The Impact of Digital Trade Development on Regional Green Innovation
Abstract
:1. Introduction
2. Literature Review
3. Mechanism Analysis and Research Hypothesis
3.1. Industrial Structure Upgrading Effect
3.2. Industrial Agglomeration Effect
3.3. Technology Transfer Effects
3.4. Impact of Environmental Regulation
4. Model Specification and Variable Description
4.1. Empirical Model Construction
4.2. Definition of Variables
4.2.1. Explained Variable: Regional Innovation Capacity (Inn)
4.2.2. Core Explanatory Variables: Digital Trade Development Level (Dig)
4.2.3. Control Variable
4.3. Data Sources
5. Results
5.1. Baseline Regression
5.2. Mechanism Analysis
5.2.1. Upgrading of Industrial Structure
5.2.2. Industrial Agglomeration
5.2.3. Technology Transfer
5.3. Threshold Effect Test
5.4. Endogeneity Test
5.4.1. Instrumental Variable
5.4.2. Lagged Core Explanatory Variables
5.4.3. Replacement of Estimation Methodology
5.5. Robustness Tests
5.5.1. Replacement of Core Variables
5.5.2. Removal of Anomalous Data
5.5.3. Control for Level of Financial Development (Fin) and Degree of Synergistic Industrial Agglomeration (Agg)
6. Further Analysis
6.1. Provincial Location Heterogeneity
6.2. Digital Economy Heterogeneity
6.3. Transport Infrastructure Heterogeneity
6.4. Opening to the Outside World Heterogeneity
7. Discussion
7.1. Study Implication
7.2. Limitations and Future Research Directions
8. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Q.; Gao, F.; Li, J. Invisible Digital Barriers: Barriers to trade in digital services and global cross-border mergers and acquisitions. Chin. Ind. Econ. 2024, 43–61. [Google Scholar] [CrossRef]
- Li, Z.M.; Zhou, W.Y.; Tian, Z.T. Digital trade: Development trend, impact and countermeasures. Int. Econ. Rev. 2014, 6, 131–144+138. [Google Scholar]
- Yu, H.; Yao, L. The impact of digital trade regulation on the manufacturing position in the GVC. Econ. Model. 2024, 135, 106712. [Google Scholar] [CrossRef]
- Ma, S.Z.; Famg, C.; Liang, Y.F. Digital trade and its times value and research prospects. Int. Trade Issues 2018, 5, 16–30. [Google Scholar] [CrossRef]
- Pei, G.F.; Liu, Y. The impact of digital trade development on industrial structure upgrading in China: An empirical study based on spatial Durbin model. Stat. Decis. 2024, 40, 162–166. [Google Scholar] [CrossRef]
- Ou, Z.H.; Jiang, N.; Ma, Y.W. Research on the impact mechanism of intellectual property protection on digital service trade from the perspective of country differences. Sci. Res. Manag. 2024, 45, 161–170. [Google Scholar] [CrossRef]
- Gai, W.Q. On regional economic development and regional innovation environment. Acad. Res. 2002, 16, 60–63. [Google Scholar]
- Peters, M.A. Digital trade, digital economy and the digital economy partnership agreement (DEPA). Educ. Philos. Theory 2023, 55, 747–755. [Google Scholar] [CrossRef]
- Huang, K.; Madnick, S.; Choucri, N.; Zhang, F. A Systematic Framework to Understand Transnational Governance for Cybersecurity Risks from Digital Trade. Glob. Policy 2021, 12, 625–638. [Google Scholar] [CrossRef]
- Shaobin, G.; Ahmad, K.; Khan, N.U. Natural resources, geopolitical conflicts, and digital trade: Evidence from China. Resour. Policy 2024, 90, 104708. [Google Scholar] [CrossRef]
- Danish; Khan, S.; Haneklaus, N. Sustainable economic development across globe: The dynamics between technology, digital trade and economic performance. Technol. Soc. 2023, 72, 102207. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Luo, K.; Guo, Y.; Wang, Z. How does digital trade promote and reallocate the export technology complexity of the manufacturing industry? Evidence from 30 Chinese provinces, 2011–2020. PLoS ONE 2023, 18, e0291464. [Google Scholar] [CrossRef] [PubMed]
- Popkova, E.G.; Sergi, B.S. A Digital Economy to Develop Policy Related to Transport and Logistics. Predictive Lessons from Russia. Land Use Policy 2020, 99, 105083. [Google Scholar] [CrossRef]
- Kloppenburg, S.; Boekelo, M. Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition. Energy Res. Soc. Sci. 2019, 49, 68–73. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.; Wang, Y. Digital trade growth and mineral resources In developing countries: Implications for green recovery. Resour. Policy 2024, 88, 104338. [Google Scholar] [CrossRef]
- Xiong, S.; Luo, R. Investigating the relationship between digital trade, natural resources, energy transition, and green productivity: Moderating role of R&D investment. Resour. Policy 2023, 86, 104069. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Lu, J.; Liu, F. How financial development and digital trade affect ecological sustainability: The role of renewable energy using an advanced panel in G-7 Countries. Renew. Energy 2022, 199, 1005–1015. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhao, Z.; Ren, J.; Chen, X. Research on carbon emission reduction effect of China’s regional digital trade under the “double carbon” target—Combination of the regulatory role of industrial agglomeration and carbon emissions trading mechanism. J. Clean. Prod. 2023, 405, 137049. [Google Scholar] [CrossRef]
- Ashraf, M.Z.; Wei, W.; Usman, M.; Mushtaq, S. How can natural resource dependence, environmental-related technologies and digital trade protect the environment: Redesigning SDGs policies for sustainable environment? Resour. Policy 2024, 88, 104456. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, C.; Hu, C.; Luo, Y.; Liang, M. Resources sustainability and energy transition in China: Asymmetric role of digital trade and policy uncertainty using QARDL. Resour. Policy 2023, 85, 103845. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Li, Y. Natural resources, urbanization and regional innovation capabilities. Resour. Policy 2020, 66, 101643. [Google Scholar] [CrossRef]
- Yang, X.; Ran, R.; Chen, Y.; Zhang, J. Does digital government transformation drive regional green innovation? Evidence from cities in China. Energy Policy 2024, 187, 114017. [Google Scholar] [CrossRef]
- Zhao, S.; Teng, L.; Arkorful, V.E.; Hu, H. Impacts of digital government on regional eco-innovation: Moderating role of dual environmental regulations. Technol. Forecast. Soc. Chang. 2023, 196, 122842. [Google Scholar] [CrossRef]
- Sun, G.; Wang, J.; Ai, Y. The impact of government green subsidies on stock price crash risk. Energy Econ. 2024, 134, 107573. [Google Scholar] [CrossRef]
- An, J.; He, G.; Ge, S.; Wu, S. The Impact of Government Green Subsidies on Corporate Green Innovation. Financ. Res. Lett. 2024, 71, 106378. [Google Scholar] [CrossRef]
- Lu, H.; Liu, M.; Song, W. Place-based policies, government intervention, and regional innovation: Evidence from China’s Resource-Exhausted City program. Resour. Policy 2022, 75, 102438. [Google Scholar] [CrossRef]
- Block, J.; Lambrecht, D.; Willeke, T.; Cucculelli, M.; Meloni, D. Green patents and green trademarks as indicators of green innovation. Res. Policy 2025, 54, 105138. [Google Scholar] [CrossRef]
- Ghisetti, C.; Montresor, S.; Vezzani, A. Design and environmental technologies: Does ‘green-matching’ actually help? Res. Policy 2021, 50, 104208. [Google Scholar] [CrossRef]
- Hui, P.; Zhao, H.; Liu, D.; Li, Y. How does digital finance affect regional innovation capacity? A spatial econometric analysis. Econ. Model. 2023, 122, 106250. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S. Do fintech applications promote regional innovation efficiency? Empirical evidence from China. Socio-Econ. Plan. Sci. 2022, 83, 101258. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Tang, T.; Luo, H.; Guan, Q. How public education investment and advanced human capital structure affect regional innovation: A spatial econometric analysis from the perspective of innovation value chain. Socio-Econ. Plan. Sci. 2024, 91, 101800. [Google Scholar] [CrossRef]
- Krieger, B. Heterogeneous university funding programs and regional firm innovation: An empirical analysis of the German Excellence Initiative. Res. Policy 2024, 53, 104995. [Google Scholar] [CrossRef]
- Mo, C.; He, C.; Yang, L. Structural characteristics of industrial clusters and regional innovation. Econ. Lett. 2020, 188, 109003. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Yao, S. Does government-driven infrastructure boost green innovation? Evidence of new infrastructure plan in China. J. Asian Econ. 2024, 95, 101828. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, G. How can HSR promote inter-city collaborative innovation across regional borders? Cities 2023, 138, 104367. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, X.; Tao, L. The impact mechanism of high-speed railway on regional green innovation spillover under multi-dimensional paths. Environ. Impact Assess. Rev. 2022, 95, 106795. [Google Scholar] [CrossRef]
- Wang, B.; Khan, I.; Ge, C.; Naz, H. Digital transformation of enterprises promotes green technology innovation—The regulated mediation model. Technol. Forecast. Soc. Chang. 2024, 209, 123812. [Google Scholar] [CrossRef]
- Fang, X.; Liu, M. How does the digital transformation drive digital technology innovation of enterprises? Evidence from enterprise’s digital patents. Technol. Forecast. Soc. Chang. 2024, 204, 123428. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, W. The role of the digital economy in enhancing green innovation: Evidence from Chinese A-share listed enterprises. Financ. Res. Lett. 2024, 71, 106381. [Google Scholar] [CrossRef]
- Feng, H.; Wang, F.; Song, G.; Liu, L. Digital Transformation on Enterprise Green Innovation: Effect and Transmission Mechanism. Int. J. Environ. Res. Public Health 2022, 19, 10614. [Google Scholar] [CrossRef]
- Deng, F.; Feng, F.B.; Yang, X.D. Market segmentation, digital economy and regional innovation efficiency. Stat. Decis. 2022, 38, 17–20. [Google Scholar] [CrossRef]
- Song, L.; Yuan, J.; Li, T. Harmonizing digital trade for sustainable stride: Unveiling the industrial pollution reduction effect of China’s cross-border E-commerce comprehensive pilot zones. J. Environ. Manag. 2024, 370, 122834. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Rao, J.; Wan, L. The digital economy, enterprise digital transformation, and enterprise innovation. Manag. Decis. Econ. 2022, 43, 2875–2886. [Google Scholar] [CrossRef]
- Azadegan, A.; Wagner, S.M. Industrial upgrading, exploitative innovations and explorative innovations. Int. J. Prod. Econ. 2011, 130, 54–65. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.Z.; Cao, Y.; Kazancoglu, Y. Intelligent transformation of the manufacturing industry for Industry 4.0: Seizing financial benefits from supply chain relationship capital through enterprise green management. Technol. Forecast. Soc. Chang. 2021, 172, 120999. [Google Scholar] [CrossRef]
- Wang, D.; Liang, Y.F.; Dou, W. How does urban industrial structure upgrading affect green productivity? The moderating role of smart city development. In Structural Change and Economic Dynamics; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Wang, Z.L.; Tan, Q.M.; XU, X.D. An Empirical Study on the Measurement of Industrial Agglomeration Level; China Soft Science: Beijing, China, 2006; pp. 109–116. [Google Scholar]
- Li, T.; Shi, Z.; Han, D.; Zeng, J. Agglomeration of the new energy industry and green innovation efficiency: Does the spatial mismatch of R&D resources matter? J. Clean. Prod. 2023, 383, 135453. [Google Scholar] [CrossRef]
- Li, X.; Lai, X.; Zhang, F. Research on green innovation effect of industrial agglomeration from perspective of environmental regulation: Evidence in China. J. Clean. Prod. 2021, 288, 125583. [Google Scholar] [CrossRef]
- Xiangxiang, S.; Zhangwang, C.; Lawrence, L. Exploring the Effect of Digital Economy on PM2.5 Pollution: The Role of Technological Innovation in China. Front. Environ. Sci. 2022, 10, 904254. [Google Scholar]
- Zeng, G.; Wu, M.; Yuan, X. Digital economy and industrial agglomeration. Econ. Anal. Policy 2024, 84, 475–498. [Google Scholar] [CrossRef]
- Gao, L.; Huang, R. Digital transformation and green total factor productivity in the semiconductor industry: The role of supply chain integration and economic policy uncertainty. Int. J. Prod. Econ. 2024, 274, 109313. [Google Scholar] [CrossRef]
- Wei, Y.; Tao, X.; Zhu, J.; Ma, Y.; Yang, S.; Ayub, A. Examining the relationship between international digital trade, green technology innovation and environmental sustainability in top emerging economics. Heliyon 2024, 10, e28210. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wan, X.; Jahanger, A.; Li, M.; Murshed, M.; Balsalobre-Lorente, D. Does the digital economy reduce air pollution in China? A perspective from industrial agglomeration. Energy Rep. 2023, 9, 3625–3641. [Google Scholar] [CrossRef]
- Wang, X.; Tian, N.; Wang, S. The Impact of Information and Communication Technology Industrial Co-Agglomeration on Carbon Productivity with the Background of the Digital Economy: Empirical Evidence from China. Int. J. Environ. Res. Public Health 2022, 20, 316. [Google Scholar] [CrossRef]
- Waqas, M.; Honggang, X.; Ahmad, N.; Khan, S.A.R.; Iqbal, M. Big data analytics as a roadmap towards green innovation, competitive advantage and environmental performance. J. Clean. Prod. 2021, 323, 128998. [Google Scholar] [CrossRef]
- Dinca, V.M.; Dima, A.; Rozsa, Z. Determinants of cloud computing adoption by Romanian SMEs in the digital economy. J. Bus. Econ. Manag. 2019, 20, 798–820. [Google Scholar] [CrossRef]
- Wang, M.; Ren, S.; Xie, G. Going “green trade”: Assessing the impact of digital technology application on green product export. Technol. Soc. 2024, 77, 102487. [Google Scholar] [CrossRef]
- Adams, K.; Attah-Boakye, R.; Yu, H.; Chu, I.; Mali, D. African Continental Free Trade Area and Regional Trade in ICT and Digital Technologies. J. Int. Manag. 2024, 30, 101156. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Gao, J.; Wang, F. Technological Upgrading in Chinese Cities: The Role of FDI and Industrial Structure. Emerg. Mark. Financ. Trade 2020, 56, 1547–1563. [Google Scholar] [CrossRef]
- Loonam, J.; O’Regan, N. Global value chains and digital platforms: Implications for strategy. Strateg. Chang. 2022, 31, 161–177. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Z.; Ji, Y.; Xu, L. Digitalization and innovation: How does the digital economy drive technology transfer in China? Econ. Model. 2024, 136, 106758. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Fang, X.; Li, G.; Cao, Y. Identification of the trade-offs/synergies between rural landscape services in a spatially explicit way for sustainable rural development. J. Environ. Manag. 2021, 300, 113706. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, J.L.; Sellers, R. The quality of quality awards: Diminishing information asymmetries in a hotel chain. J. Bus. Res. 2010, 63, 832–839. [Google Scholar] [CrossRef]
- Li, W.; Sun, H.; Tran, D.K.; Taghizadeh-Hesary, F. The Impact of Environmental Regulation on Technological Innovation of Resource-Based Industries. Sustainability 2020, 12, 6837. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Wu, H. The impact of energy-consuming rights trading on green total factor productivity in the context of digital economy: Evidence from listed firms in China. Energy Econ. 2024, 131, 107342. [Google Scholar] [CrossRef]
- Han, J. Research on efficiency of regional green innovation in China. Res. Financ. Econ. Issues 2012, 34, 130–137. [Google Scholar]
- Shen, N.; Zhou, J.J. Study on the efficiency of green innovation and its key factors in China from the perspective of technological heterogeneity: Based on Hybrid DEA and structured equation model. J. Manag. Eng. 2018, 32, 46–53. [Google Scholar] [CrossRef]
- Yao, Z.Q. Digital trade, industrial structure upgrading and export technology complexity: Multiple mediating effects based on structural equation model. Reformation 2021, 1, 50–64. [Google Scholar]
- Jia, H.Q.; Gao, X.Y.; Xu, X.J.; Fang, Y.X. The conceptual framework, index system and measurement method of digital trade measurement. Stat. Res. 2021, 38, 30–41. [Google Scholar] [CrossRef]
- Hou, G.; Shi, G. Green finance and innovative cities: Dual-pilot policies and collaborative green innovation. Int. Rev. Financ. Anal. 2024, 96, 103673. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, M. Foreign direct investment and green innovation in China: An examination of quantile regression. Innov. Green Dev. 2024, 3, 100150. [Google Scholar] [CrossRef]
- Wang, M.; Xu, M.; Ma, S. The effect of the spatial heterogeneity of human capital structure on regional green total factor productivity. Struct. Chang. Econ. Dyn. 2021, 59, 427–441. [Google Scholar] [CrossRef]
- Yang, Y.; Su, X.; Yao, S. Can green finance promote green innovation? The moderating effect of environmental regulation. Environ. Sci. Pollut. Res. Int. 2022, 29, 74540–74553. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Xia, Q. Information infrastructure and corporate green innovation quality incentive. Heliyon 2024, 10, e30784. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, S.; Gao, L. Digital finance, financial flexibility and corporate green innovation. Financ. Res. Lett. 2024, 70, 106313. [Google Scholar] [CrossRef]
- Gan, C.H.; Zheng, R.G.; Yu, D.F. The impact of industrial structure change on economic growth and fluctuation in China. Econ. Res. 2011, 46, 4–16+31. [Google Scholar]
- Xu, S.; Zhang, Y. Impact of Manufacturing Agglomeration on the Green Innovation Efficiency-Spatial Effect Based on China’s Provincial Panel Data. Int. J. Environ. Res. Public Health 2023, 20, 4238. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, M.; Zhang, C.; Ren, F. Analysis of the Influence of Heterogeneous Environmental Regulation on Green Technology Innovation. Sustainability 2023, 15, 3649. [Google Scholar] [CrossRef]
- Huang, Q.H.; Yu, Y.Z.; Zhang, G.L. Internet development and productivity improvement in manufacturing: Internal mechanisms and China’s experience. Chin. Ind. Econ. 2019, 5–23. [Google Scholar] [CrossRef]
- Boland, M.; Ivus, O. The Employment and Wage Impact of Broadband Deployment in Canada. Can. J. Econ. Rev. Can. D`Econ. 2015, 48, 1803–1830. [Google Scholar] [CrossRef]
- Zhao, J.M.; Li, Y.Q.; Zhong, H. Digital economy, inter-provincial trade cost and national unified big market. Economist 2023, 89–99. [Google Scholar] [CrossRef]
- Yang, S.W.; Yi, M.; Wang, W.C.; Feng, B. Research on industrial cluster development based on transaction cost. Manag. World 2006, 154–155. [Google Scholar] [CrossRef]
- Zhu, J.G.; Liang, X.Q. Research on standardization construction and cost elasticity of enterprises: Evidence from China’s A-share manufacturing listed companies. Econ. Res. 2022, 57, 31–50. [Google Scholar]
- Lu, Y.; Yang, S.; Li, J. The influence of high-speed rails on urban innovation and the underlying mechanism. PLoS ONE 2022, 17, e0264779. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, M.; Yu, Y.; Tu, T.; Nizamani, M.M.; Ahmad, A.; Ali, M. Relationship between economic liberalization and intellectual property protection with regional innovation in China. A case study of Chinese provinces. PLoS ONE 2022, 17, e0259170. [Google Scholar] [CrossRef]
- Fan, Z.; Long, R.; Shen, Z. Regional digitalization, dynamic capabilities and green innovation: Evidence from e-commerce demonstration cities in China. Econ. Model. 2024, 139, 106846. [Google Scholar] [CrossRef]
- Peng, D.; Kong, Q. Corporate green innovation under environmental regulation: The role of ESG ratings and greenwashing. Energy Econ. 2024, 140, 107971. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, X.; Chi, L.; Meng, H.; Chen, G.; Shen, C.; Wu, J. Stimulating innovation or enhancing productivity? The impact of environmental regulations on agricultural green growth. J. Environ. Manag. 2024, 370, 122706. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Jiang, N.; Zhang, X. The impact of digital industrialization and industrial digitalization on regional green innovation efficiency in China -From the perspective of the innovation value chain. J. Clean. Prod. 2024, 478, 144015. [Google Scholar] [CrossRef]
- Dong, X.; Guo, K.; Zhao, X. Does digital economy promote regional green innovation? An empirical study based on the transmission effect and threshold effect of marketization. J. Digit. Econ. 2024, 3, 47–61. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Zhang, Z.; Su, B. Can green finance policy promote green innovation in cities? Evidence from pilot zones for green finance reform and innovation in China. J. Environ. Manag. 2024, 370, 122816. [Google Scholar] [CrossRef]
- Su, X.; Xu, A.; Lin, W.; Chen, Y.; Liu, S.; Xu, W. Environmental Leadership, Green Innovation Practices, Environmental Knowledge Learning, and Firm Performance. SAGE Open 2020, 10, 2158244020922909. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, J.; Zhang, Y.; Wang, Y. Green, Green, It’s Green: A Triad Model of Technology, Culture, and Innovation for Corporate Sustainability. Sustainability 2017, 9, 1369. [Google Scholar] [CrossRef]
- Meng, Y.; Wu, H.; Wang, Y.; Duan, Y. International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries. Renew. Energy 2022, 198, 1243–1253. [Google Scholar] [CrossRef]
Type of Indicator | Primary Index | Secondary Index | Unit |
---|---|---|---|
Input indicators | Human capital inputs | Full-time equivalent of R&D personnel | Person |
Capital investment | R&D expenditure | Ten thousand yuan | |
Energy inputs | Electricity consumption | Hundreds of millions of kilowatt hours | |
Completed investment in industrial pollution control | Ten thousand yuan | ||
Expected output indicators | Technical outputs | Number of patent applications | Pieces |
Economic Benefit | Revenue from sales of new products | Ten thousand yuan | |
Ecological Benefit | Greening coverage in built-up areas | % | |
Non-expected outputs | Negative environmental benefits | Total industrial sulfur dioxide emissions | Tons |
Total industrial wastewater discharge | Ten thousand tons | ||
Generation of general industrial solid waste | Ten thousand tons |
Target Level | System Level | Indicator Layer | Unit | Weight | Variation |
---|---|---|---|---|---|
Digital Trade Development Level | Digital network infrastructure | Number of domain names | 10 thousand | 0.0690 | Positive |
Number of websites | 10 thousand | 0.1484 | Positive | ||
Internet broadband access port | 10 thousand | 0.0394 | Positive | ||
Length of long-distance fiber optic cable lines | Kilometers | 0.0416 | Positive | ||
Broadband access user | 10 thousand people | 0.0430 | Positive | ||
Logistics | Logistics- and transportation-related workers | Person | 0.0130 | Positive | |
Ownership of road-operating goods vehicles | 10 thousand | 0.1020 | Positive | ||
Civilian transportation ship ownership | Vessel | 0.0007 | Positive | ||
Digital trade capacity | Digital trade sales | Billion yuan | 0.0971 | Positive | |
Revenue from express delivery operations | Billion yuan | 0.1341 | Positive | ||
Total telecommunication services | Billion yuan | 0.0024 | Positive | ||
Revenue from software operations | 10 thousand yuan | 0.1131 | Positive | ||
Trade potential | Total exports and imports | Billion yuan | 0.1143 | Positive | |
Market openness | % | 0.0542 | Positive | ||
GDP per capita | Yuan | 0.0277 | Positive |
Variable Types | Abbreviations | Definition | Measurement |
---|---|---|---|
Explained variable | Inn | Regional innovation capacity | Super-efficiency SBM Model |
Core explanatory variable | Dig | Digital trade development level | The entropy method |
Control variables | Gov | Degree of government intervention | Ratio of fiscal expenditure to GDP |
Fdi | Foreign direct investment | The proportion of foreign enterprise investment in the country | |
Edu | Level of human capital | The proportion of students enrolled in postsecondary education to the overall population of the area | |
Ind | Industrialization | The industrial added value to GDP ratio | |
lnCyb | Level of information technology infrastructure | The cable length measured logarithmically | |
lnGdp | Level of economic development | GDP per capita based on 2010 |
Variables | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|
Inn | 360 | 0.502 | 0.426 | 0.003 | 1.824 |
Dig | 360 | 0.116 | 0.113 | 0.005 | 0.631 |
Gov | 360 | 0.244 | 0.101 | 0.094 | 0.643 |
Fdi | 360 | 0.018 | 0.015 | 0 | 0.080 |
Edu | 360 | 0.016 | 0.007 | 0.004 | 0.036 |
Ind | 360 | 0.321 | 0.082 | 0.101 | 0.556 |
lnCyb | 360 | 13.59 | 0.918 | 10.83 | 15.28 |
lnGdp | 360 | 9.333 | 0.464 | 8.542 | 10.81 |
Variables | Baseline Estimate | Adding Control Variables | ||
---|---|---|---|---|
OLS (1) | FE (2) | OLS (3) | FE (4) | |
Dig | 1.6150 *** | 1.7141 *** | 1.7278 *** | 1.7710 *** |
(0.1804) | (0.2108) | (0.2939) | (0.2857) | |
Gov | 0.9563 *** | 0.9832 *** | ||
(0.2562) | (0.3386) | |||
Fdi | 6.4564 *** | 5.7012 *** | ||
(1.4556) | (1.7524) | |||
Edu | 4.1917 | 8.4750 * | ||
(3.5962) | (4.4639) | |||
Ind | −0.7740 *** | −0.7987 *** | ||
(0.2509) | (0.2396) | |||
lnCyb | −0.0710 ** | −0.0690 | ||
(0.0335) | (0.0428) | |||
lnGdp | 0.1819 ** | 0.1310 | ||
(0.0762) | (0.0916) | |||
Constant | 0.3140 *** | 0.3024 *** | −0.5997 | −0.2282 |
(0.0292) | (0.0292) | (1.0376) | (1.2767) | |
Province FE | No | Yes | No | Yes |
Year FE | No | Yes | No | Yes |
N | 360 | 360 | 360 | 360 |
R2 | 0.1807 | 0.1759 | 0.4327 | 0.4241 |
Variables | Industrial Structure Upgrading Effect | Industrial Clustering Effect | Technology Transfer Effect | |
---|---|---|---|---|
IS | TL | |||
(1) | (2) | (3) | (4) | |
Dig | 0.0387 *** | 0.2975 *** | 0.0129 *** | 6.1613 *** |
(0.0113) | (0.0572) | (0.0027) | (0.8438) | |
Gov | 0.1035 *** | 0.0979 | 0.0036 | 4.1444 *** |
(0.0312) | (0.0849) | (0.0045) | (0.7353) | |
Fdi | −0.5764 *** | −0.4618 *** | 0.0190 | 6.3962 |
(0.1029) | (0.0953) | (0.0322) | (4.1785) | |
Edu | 0.8214 * | 0.2000 | 0.0562 | 167.7090 *** |
(0.4354) | (0.9985) | (0.0587) | (10.3236) | |
Ind | −0.6253 *** | 0.5390 *** | −0.0022 | 1.7445 ** |
(0.0095) | (0.0421) | (0.0049) | (0.7203) | |
lnCyb | 0.0341 *** | −0.0171 ** | 0.0006 | −0.0858 |
(0.0028) | (0.0058) | (0.0010) | (0.0962) | |
lnGdp | −0.1221 *** | 0.0623 *** | 0.0042 ** | −0.8356 *** |
(0.0090) | (0.0174) | (0.0016) | (0.2186) | |
Constant | 1.3420 *** | −0.3800 | −0.0280 ** | −1.0072 |
(0.1066) | (0.2422) | (0.0125) | (2.9787) | |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 360 | 360 | 360 | 360 |
R2 | 0.9389 | 0.7456 | 0.1733 | 0.5691 |
Threshold Variable | Threshold Number | F-Value | p-Value | BS Degree | Self-Sampling Critical Value | ||
---|---|---|---|---|---|---|---|
10% | 5% | 1% | |||||
Env | Single | 9.63 *** | 0.0025 | 300 | 14.2984 | 17.4959 | 31.1039 |
Double | 5.65 | 0.3867 | 300 | 10.3317 | 12.6319 | 17.5490 |
Variables | Inn |
---|---|
lnDig(lnEnv ≤ −5.2008) | 0.0680 *** |
(0.0287) | |
lnDig(lnEnv > −5.2008) | 0.3620 *** |
(0.1385) | |
lnGov | 1.4668 *** |
(0.3584) | |
lnFdi | −0.1188 ** |
(0.0565) | |
lnEdu | 0.0404 |
(0.2154) | |
lnIndustry | 0.3307 |
(0.2705) | |
lnCyber | −0.0987 |
(0.1282) | |
lnGdp | 0.5049 |
(0.5657) | |
_cons | −1.2787 |
(5.5540) | |
Province fixed effects | Yes |
Year fixed effects | Yes |
N | 360 |
R2 | 0.2797 |
Variables | IV1 | IV2 | ||
---|---|---|---|---|
First Stage | Second Stage | First Stage | Second Stage | |
(1) | (2) | (3) | (4) | |
lnIV | 0.1458 *** | −0.0558 *** | ||
(0.041) | (0.014) | |||
lnDig | 0.5847 *** | 0.7048 *** | ||
(0.060) | (0.085) | |||
lnGov | −0.5725 *** | 0.9712 ** | −0.4690 *** | 1.0327 *** |
(0.086) | (0.393) | (0.085) | (0.360) | |
lnFdi | 0.0840 *** | 0.0471 | 0.0726 *** | 0.0359 |
(0.019) | (0.076) | (0.020) | (0.071) | |
lnEdu | −0.1933 *** | 0.1961 | −0.2034 *** | 0.2174 |
(0.062) | (0.187) | (0.061) | (0.178) | |
Ind | −0.9748 *** | −0.4515 | −0.9579 *** | −0.3392 |
(0.256) | (0.866) | (0.255) | (0.815) | |
lnCyb | 0.6338 *** | −0.2672 | 0.6607 *** | −0.3455 |
(0.036) | (0.439) | (0.036) | (0.390) | |
lnGdp | 1.0316 *** | 0.3799 | 0.9625 *** | 0.2576 |
(0.049) | (0.682) | (0.050) | (0.606) | |
Constant | −23.8208 *** | 3.2862 | −21.1464 *** | 5.9133 |
(0.908) | (14.545) | (0.744) | (12.901) | |
Kleibergen–Paap rk LM | 12.976 *** [0.000] | 20.459 *** [0.000] | ||
Kleibergen–Paap rk Wald F | 11.458 {8.96} | 19.006 {8.96} | ||
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 360 | 360 | 360 | 360 |
R2 | 0.903 | 0.376 | 0.904 | 0.380 |
Variables | Lagged Core Explanatory Variables | SYS-GMM |
---|---|---|
(1) | (2) | |
L. Dig | 1.9267 *** | |
(0.3126) | ||
L. Inn | 0.6453 *** | |
(0.0179) | ||
Dig | 0.7194 *** | |
(0.1958) | ||
Gov | 1.1177 *** | 1.7453 *** |
(0.3509) | (0.1641) | |
Fdi | 6.0512 *** | 4.8000 *** |
(1.8224) | (0.9665) | |
Edu | 6.3631 | 0.5864 |
(4.3312) | (2.7833) | |
Ind | −0.7946 *** | 0.7488 *** |
(0.2486) | (0.2824) | |
lnCyb | −0.0654 | 0.0081 |
(0.0429) | (0.0193) | |
lnGdp | 0.1709 * | 0.1867 *** |
(0.0892) | (0.0689) | |
Constant | −0.6469 | −2.5217 *** |
(1.2775) | (0.7676) | |
Province FE | Yes | Yes |
Year FE | Yes | Yes |
AR(1) | −2.58 | |
0.010 | ||
AR(2) | 0.08 | |
0.939 | ||
Hansen test | 24.74 | |
0.642 | ||
N | 330 | 330 |
Variables | Replacement of Explained Variable | Replacement of Core Explanatory Variables | Excluding 2020 | Control Fin | Control Agg |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Dig | 6.1021 *** | 0.3903 *** | 1.8739 *** | 1.7197 *** | 1.4994 *** |
(0.5231) | (0.0898) | (0.3210) | (0.3035) | (0.2955) | |
Gov | −1.9622 *** | 1.3430 *** | 0.8033 *** | 0.8931 * | 0.4191 |
(0.4892) | (0.3302) | (0.2743) | (0.4725) | (0.4905) | |
Fdi | 5.8664 ** | 5.8965 *** | 6.0622 *** | 6.0529 *** | 6.4738 *** |
(2.5495) | (1.9659) | (1.5242) | (1.7897) | (1.6812) | |
Edu | 80.3825 *** | −0.4253 | 5.4467 | 5.1767 | −2.5340 |
(6.2985) | (4.0646) | (3.8416) | (5.3130) | (5.7200) | |
Ind | −0.1707 | −0.5581 ** | −0.7206 *** | −0.7796 *** | −0.7401 *** |
(0.4785) | (0.2513) | (0.2635) | (0.2641) | (0.2607) | |
lnCyb | 0.6469 *** | 0.0236 | −0.0870 ** | −0.0579 | −0.1063 ** |
(0.0629) | (0.0342) | (0.0358) | (0.0412) | (0.0469) | |
lnGdp | −0.1975 | 0.4006 *** | 0.1398 * | 0.1534 | −0.0388 |
(0.1199) | (0.0693) | (0.0816) | (0.0944) | (0.1216) | |
Fin | 0.0185 | 0.0087 | |||
(0.0374) | (0.0371) | ||||
Agg | 0.0722 *** | ||||
(0.0236) | |||||
Constant | 1.1581 | −4.0049 *** | 0.0008 | −0.5651 | 1.9677 |
(1.7453) | (0.9297) | (1.1067) | (1.3020) | (1.6815) | |
Province FE | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
N | 360 | 360 | 330 | 360 | 360 |
R2 | 0.8744 | 0.3924 | 0.4210 | 0.4229 | 0.4424 |
Variables | Eastern | Central | Western |
---|---|---|---|
(1) | (2) | (3) | |
Dig | 2.0997 *** | 2.7197 | 0.5058 |
(0.3485) | (2.2363) | (1.0432) | |
Gov | 3.5086 *** | −0.2324 | 0.4638 |
(0.6579) | (1.8815) | (0.3922) | |
Fdi | −1.1510 | 5.3822 | 5.4156 |
(2.3854) | (4.1305) | (6.4423) | |
Edu | 4.1326 | 19.5608 * | −17.6350 *** |
(8.5018) | (10.8240) | (6.2678) | |
Ind | −0.5522 | −0.7890 | 1.0408 ** |
(0.4171) | (0.6275) | (0.4713) | |
lnCyb | −0.0592 | −0.3367 * | 0.0146 |
(0.0659) | (0.1912) | (0.0638) | |
lnGdp | 0.4181 *** | −0.8537 * | 0.3508 *** |
(0.1527) | (0.5086) | (0.1280) | |
Constant | −3.5199 ** | 12.5241 ** | −3.3472 * |
(1.6754) | (5.6458) | (1.8849) | |
Province FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
N | 132 | 96 | 132 |
R2 | 0.5981 | 0.1355 | 0.0439 |
Variables | Development Level of Digital Economy | Construction Level of Transportation Infrastructure | Degree of Opening Up | |||
---|---|---|---|---|---|---|
Higher | Lower | Higher | Lower | Higher | Lower | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Dig | 1.8001 *** | 3.3472 *** | 1.6307 *** | 1.1204 | 2.2729 *** | −0.8277 |
(0.2695) | (0.7238) | (0.3521) | (0.8132) | (0.3273) | (1.1942) | |
Gov | 1.8960 *** | 0.0836 | 2.7200 *** | 0.4426 | 2.6086 *** | 0.8769 * |
(0.3885) | (0.3626) | (0.7604) | (0.3805) | (0.6359) | (0.4829) | |
Fdi | 5.3596 ** | 4.0932 * | 4.1844 ** | 6.9274 *** | 0.8297 | 14.4472 *** |
(2.5020) | (2.2243) | (2.0725) | (1.8495) | (2.1295) | (3.9933) | |
Edu | 0.2648 | 19.7574 *** | −12.8247 * | 3.7426 | 4.9392 | 7.2499 |
(5.8438) | (5.8136) | (7.3116) | (4.4656) | (6.2447) | (6.2951) | |
Ind | −1.2250 *** | −0.5124 | 0.9328 ** | −1.5490 *** | −0.4908 | −0.6354 |
(0.3006) | (0.3234) | (0.3800) | (0.3115) | (0.3842) | (0.4352) | |
lnCyb | −0.0695 | −0.1685 *** | 0.1859 ** | −0.0131 | −0.1207 ** | −0.0167 |
(0.0568) | (0.0642) | (0.0920) | (0.0465) | (0.0588) | (0.0617) | |
lnGdp | 0.2133 * | −0.1661 | 0.1725 | 0.2204 ** | 0.1803 | 0.0840 |
(0.1132) | (0.1410) | (0.1383) | (0.1010) | (0.1177) | (0.1495) | |
−0.9148 | 3.7497 * | −4.8019 ** | −1.2520 | −0.2785 | −0.4677 | |
Constant | (1.6746) | (1.9763) | (2.2045) | (1.3668) | (1.5721) | (2.0642) |
Yes | Yes | Yes | Yes | Yes | Yes | |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | 180 | 180 | 180 | 180 | 180 | 180 |
N | 0.5612 | 0.3662 | 0.4162 | 0.5677 | 0.4929 | 0.1335 |
R2 | 0.5087 | 0.0258 | 0.4202 | 0.5246 | 0.4643 | 0.1172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Qiao, C. The Impact of Digital Trade Development on Regional Green Innovation. Sustainability 2024, 16, 10090. https://doi.org/10.3390/su162210090
Liang J, Qiao C. The Impact of Digital Trade Development on Regional Green Innovation. Sustainability. 2024; 16(22):10090. https://doi.org/10.3390/su162210090
Chicago/Turabian StyleLiang, Jingyi, and Cuixia Qiao. 2024. "The Impact of Digital Trade Development on Regional Green Innovation" Sustainability 16, no. 22: 10090. https://doi.org/10.3390/su162210090
APA StyleLiang, J., & Qiao, C. (2024). The Impact of Digital Trade Development on Regional Green Innovation. Sustainability, 16(22), 10090. https://doi.org/10.3390/su162210090