Impact of Management Strategies on Reducing of Mulching Film Residues Pollution in Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scenarios
2.2. Estimation of Accumulation of Mulching Film Residues
2.3. Evaluation of Cumulative Ecological Effects of Mulching Film Residues
2.3.1. Evaluation of Cumulative Ecological Effects
2.3.2. Evaluation of Direct Ecological Effects of Mulching Film Residues
2.3.3. Evaluation of Indirect Ecological Effects of Mulching Film Residues
- (1)
- The cumulative amount of MPs was calculated as Equations (11)–(13):
- (2)
- The cumulative amount of PAEs was calculated by Equations (13)–(17):
3. Results
3.1. Effects of Management Strategies on Accumulation of Mulching Film Residues in the Future
3.1.1. Significant Differences in Increasing Trends of MFRs Under Different Strategies
3.1.2. Effects of Strategies on MFRs Accumulation Under Historical Conditions
3.2. Effects of Strategies on Cumulative Ecological Effects of Mulching Film Residues
3.2.1. Cumulative Ecological Effects of Mulching Film Residues
3.2.2. Direct Ecological Effects of Mulching Film Residues
3.2.3. Indirect Ecological Effects of Mulching Film Residues
4. Discussion
4.1. Effectiveness of Strategies on Mitigating Mulching Film Residues Pollution
4.2. Indirect Ecological Effects Require More Attention than Direct Effects in the Future
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFRs | mulching film residues; |
CEEs | cumulative ecological effects. |
References
- Sun, D.B.; Li, H.G.; Wang, E.L.; He, W.Q.; Hao, W.P.; Yan, C.R.; Li, Y.Z.; Mei, X.R.; Zhang, Y.Q.; Sun, Z.X.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, X.Y.; Goncalves, J.M.; Shi, H.B.; Tian, T.; Chen, N. Effects of residual plastic-film mulch on field corn growth and productivity. Sci. Total Environ. 2020, 729, 138901. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, Z.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Manning, G.; Parati, M.; Radecka, I.; Khan, H. Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers 2022, 14, 5062. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, X.F.; Chen, X.G.; Tang, X.Y.; Zhao, Y.; Yan, C.R. Current situation and control strategies of residual film pollution in Xinjiang. Trans. CSAE 2019, 35, 223–234. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.T.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.Y.; Jones, D.L.; Wang, J.K. Macro- and microplastic accumulation in soil after 32 years of plastic film mulching. Environ. Pollut. 2022, 300, 118945. [Google Scholar] [CrossRef]
- Cao, J.H.; Gao, X.D.; Cheng, Z.; Song, X.L.; Cai, Y.H.; Siddique, K.H.M.; Zhao, X.N.; Li, C.J. The harm of residual plastic film and its accumulation driving factors in northwest China. Environ. Pollut. 2023, 318, 120910. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Troeger, J.; Munoz, K.; Fror, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation. Sci. Total Environ. 2016, 50, 690–705. [Google Scholar] [CrossRef]
- Koskei, K.; Munyasya, A.N.; Wang, Y.B.; Zhao, Z.Y.; Zhou, R.; Indoshi, S.N.; Wang, W.; Cheruiyot, W.K.; Mburu, D.M.; Nyende, A.B.; et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem. J. Hazard. Mater. 2021, 414, 125521. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.T.; Fu, T.G.; Gao, H. Review on cumulative ecological effects of mulching film residues in farmland. Asian J. Ecotoxicol. 2023, 18, 223–237. (In Chinese) [Google Scholar] [CrossRef]
- Yan, C.R.; Liu, E.K.; Shu, F.; Liu, Q.; Liu, S.; He, W.Q. Review of agricultural plastic mulching and its residual pollution and prevention measures in China. J. Agric. Resour. Environ. 2014, 31, 95–102. (In Chinese) [Google Scholar]
- Bao, M.Z.; Hong, M.; Zhao, B.Y.N.M.L.; Xing, A.; Ye, H.; Shen, Q.G.; Wang, L.Q. Distribution characteristics and influencing factors concerning residual quantity of agricultural mulch film in Hetao irrigation area, Inner Mongolia. J. Agric. Resour. Environ. 2023, 40, 45–54. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, D.; Liu, H.B.; Hu, W.L.; Qin, X.H.; Ma, X.W.; Yan, C.R.; Wang, H.Y. The status and distribution characteristics of residual mulching film in Xinjiang, China. J. Integr. Agric. 2016, 15, 2639–2646. [Google Scholar] [CrossRef]
- Brodhagen, M.; Goldberger, J.R.; Hayes, D.G.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef]
- Ren, S.Y.; Wang, K.; Zhang, J.R.; Li, J.J.; Zhang, H.Y.; Qi, R.M.; Xu, W.; Yan, H.R.; Liu, X.J.; Zhang, F.S.; et al. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China. Crit. Rev. Environ. Sci. Tec. 2023, 54, 533–556. [Google Scholar] [CrossRef]
- Qi, Y.L.; Beriot, N.; Gort, G.; Lwanga, E.H.; Gooren, H.; Yang, X.M.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef]
- Wen, Y.; Li, H.Q.; Li, W.H.; Gu, Z.D.; Wang, Z.H. Responses of infiltration and evaporation to amounts and distribution characteristics of the residual plastic films within agricultural soil. Irrig. Sci. 2022, 40, 309–320. [Google Scholar] [CrossRef]
- Li, Z.R.; Ma, J.J.; Sun, X.H.; Guo, X.H.; Zheng, L.J.; Chen, J.P. Plastic pollution in soil and crops: Effects of film residuals on soil water content and tomato physiology. Agronomy 2022, 12, 1222. [Google Scholar] [CrossRef]
- Zhang, D.; Ng, E.L.; Hu, W.L.; Wang, H.Y.; Galaviz, P.; Yang, H.D.; Sun, W.; Li, C.; Ma, X.; Fu, B.; et al. Plastic pollution in croplands threatens long-term food security. Glob. Chang. Biol. 2020, 26, 3356–3367. [Google Scholar] [CrossRef]
- Gao, H.H.; Liu, Q.; Yan, C.R.; Mancl, K.; Gong, D.Z.; He, J.X.; Mei, X.R. Macro-and/or microplastics as an emerging threat effect crop growth and soil health. Resour. Conserv. Recycl. 2022, 186, 106549. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Rizvi, Z.F. Impact of plastic mulching as a major source of microplastics in agroecosystems. J. Hazard. Mater. 2023, 445, 130455. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ma, Z.R.; Cai, Y.Y.; Li, H.R.; Ying, G.G. Agricultural plastic pollution in China: Generation of plastic debris and emission of phthalic acid esters from agricultural films. Environ. Sci. Technol. 2021, 55, 12459–12470. [Google Scholar] [CrossRef] [PubMed]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and accumulation of nano/microplastics in plants: A critical review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Jia, L.; Liu, L.N.; Zhang, Y.J.; Fu, W.X.; Liu, X.; Wang, Q.Q.; Tanveer, M.; Huang, L.P. Microplastic stress in plants: Effects on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Luo, Y.M.; Li, R.J.; Zhou, Q.; Peijnenburg, W.J.G.M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y.C. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Hu, X.J.; Yu, Q.; Waigi, M.G.; Ling, W.T.; Qin, C.; Wang, J.; Gao, Y.Z. Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks. Environ. Int. 2022, 168, 107459. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Luo, Y.M.; Zhou, Q.; Zhang, H.B.; Pan, X.L.; Tu, C.; Li, L.Z.; Yang, J. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks. Bull. Chin. Acad. Sci. 2018, 33, 1021–1030. (In Chinese) [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations(FAO). Assessment of Agricultural Plastics and Their Sustainability: A Call for Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; pp. 16–28. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agricultural Film Recycling Action Plan. 2017. Available online: http://www.moa.gov.cn/nybgb/2017/dlq/201712/t20171231_6133712.htm (accessed on 20 June 2017).
- Jin, A.N.; Yu, F.X.; Wang, Y.L.; Du, T.; He, J. Degradation characteristics of PBAT fully Biodegradable mulch film. Environ. Sci. 2024. (In Chinese) [Google Scholar] [CrossRef]
- Xin, X.W.; Chen, C.; Wu, W.Q.; Chen, Q.; Li, C.T. Ecological effects of PLA and PBAT biodegradable microplastics on soil-plant systems. J. Agro-Environ. Sci. 2024. Available online: https://link.cnki.net/urlid/12.1347.S.20240621.1643.006 (accessed on 27 September 2024) . (In Chinese).
- Hadaly, S.R.; Lluis, M.C.; Ana, M.P. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef]
- Madrid, B.; Wortman, S.; Hayes, D.G.; DeBruyn, J.M.; Miles, C.; Flury, M.; Marsh, T.L.; Galinato, S.P.; Englund, K.; Agehara, S.; et al. End-of-life management options for agricultural mulch films in the United States—A Review. Front. Sustain. Food Syst. 2022, 6, 921496. [Google Scholar] [CrossRef]
- Compilation Committee of the First National Pollution Source Census. Manual for Mulching Film Residue Coefficient in Handbook of Pollution Production and Discharge Coefficient in Pollution Sources Census; China Environmental Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- GB 13735-2017; Polythylene Blown Mulch Film for Agricultural Uses. Standards Press of China: Beijing, China, 2017. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D82020D3A7E05397BE0A0AB82A (accessed on 27 September 2024).
- GB/T35795-2017; Biobased Degradable Materials and Products, Biodegradable Mulching Film for Agricultural Uses. Standards Press of China: Beijing, China, 2017.
- Sander, M. Biodegradation of polymeric mulch films in agricultural soils: Concepts, knowledge gaps, and future research directions. Environ. Sci. Technol. 2019, 53, 2304–2315. [Google Scholar] [CrossRef]
- Chen, L.; Qiu, T.Y.; Huang, F.Y.; Zeng, Y.; Cui, Y.X.; Chen, J.; White, J.C.; Fang, L.C. Micro/nanoplastics pollution poses a potential threat to soil health. Glob Chang. Biol. 2024, 30, e17470. [Google Scholar] [CrossRef]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastics pollution research—What have we learned? Science 2024, 386, 6720. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, J.Y.; Wang, J.H.; Han, P.; Luan, Y.X.; Ma, X.P.; Lu, A.X. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment. Sci. Total Environ. 2016, 568, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, X.X.; Liu, C.R.; Nier, A.; Ying, S.; Zhang, J.X.; Zhao, Y.J.; Zhang, Y.T.; Wang, Z.H.; Shi, M. The content of PAEs in field soils caused by the residual film has a periodical peak. Sci. Total Environ. 2023, 864, 161078. [Google Scholar] [CrossRef]
- Sun, H.Y.; Wei, X.F.; Liu, W.; Li, D.J.; Jia, F.C.; Chen, Z.R.; Sun, X.M. Baseline segmentation evaluation for ecological risk accumulation effect of soil heavy metals based on optimization by GIS overlay model and land use unit. Acta Geol. Sin. 2022, 96, 1488–1502. [Google Scholar] [CrossRef]
- Chen, Y.L.; Liu, X.N.; Leng, Y.F.; Wang, J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils. Ecotoxicol. Environ. Saf. 2020, 187, 109788. [Google Scholar] [CrossRef]
- New York State Department of Environmental Conservation of USA. TAGM 4046 Determination of Soil Cleanup Objectives and Cleanup Levels; New York State Department of Environmental Conservation of USA: New York, NY, USA, 1994. [Google Scholar]
- Zhang, J.J.; Li, X.Y.; Peng, Z.Y.; Guo, Y.; Ding, Z.J.; Leng, X. The distribution of soil water, temperature, nitrogen and salinity under biofilm mulching in Hetao sunflower field. Ecol. Environ. Sci. 2018, 27, 1067–1075. (In Chinese) [Google Scholar] [CrossRef]
- Ren, S.Y.; Kong, S.F.; Ni, H.G. Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environ. Pollut. 2021, 291, 118227. [Google Scholar] [CrossRef]
- Ren, S.Y.; Sun, Q.; Ni, H.G.; Wang, J.F. A minimalist approach to quantify emission factor of microplastic by mechanical abrasion. Chemosphere 2020, 245, 125630. [Google Scholar] [CrossRef]
- Ding, W.L.; Liu, Q.; Liu, Q.Y.; Yan, C.R. Characteristics and safety of phthalates (PAEs) for plastic mulch films in China. J. Agro-Environ. Sci. 2021, 40, 1008–1016. (In Chinese) [Google Scholar] [CrossRef]
- Tian, Y. Functional polyolefin agriculture films in China. China Plast. 2004, 18, 1–8. (In Chinese) [Google Scholar]
- Yang, X.J.; Zhou, G.H.; Wang, W.S.; Wang, Z.L. Analysis and research of plasticizer in three typical agricultural films. China Plast. Ind. 2020, 48, 117–120+138. (In Chinese) [Google Scholar] [CrossRef]
- Dong, H.G.; Wang, D.; Wang, Y.T.; Tong, J.; Liu, T. Spatial and temporal distribution characteristics of mulch residues in cotton field in Shihezi, Xinjiang. J. Arid. Land Resour. Environ. 2013, 27, 182–186. (In Chinese) [Google Scholar]
- He, H.J.; Wang, Z.H.; Zheng, X.R.; Zhang, J.Z.; Li, W.H. Distribution of size and quantity of film residuals in cotton fields under film-mulched drip irrigation in oasis region. J. Irrig. Drain. 2019, 38, 63–69. (In Chinese) [Google Scholar]
- Uzamurera, A.G.; Wang, P.Y.; Zhao, Z.Y.; Tao, X.P.; Zhou, R.; Wang, W.Y.; Xiong, X.B.; Wang, S.; Wesly, K.; Tao, H.Y.; et al. Thickness-dependent release of microplastics and phthalic acid esters from polythene and biodegradable residual films in agricultural soils and its related productivity effects. J. Hazard. Mater. 2023, 448, 130897. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, R.; Brown, R.W.; Yang, Y.D.; Zeng, Z.H.; Jones, D.L.; Zang, H.D. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. J. Hazard. Mater. 2023, 442, 130055. [Google Scholar] [CrossRef]
- Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Yates, J.; Deeney, M.; Rolker, H.B.; White, H.; Kalamatianou, S.; Kadiyala, S. A systematic scoping review of environmental, food security and health impacts of food system plastics. Nat. Food 2021, 2, 80–87. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Vega, J.M.; Quej, V.K.; Chi, J.D.; del Cid, L.S.; Chi, C.; Segura, G.E.; Gertsen, H.; Salanki, T.; van der Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 2045–2322. [Google Scholar] [CrossRef]
- Wu, C.C.; Ma, Y.J.; Wang, D.; Shan, Y.P.; Song, X.P.; Hu, H.Y.; Ren, X.L.; Ma, X.Y.; Luo, J.Y.; Cui, J.J.; et al. Microbiology combined with metabonomics revealing the response of soil microorganisms and their metabolic functions exposed to phthalic acid esters. Ecotoxicol. Environ. Saf. 2022, 233, 113338. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, Y.M.; Teng, Y.; Ma, W.T.; Christie, P.; Li, Z.G. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 2013, 180, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, T.; Khan, M.R.; Hassan, M.A. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron 2010, 41, 430–438. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.Y.; Song, B.; Shen, M.C.; Cao, W.C.; Yang, H.L.; Zeng, G.Z.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zou, G.Y.; Zuo, Q.; Li, C.Z.; Gu, J.L.; Kang, L.Y.; Ma, M.T.; Liang, K.Y.; Liu, D.S.; Du, L.F. Soil bacterial community and metabolism showed a more sensitive response to PBAT biodegradable mulch residues than that of LDPE mulch residues. J. Hazard. Mater. 2022, 438, 129507. [Google Scholar] [CrossRef]
- Hu, X.J.; Gu, H.D.; Wang, Y.B.; Liu, J.J.; Yu, Z.H.; Li, Y.S.; Jin, J.; Liu, X.B.; Dai, Q.W.; Wang, G.H. Succession of soil bacterial communities and network patterns in response to conventional and biodegradable microplastics: A microcosmic study in Mollisol. J. Hazard. Mater. 2022, 436, 129218. [Google Scholar] [CrossRef]
- Chang, J.N.; Fang, W.; Liang, J.S.; Zhang, P.Y.; Zhang, G.M.; Zhang, H.B.; Zhang, Y.J.; Wang, Q.Y. A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. Chemosphere 2022, 306, 135573. [Google Scholar] [CrossRef]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/Nanoplastics and environmental contaminants: Current knowledge and future perspectives. J. Hazard. Mater. 2021, 405, 123913. [Google Scholar] [CrossRef]
Strategies for Mitigating MFR Pollution | Historical Conditions | |||||
---|---|---|---|---|---|---|
Strategies | Film Type | Film Usage (kg hm−2) | Thickness (TK) (mm) | Recycling Rate | Value of Fr | |
PE-S0 | PE film | 60–80 | 0.010 | 0 | 50.7% | HC1: 75 kg m−2 accumulated historically HC2: 160 kg m−2 accumulated historically HC3: 220 kg m−2 accumulated historically HC4: 300 kg m−2 accumulated historically HC5: 400 kg m−2 accumulated historically |
PE-S1 | PE film | 60–80 | 0.010 | 80% | 20% | |
PE-S2 | PE film | 60–80 | 0.010 | 85% | 15% | |
PE-S3 | PE film | 60–80 | 0.010 | 90% | 10% | |
PE-S4 | PE film | 60–80 | 0.010 | 95% | 5% | |
PBAT-S0 | PBAT film | 60–80 | 0.010 | 0 | 50.7% | |
PBAT-S1 | PBAT film | 60–80 | 0.010 | 80% | 20% | |
PBAT-S2 | PBAT film | 60–80 | 0.010 | 85% | 15% | |
PBAT-S3 | PBAT film | 60–80 | 0.010 | 90% | 10% | |
PBAT-S4 | PBAT film | 60–80 | 0.010 | 95% | 5% |
Benchmark Layer | Index Layer | Meaning |
---|---|---|
Direct ecological effects index (Ide) | Rate of water evaporation reduction | Impacts of MFRs on soil physicochemical properties |
Rate of water infiltration reduction | ||
Rate of organic matter reduction | ||
Rate of available phosphorus reduction | ||
Rate of crop yield reduction | Obstruction to crop production | |
Indirect ecological effects index (Iie) | Accumulation of microplastics from film | Potential risk from MPs |
Accumulation of plastic additives from film | Potential risk from additives |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, J.; Huang, J.; Fu, T.; Gao, H. Impact of Management Strategies on Reducing of Mulching Film Residues Pollution in Arid Regions. Sustainability 2024, 16, 10098. https://doi.org/10.3390/su162210098
Zhang M, Liu J, Huang J, Fu T, Gao H. Impact of Management Strategies on Reducing of Mulching Film Residues Pollution in Arid Regions. Sustainability. 2024; 16(22):10098. https://doi.org/10.3390/su162210098
Chicago/Turabian StyleZhang, Mei, Jintong Liu, Jinlou Huang, Tonggang Fu, and Hui Gao. 2024. "Impact of Management Strategies on Reducing of Mulching Film Residues Pollution in Arid Regions" Sustainability 16, no. 22: 10098. https://doi.org/10.3390/su162210098
APA StyleZhang, M., Liu, J., Huang, J., Fu, T., & Gao, H. (2024). Impact of Management Strategies on Reducing of Mulching Film Residues Pollution in Arid Regions. Sustainability, 16(22), 10098. https://doi.org/10.3390/su162210098