Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina)
Abstract
:1. Introduction
1.1. Yerba Mate Cultivation Phase
1.2. Industrial Processing of Harvested Leaves and Twigs
2. Materials and Methods
2.1. Goal and Scope
2.2. Functional Unit and System Boundary
2.3. Life Cycle Inventory
- -
- Plantation setup: all preliminary tillage of the land (ripping and plowing), the correction of the soil through the application of dolomite and the planting of YM seedlings previously grown in the nursery were considered.
- -
- Cultivation phase: This entry includes all the processes necessary for the maintenance and growth of the plantation, such as pruning, both maintenance and harvesting, grassing of the rows and subsequent shredding. Chemical fertilization, herbicide and pest control through chemicals, application of manure, of which the entire production cycle was also analyzed, and global electricity consumption are also included in this entry; the electricity consumption considered in this study refers to the U.S. grid mix, as the specific mix for Argentina is not available in the database used for this research.
- -
- Industrial phase: At the level of product transformation, the electricity consumption of the grinding and sieving phases and the consumption of wood chips from locally cultivated Eucalyptus, necessary to power the drying ovens, were considered; for the packaging phase, the company’s electricity consumption and the materials needed to prepare the packages and pallets for shipment were considered.
- -
- Transports: All transports that occurred within the system boundaries were taken into consideration; this includes the transportation of personnel, machinery, consumables, tools and YM from the collection site to the processing location, as well as the transportation of the finished product from the city of Misiones to Buenos Aires.
2.4. Sensitivity and Uncertainty Analysis
2.5. Production System Description
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gawron-Gzella, A.; Chanaj-Kaczmarek, J.; Cielecka-Piontek, J. Yerba mate—A long but current history. Nutrients 2021, 13, 3706. [Google Scholar] [CrossRef]
- Heck, C.I.; De Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef] [PubMed]
- Parron, L.M.; Peixoto, R.T.D.G.; da Silva, K.; Brown, G.G. Traditional Yerba Mate Agroforestry Systems in Araucaria Forest in Southern Brazil Improve the Provisioning of Soil Ecosystem Services. Conservation 2024, 4, 115–138. [Google Scholar] [CrossRef]
- Correa, V.G.; Corrêa, R.C.G.; Vieira, T.F.; Koehnlein, E.A.; Bracht, A.; Peralta, R.M. Yerba Mate (Ilex paraguariensis A. St. Hil.): A promising adjuvant in the treatment of diabetes, obesity, and metabolic syndrome. In Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery; Ullah, M.F., Ahmad, A., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 167–182. [Google Scholar] [CrossRef]
- INYM—Instituto Nacionales de la Yerba Mate. Estadistica; INYM: Posada, Argentina, 2024. [Google Scholar]
- INYM—Instituto Nacionales de la Yerba Mate. Estadisticas; INYM: Posada, Argentina, 2023. [Google Scholar]
- SPE—Secretaria de Política Económica. Informe de Cadenas de Valor: Yerba Mate; año3, N° 17; Ministerio de Hacienda, Presidencia de la Nación Argentina: Buenos Aires, Argentina, 2018; ISSN 2525-0221. [Google Scholar]
- INYM—Instituto Nacionales de la Yerba Mate. Estadistica; INYM: Posada, Argentina, 2022. [Google Scholar]
- Rau, V. La Yerba Mate en Misiones (Argentina). Estructura y significado de una producción localizada. In Proceedings of the IV Congreso Internacional de la Red SIAL, Mar del Plata, Argentina, 27–31 October 2008. [Google Scholar]
- Burtnik, O.J. Manual del Pequeño Yerbatero Correntino; INTA: Corrientes, Argentina, 2003; 58p. [Google Scholar]
- Burtnik, O.J. Yerba Mate: Manual de Producción; INTA: Corrientes, Argentina, 2006; 56p. [Google Scholar]
- Capellari, P.L.; Burgos, A.M.; Cabrera, M.G.; Dalurzo, H.C.; Dñavalos, M.; Dirchwolf, P.; Dolce, N.R.; Fediuk, A.; Holowaty, S.A.; Llera, V.; et al. Yerba Mate Reseña Histórica y Estadística. Producción e Industrialización en el Siglo XXI; Consejo Federal de Inversiones: Buenos Aires, Argentina, 2017. [Google Scholar]
- Penteado, J.F., Jr.; Gomes dos Reis Goulart, I.C. Erva 20: Sistema de Produção para Erva-Mate; Embrapa: Brasilia, Brasil, 2019. [Google Scholar]
- Schmalko, M.E.; Kanzig, R.G.; Prat Krikun, S.D. La Yerba Mate: Tecnología de la Producción y Propiedades; Editorial Universitaria de la Universidad Nacional de Misiones: Posadas, Argentina, 2016. [Google Scholar]
- Gloor, M.; Gatti, L.; Brienen, R.; Feldpausch, T.R.; Phillips, O.L.; Miller, J.; Lloyd, J. The carbon balance of South America: A review of the status, decadal trends and main determinants. Biogeosciences 2012, 9, 5407–5430. [Google Scholar] [CrossRef]
- Sá, d.M.J.C.; Lal, R.; Cerri, C.C.; Lorenz, K.; Hungria, M.; de Faccio Carvalho, P.C. Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ. Int. 2017, 98, 102–112. [Google Scholar] [CrossRef]
- FVSA; WWF. State of the Atlantic Forest. 2017. Available online: https://awsassets.panda.org/downloads/documento_fvs_baja.pdf (accessed on 18 September 2024).
- Mohebalian, P.M.; Lopez, L.N.; Tischner, A.B.; Aguilar, F.X. Deforestation in South America’s tri-national Paraná Atlantic Forest: Trends and associational factors. For. Policy Econ. 2022, 137, 102697. [Google Scholar] [CrossRef]
- Putz, F.E.; Zuidema, P.A.; Synnott, T.; Peña-Claros, M.; Pinard, M.A.; Sheil, D.; Vanclay, J.K.; Sist, P.; Gourlet-Fleury, S.; Griscom, B.; et al. Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conserv. Lett. 2012, 5, 296–303. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Lederer, M. REDD+ governance. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 107–113. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zulaica, L.; Vazquez, P.; Celemin, J.P. Ecosystem services and deforestation in the paranaense forest: Comparative analysis in the binational basin of the san antonio river (argentina-brazil) between 2001 and 2011. Ra’e Ga 2015, 34, 167–193. [Google Scholar] [CrossRef]
- Günther, D.; Correa, M.; Lysiak, E. Zonas Agroeconómicas Homogéneas—Misiones. Estudios Socioeconómicos de la Sustentabilidad de los Sistemas Económicos y Recursos Naturales; INTA EEA-Cerro Azul: Cerro Azul, Argentina, 2008; No 5; p. 117. [Google Scholar]
- Lysiak, E. La Huella de Carbono de la Producción Agrícola del Brote de té Certificado en Argentina. 2018. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20193272980 (accessed on 18 September 2024).
- Colcombet, L. La demanda de mano de obra en yerba mate, provincia de Misiones. In Estudio Sobre la Demanda de Trabajo en el Agro Argentino, 1st ed.; Neiman, G., Ed.; CICCUS: Buenos Aires, Argentina, 2010. [Google Scholar]
- Ministerio de Economía. Complejo Yerbatero; Dirección Nacional de Programación Económica Regional, Ministerio de Economía: Buenos Aires, Argentina, 2011. [Google Scholar]
- INYM—Instituto Nacionales de la Yerba Mate. Estadisticas; INYM: Posada, Argentina, 2018. [Google Scholar]
- EN ISO 14044:2006/A1; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2018.
- Guinée, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; Volume 7. [Google Scholar] [CrossRef]
- Shine, K.P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Chang. 2005, 68, 281–302. [Google Scholar] [CrossRef]
- Nemecek, T.; Weiler, K.; Plassmann, K.; Schnetzer, J.; Gaillard, G.; Jefferies, D.; Garcia-Suarez, T.; King, H.; Milà i Canals, L. Estimation of the variability in global warming potential of worldwide crop production using a modular extrapolation approach. J. Clean. Prod. 2012, 31, 106–117. [Google Scholar] [CrossRef]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to the EU 2030 Green Deal: Economic and environmental analysis in horticulture. Agric. Econ./Zemědělská Ekon. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- Hischier, R.; Baitz, M.; Bretz, R.; Frischknecht, R.; Jungbluth, N.; Marheineke, T.; McKeown, P.; Oele, M.; Osset, P.; Renner, I.; et al. Guidelines for consistent reporting of exchanges/to nature within life cycle inventories (LCI). Int. J. Life Cycle Assess. 2001, 6, 192–198. [Google Scholar] [CrossRef]
- Björklund, A.E. Survey of approaches to improve reliability in LCA. Int. J. Life Cycle Assess. 2002, 7, 64–72. [Google Scholar] [CrossRef]
- Ardente, F.; Beccali, G.; Cellura, M.; Brano, V.L. Life cycle assessment of a solar thermal collector: Sensitivity analysis, energy and environmental balances. Renew. Energy 2005, 30, 109–130. [Google Scholar] [CrossRef]
- Cellura, M.; Longo, S.; Mistretta, M. Sensitivity analysis to quantify uncertainty in life cycle assessment: The case study of an Italian tile. Renew. Sustain. Energy Rev. 2011, 15, 4697–4705. [Google Scholar] [CrossRef]
- Ali, S.A.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.D.; Carpenter-Boggs, L. Agricultural carbon footprint is farm specific: Case study of two organic farms. J. Clean. Prod. 2019, 229, 795–805. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agron. Sustain. Dev. 2015, 35, 725–737. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Pilatti, D.; Johann, G.; Palú, F.; da Silva, E.A. Evaluation of a concentrated parameters mathematical model applied to drying of yerba mate leaves with variable mass transfer coefficient. Appl. Therm. Eng. 2016, 105, 483–489. [Google Scholar] [CrossRef]
- Boettcher, R.; Zappe, A.L.; de Oliveira, P.F.; Machado, Ê.L.; de Assis Lawisch-Rodriguez, A.; Rodriguez-Lopez, D.A. Carbon Footprint of agricultural production and processing of tobacco (Nicotiana tabacum) in southern Brazil. Environ. Technol. Innov. 2020, 18, 100625. [Google Scholar] [CrossRef]
- Trinh, L.T.K.; Hu, A.H.; Lan, Y.C.; Chen, Z.H. Comparative life cycle assessment for conventional and organic coffee cultivation in Vietnam. Int. J. Environ. Sci. Technol. 2020, 17, 1307–1324. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.R.; De Medina-Salas, L.; Castillo-González, E.; León-Lira, R. Environmental impact associated with the supply chain and production of grounding and roasting coffee through life cycle analysis. Sustainability 2018, 10, 4598. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, K.; Wang, X.; Wang, D.; Knudsen, M.T. Carbon footprint and primary energy demand of organic tea in China using a life cycle assessment approach. J. Clean. Prod. 2019, 233, 782–792. [Google Scholar] [CrossRef]
Phase | Subphase | Input | Emissions (kgCO2eq.) | |
---|---|---|---|---|
1 kg YM | 1 ha/yr | |||
Cultivation | Farm | Harvest | 0.010 | 42.947 |
Transportation | Personnel | 0.006 | 24.000 | |
Consumables | 0.001 | 2.947 | ||
Machinery | 0.000 | 1.684 | ||
Operations | Pruning/harvesting | 0.005 | 19.368 | |
Electricity | 0.004 | 17.684 | ||
Inter-row mowing | 0.002 | 6.737 | ||
Fertilization | 0.001 | 4.632 | ||
Pest/weed control | 0.001 | 2.526 | ||
Plowing | 0.001 | 3.789 | ||
Pruning and waste disposal | 0.000 | 1.684 | ||
Manure application | 0.006 | 23.579 | ||
Consumables | NPK fertilizers | 0.081 | 339.366 | |
Manure | 0.005 | 20.631 | ||
Dolomite | 0.004 | 17.684 | ||
Herbicide/insecticide | 0.003 | 13.052 | ||
Water | 0.000 | 0.004 | ||
Cover cropping (ryegrass) | −0.004 | −14.737 | ||
Processing | Drying | Drying (wood chips) | 0.866 | 3644.609 |
Electricity | 0.061 | 257.262 | ||
Milling/packaging | Electricity | 0.014 | 59.368 | |
Packaging | 0.056 | 237.051 | ||
Pallet preparation | 0.008 | 31.999 | ||
Transport | Transport to BsAs | 0.109 | 458.524 | |
Total Emissions | 1.239 | 5216.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chifarelli, D.H.; Gruber, L.; Azzini, L.; Nicese, F.P.; Giordani, E. Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina). Sustainability 2024, 16, 10127. https://doi.org/10.3390/su162210127
Chifarelli DH, Gruber L, Azzini L, Nicese FP, Giordani E. Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina). Sustainability. 2024; 16(22):10127. https://doi.org/10.3390/su162210127
Chicago/Turabian StyleChifarelli, Diego Hernán, Lorena Gruber, Lapo Azzini, Francesco Paolo Nicese, and Edgardo Giordani. 2024. "Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina)" Sustainability 16, no. 22: 10127. https://doi.org/10.3390/su162210127
APA StyleChifarelli, D. H., Gruber, L., Azzini, L., Nicese, F. P., & Giordani, E. (2024). Carbon Footprint of Yerba Mate (Ilex paraguariensis) Value Chain in Misiones Province (Argentina). Sustainability, 16(22), 10127. https://doi.org/10.3390/su162210127