Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. General Description
3.2. Markov Model
4. Results
5. Discussion
Model Checking
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueras, M. La Vanguardia. Available online: https://www.lavanguardia.com/motor/actualidad/20211120/7784546/primer-peaton-muerto-accidente-trafico.html (accessed on 20 July 2024).
- Campón Domínguez, J.A. El Diseño de Una Base de Datos de Investigaciones en Profundidad Sobre Atropellos a Peatones. Ph.D. Dissertation, Universidad Carlos III, Madrid, Spain, 2015. [Google Scholar]
- Norman, L.G. Road Traffic Accidents; World Health Organization (WHO): Geneva, Switzerland, 1962. [Google Scholar]
- Peden, M.; Scurfield, R.; Sleet, D.; Mohan, D.; Hyder Adnan, A.; Jarawan, E.; Mathers, C. World Report on Road Traffic Injury Prevention; World Health Organization (WHO): Geneva, Switzerland, 2004. [Google Scholar]
- Heinrich, H.W. Industrial Accident Prevention: A Scientific Approach; McGraw-Hill: New York, NY, USA, 1931. [Google Scholar]
- Hollnagel, E. Barriers and Accident Prevention; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- World Health Organization (WHO). Global Status Report on Road Safety 2013: Supporting a Decade of Action; World Health Organization (WHO): Geneva, Switzerland, 2013. [Google Scholar]
- European Comission. Seguridad Vial En La UE: Las Muertes Están Por Debajo de Los Niveles Previos a La Pandemia, Pero El Progreso Sigue Siendo Demasiado Lento; Dirección General de Movilidad y Transportes: Brussels, Belgium, 2024. [Google Scholar]
- European Comission. Mobility and Transport. Available online: https://road-safety.transport.ec.europa.eu/european-road-safety-observatory_en (accessed on 7 November 2024).
- European Road Safety Observatory. Facts and Figures-Urban Áreas-2022. Available online: https://road-safety.transport.ec.europa.eu/document/download/9650635a-2982-4391-9d3b-62bed93aadd0_en?filename=ff_roads_inside_urban_areas_20220707.pdf (accessed on 21 May 2024).
- Dirección General de Tráfico (DGT). 1145 Personas Fallecieron en Siniestros de Tráfico Durante 2022. Madrid, Spain. Available online: https://www.dgt.es/comunicacion/notas-de-prensa/1.145-personas-fallecieron-en-siniestros-de-trafico-durante-2022/ (accessed on 16 June 2024).
- Dirección General de Tráfico (DGT). Datos Municipales-Siniestralidad 2022. Madrid, Spain. Available online: https://www.dgt.es/menusecundario/dgt-en-cifras/dgt-en-cifras-resultados/ (accessed on 20 May 2024).
- Dirección General de Tráfico (DGT). Seguridad Vial 2030. Available online: https://seguridadvial2030.dgt.es/vision-2030/mision-vision-y-principios-de-la-estrategia/ (accessed on 10 June 2024).
- Muñoz Garrido, R. Artículo De Investigación: Evaluación de la Efectividad De Las Actuaciones En Carreteras Sobre La Accidentalidad; Centro Universitario de la Guardia Civil: Madrid, Spain, 2021. [Google Scholar]
- Aparicio, F.; Arenas, B.; Bernardos, E.; Gómez, A. El modelo DRAG–España: Análisis de los principales factores de influencia en el número de accidentes en las carreteras españolas. Secur. Vialis 2009, 1, 59–64. [Google Scholar] [CrossRef]
- Dirección General de Tráfico (DGT). El Impacto Sobre La Seguridad Vial de la Vigilancia Y Control de la Normativa De Tráfico; Observatorio de Seguridad Vial: Madrid, Spain, 2010. [Google Scholar]
- Onda Cero. Policía Local. Available online: https://www.ondacero.es/emisoras/extremadura/badajoz/noticias/aspolobba-senala-que-falta-policias-badajoz-hecho-que-hay-negociacion-gobierno-local_2024012965b7e910327cdd0001937606.html (accessed on 19 January 2024).
- El Ideal Gallego. La Plantilla de la Policía Local Sufre un Déficit de Más de Cien Agentes. Available online: https://www.elidealgallego.com/articulo/a-coruna/plantilla-policia-local-sufre-deficit-cien-agentes-4456689 (accessed on 12 January 2024).
- Medina Sarmiento, J.E. Prevención de la Conducción Influenciada Por Medio de Los Mapas Del Crimen. Un Análisis Desde La Aplicación De Las Teorías Criminológicas. Ph.D. Dissertation, Universidad Miguel Hernández, Elche, Spain, 2013. [Google Scholar]
- Úbeda González, D. Predicción de la Severidad De Accidentes De Tráfico En La Red De Carreteras De España Y Reino UNIDO Mediante Modelos Estadísticos Basados En Random Forest Y Regresión Logística. Ph.D. Dissertation, Universidad Miguel Hernández, Elche, Spain, 2017. [Google Scholar]
- Aparicio Azcárraga, R. Artículo De Investigación: Aproximación a La Construcción De Un Indicador De Riesgo Vial; Centro Universitario de la Guardia Civil: Madrid, Spain, 2021. [Google Scholar]
- Toledo Castillo, F.; Mera Redondo, A.; García Sánchez, J.; Hidalgo Fuentes, S. Manual De Investigación Y Reconstrucción De Accidentes De Tráfico; Universidad de Valencia: Valencia, Spain, 2009. [Google Scholar]
- Campón Domínguez, J.A.; San Román García, J.L.; Rodríguez Luque, P.A.; Díaz López, V.; Cocaña Rosco, J.F.; García-Pozuelo Ramos, D.; Fuentes Ortega, P.; Santos Cuadros, S.; Vidal Barrientos, J.L. Manual la Reconstrucción de Siniestros Viales; Centro Universitario de la Guardia Civil: Madrid, Spain, 2020. [Google Scholar]
- Muñoz Garrido, R. La Reducción de Los Atropellos a Peatón En La Ciudad De Badajoz Y Su Lesividad. Propuestas De Actuación. Revista de Investigación CUGC 2021, ISSN-e 2444-6556, Nª 9. Available online: https://www.cugc.es/component/abook/author/978-ruben-munoz-garrido.html?Itemid=1600 (accessed on 6 May 2024).
- Ministerio del Interior. Real Decreto Legislativo 6/2015, de 30 de octubre, por el que se aprueba el texto refundido de la Ley sobre Tráfico, Circulación de Vehículo a Motor y Seguridad Vial. BOE núm. 261. Madrid, Spain, 2015. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2015-11722 (accessed on 6 May 2024).
- Ravani, B.; Brougham, D.; Mason, R.T. Pedestrian post-impact kinematics and injury patterns. Soc. Automot. Eng. (SAE) 1981, 90, 811024. [Google Scholar]
- Eubanks, J.; Haight, R. Pedestrian involved traffic collision reconstruction methodology. Soc. Automot. Eng. (SAE) 1992, 921591. [Google Scholar] [CrossRef]
- Fricke, L.B.; Baker, S. Traffic Accident Reconstruction; Northwestern University Traffic Institute: Evanston, IL, USA, 1990. [Google Scholar]
- San Román García, J.L.; Campón Domínguez, J.A.; Díaz López, V.; Sanz Sánchez, S. La Reconstrucción De Accidentes: El Atropello De Peatones (2ª Parte); STA: Sociedad de Técnicos de Automoción: Barcelona, Spain, 2008; Nº. 183; pp. 12–14. ISSN 1138-5006. [Google Scholar]
- Tang, J.; Zheng, L.; Han, C.; Yin, W.; Zhang, Y.; Zou, Y.; Huang, H. Statistical and machine-learning methods for clearance time prediction of road incidents: A methodology review. Anal. Methods Accid. Res. 2020, 27, 100123. [Google Scholar] [CrossRef]
- Zheng, L.; Sayed, T.; Mannering, F. Modeling traffic conflicts for use in road safety analysis: A review of analytic methods and future directions. Anal. Methods Accid. Res. 2021, 29, 100142. [Google Scholar] [CrossRef]
- Arun, A.; Haque, M.; Washington, S.; Sayed, T.; Mannering, F. A systematic review of traffic conflict-based safety measures with a focus on application context. Anal. Methods Accid. Res. 2021, 32, 100185. [Google Scholar] [CrossRef]
- Yan, X.; He, J.; Wu, G.; Zhang, C.; Wang, C.; Ye, Y. Differences of overturned and hit-fixed-object crashes on rural roads accompanied by speeding driving: Accommodating potential temporal shifts. Anal. Methods Accid. Res. 2022, 35, 100220. [Google Scholar] [CrossRef]
- Zou, R.; Yang, H.; Yu, W.; Yu, H.; Chen, C.; Zhang, G.; Ma, D.T. Analyzing driver injury severity in two-vehicle rear-end crashes considering leading following configurations based on passenger car and light truck involvement. Accid. Anal. Prev. 2023, 193, 107298. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Sanfélix, A.; Gragera-Peña, F.C.; Jaramillo-Morán, M.A. An improvement of the conceptual system of the sequential events model of road crashes (i-MOSES). Heliyon 2024, 10, e37268. [Google Scholar] [CrossRef]
- Abellán, J.; López, G.; De Oña, J. Analysis of traffic accident severity using Decision Rules via Decision Trees. Exp. Syst. with Applic. 2013, 40, 6047–6054. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Pu, Z.; Xu, C. Comparing Prediction Performance for Crash Injury Severity Among Various Machine Learning and Statistical Methods. IEEE Access 2018, 6, 60079–60087. [Google Scholar] [CrossRef]
- Riccardi, M.R.; Augeri, M.G.; Galante, F.; Mauriello, F.; Nicolosi, V.; Montella, A. Safety Index for evaluation of urban roundabouts. Accid. Anal. Prev. 2022, 178, 106858. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Moreno, J.; Calvo-Poyo, F.; de Oña, J. Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Intern. J. Sustain. Transp. 2023, 17, 649–659. [Google Scholar] [CrossRef]
- Hossain, M.; Zhou, H.; Sun, X.; Hossain, A.; Das, S. Crashes involving distracted pedestrians: Identifying risk factors and their relationships to pedestrian severity levels and distraction modes. Accid. Anal. Prev. 2024, 194, 107359. [Google Scholar] [CrossRef] [PubMed]
- Dinesh, D. A Novel Multi-Model Machine Learning Approach to Real-Time Road Accident Prediction and Driving Behavior Analysis. In Proceedings of the International Symposium on Computer Science and Intelligent Controls (ISCSIC), Rome, Italy, 14 November 2021; pp. 67–72. [Google Scholar] [CrossRef]
- Chang, I.; Park, H.; Hong, E.; Lee, J.; Kwon, N. Predicting effects of built environment on fatal pedestrian accidents at location-specific level: Application of XGBoost and SHAP. Accid. Anal. Prev. 2022, 166, 106545. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Xiang, Q. Geographically weighted random forests for macro-level crash frequency prediction. Accid. Anal. Prev. 2024, 194, 107370. [Google Scholar] [CrossRef]
- Roland, J.; Way, P.D.; Firat, C.; Doan, T.-N.; Sartipi, M. Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee. Accid. Anal. Prev. 2021, 149, 105860. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Y.; Lin, G.; Zhai, J. Forecasting for the freeway traffic accidents base on Markov model. In Proceedings of the International Conference on Business Management and Electronic Information, Guangzhou, China, 16–17 April 2011; pp. 259–261. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, H.; Xu, P.; Chang, F.; Abdel-Aty, M. Incorporating spatial effects into temporal dynamic of road traffic fatality risks: A case study on 48 lower states of the United States, 1975–2015. Accid. Anal. Prev. 2019, 132, 105283. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.; Yang, Z. A Markov switching regression analysis of freeway crash risks considering spatial effect. Proc. Inst. Civ. Eng. Transp. 2020, 173, 159–170. [Google Scholar] [CrossRef]
- Taoufik, Y.; Sadok Ben, Y. A Markov chain-based data dissemination protocol for vehicular ad hoc networks. Comp. Commun. 2021, 180, 303–314. [Google Scholar] [CrossRef]
- Mohammadi, A.; Kiani, B.; Mahmoudzadeh, H.; Bergquist, R. Pedestrian Road Traffic Accidents in Metropolitan Areas: GIS-Based Prediction Modelling of Cases in Mashhad, Iran. Sustainability 2023, 15, 10576. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística (INE). Población del Padrón Continuo por Unidad Poblacional. Available online: https://www.ine.es/nomen2/index.do?accion=busquedaDesdeHome&nombrePoblacion=badajoz (accessed on 21 July 2024).
- La Crónica de Badajoz. Población Flotante de Badajoz Fluctúa Entre 15000 y 20000 Personas Diarias. Available online: https://www.lacronicabadajoz.com/badajoz/2014/02/02/poblacion-flotante-badajoz-fluctua-15-100183214.html (accessed on 21 September 2024).
- La Crónica de Badajoz. La Población de Badajoz Vuelve a Crecer y Llega a 153559 Habitantes. Available online: https://www.lacronicabadajoz.com/badajoz/2023/04/02/poblacion-badajoz-vuelve-crecer-llega-100039175.html (accessed on 21 September 2024).
- Papakonstantinou, K.G.; Shinozuka, M. Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation. Reliab. Eng. Syst. Saf. 2014, 130, 214–224. [Google Scholar] [CrossRef]
- Bapat, R.B.; Raghavan, T.E.S. Nonnegative Matrices and Applications; Encyclopedia of Mathematics and Its Applications (No. 64); Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- García, J.M. Matrices no negativas, paseos aleatorios y cadenas de Markov. In Matemática Aplicada y Estadística; Universidad del País Vasco: Lejona, España, 2002. [Google Scholar]
- Cohen-Tannoudji, C. The mathematical tools of quantum mechanics. In Quantum Mechanics; Wiley: Hoboken, NJ, USA, 1977; ISBN 0-471-16432-1. [Google Scholar]
- Horn Roger, A.; Johnson Charles, R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985; ISBN 0-521-30586-1. [Google Scholar]
- De Burgos, J. Álgebra Lineal; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Karunarathna, W.; Zhang, T.D.R.; El-Akruti, K. Bridge deterioration modeling by Markov Chain Monte Carlo (MCMC) simulation method. In Proceedings of the 8th World Congress on Engineering Asset Management & 3rd International Conference on Utility Management Safety, Hong Kong, China, 30 October–1 November 2013. [Google Scholar]
- Masetti, G.; Robol, L. Computing performability measures in Markov chains by means of matrix functions. J. Comput. Appl. Math. 2020, 368, 112534. [Google Scholar] [CrossRef]
- Gongadze Gogvadze, T. Diseño Y Simulación De Un Modelo Predictivo Para La Velocidad Y Dirección Del Viento; Final Degree Project; Escuela Técnica Superior de Ingeniería Industrial de Barcelona: Barcelona, Spain, 2016. [Google Scholar]
- European Commission. ‘Vision Zero’: EU Road Safety Policy Framework 2021–2030; Directorate-General for Mobility and Transport; Next Steps Towards; Publications Office of the European Union: Brussels, Belgium, 2020; Available online: https://data.europa.eu/doi/10.2832/391271 (accessed on 6 May 2024).
Level | Victims (V)/Month | Risk Scale |
---|---|---|
1 | 0 | No risk |
2 | 1 | Low risk |
3 | 1 < V ≤ 3 | Moderate risk |
4 | 3 < V ≤ 5 | High risk |
5 | V > 5 | Extreme risk |
Sector | Transition Matrix | Probability Matrix |
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Sanfélix, A.; Gragera-Peña, F.C.; Jaramillo-Morán, M.A. Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz. Sustainability 2024, 16, 10115. https://doi.org/10.3390/su162210115
Moreno-Sanfélix A, Gragera-Peña FC, Jaramillo-Morán MA. Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz. Sustainability. 2024; 16(22):10115. https://doi.org/10.3390/su162210115
Chicago/Turabian StyleMoreno-Sanfélix, Alejandro, F. Consuelo Gragera-Peña, and Miguel A. Jaramillo-Morán. 2024. "Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz" Sustainability 16, no. 22: 10115. https://doi.org/10.3390/su162210115
APA StyleMoreno-Sanfélix, A., Gragera-Peña, F. C., & Jaramillo-Morán, M. A. (2024). Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz. Sustainability, 16(22), 10115. https://doi.org/10.3390/su162210115