit | Value |
---|---|---|---|
Young’s modulus | (N/mm2) | 16,000 | |
First cracking strain | (mm/mm) | −0.00025 | |
Strain at peak stress in tension | (mm/mm) | −0.038 | |
Tensile stress | (N/mm2) | −6 | |
Tensile strain capacity | (mm/mm) | −0.06 | |
Strain at peak compressive strength | (mm/mm) | 0.005 | |
Compressive strain in compression | (N/mm2) | 80 | |
Ultimate strain in compression | (mm/mm) | 0.012 | |
Strength corresponding to the ultimate strain | (N/mm2) | 25 |
Mode Number | Mode Shape | Period of Vibration, Seconds | ||
---|---|---|---|---|
RC | RC-ECC | ECC | ||
1 | 0.431 | 0.521 | 0.887 | |
2 | 0.141 | 0.170 | 0.288 | |
3 | 0.088 | 0.105 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metawa, A.; Leblouba, M.; Barakat, S. Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations. Sustainability 2024, 16, 10085. https://doi.org/10.3390/su162210085
Metawa A, Leblouba M, Barakat S. Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations. Sustainability. 2024; 16(22):10085. https://doi.org/10.3390/su162210085
Chicago/Turabian StyleMetawa, Abdulrahman, Moussa Leblouba, and Samer Barakat. 2024. "Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations" Sustainability 16, no. 22: 10085. https://doi.org/10.3390/su162210085
APA StyleMetawa, A., Leblouba, M., & Barakat, S. (2024). Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations. Sustainability, 16(22), 10085. https://doi.org/10.3390/su162210085