Two-Dimensional MoS2-Based Photodetectors
Abstract
:1. Introduction
2. Fundamentals of PDs
Photodetection Mechanism | Brief Description | Schematic Diagram |
---|---|---|
Photoconductive effect | When photon energies utilized for irradiation are larger than the bandgap of a semiconductor, the absorbed photons produce e-h pairs, which can enhance the carrier concentration and, thus, reduce the resistance of the photoconductor; these carriers can only be collected by an externally applied voltage for producing a current. | |
Photogating effect | The photogating effect is a special case of the photoconductivity effect. When electrons or holes generated under light illumination are captured via the trapped states of the semiconductor, the carrier lifetime increases because the de-trapping process takes time to form a high gain. | |
Photovoltaic effect | The photogenerated e-h pairs are separated via the built-in electric field formed at a p-n or Schottky junction. | |
Photothermoelectric effect | The photothermoelectric effect occurs when the spot size of the laser used is smaller than the device size; a temperature gradient is generated at the channel, which can produce a photothermoelectric voltage and drive the current through the device without external bias. |
3. Strategies for Improving Performance of PDs
3.1. Improving Photoresponsivity
3.2. Reducing Response Time
3.3. Expanding Spectral Range
4. Applications
4.1. PDs Based on 2D MoS2 After Simple Functionalization
Architecture | Main Synthesis Method | R (A·W−1) | τ | D (Jones) | Wavelength (nm) | Ref. |
---|---|---|---|---|---|---|
MoS2 | PLD | 50.7 × 10−3 | - | 1.55 × 109 | 445–2717 | [119] |
MoS2 | ME | 7.5 × 10−3 | 50 ms | - | - | [148] |
MoS2 | CVD | 11.1 | 7.7 ms | 5.4 × 1013 | 660 | [150] |
MoS2 | ME | 59 | 42 μs | - | 532 | [151] |
MoS2 | Hydrothermal | 2.33 | - | - | 375–915 | [152] |
MoS2 | ME | 2.67 × 106 | 5 ms | - | Vis-NIR | [38] |
MoS2 | Ultraviolet lithography technology | 104 | - | 2 × 1012 | 532 | [153] |
4.2. PDs Based on 2D MoS2-Based Nanocomposites
4.2.1. 0D NM-Modified 2D MoS2
Architecture | Main Synthesis Method | R (A·W−1) | τ | D (Jones) | Wavelength (nm) | Ref. |
---|---|---|---|---|---|---|
Au/MoS2 | ME | 186.6 | 1.8 ms | 1.41 × 1012 | Vis | [179] |
Au/MoS2 | Magnetron sputtering, thermal annealing | 38.57 | - | 9.89 × 109 | Vis | [170] |
MXene NPs/MoS2 | CVD | 20.67 | - | 5.39 × 1012 | - | [176] |
Au-MoS2-Au | ME | 1757 | 24 ms | 3.44 × 1010 | - | [171] |
SnS2 QDs/MoS2 | CVD, spin-coating | 435 | 0.1 s | 7.19 × 1012 | Vis | [174] |
PbSe CQD/MoS2 | ME and spin-coating | 137.6 | 0.04 s | 7.7 × 1010 | IR | [175] |
4.2.2. One-Dimensional NM-Modified 2D MoS2
Architecture | Main Synthesis Method | R (A·W−1) | τ | D (Jones) | Wavelength (nm) | Ref. |
---|---|---|---|---|---|---|
ZnO/MoS2 | ME, annealing and spin-coating | 24.62, 0.35 | 0.9 s, 140 ms | - | 365 nm, 532 nm | [182] |
CuO/MoS2 | ME, wet-transfer printing and spin-coating | 157.6 | 34.6/51.9 ms (rise/decay) | - | Vis | [184] |
Si NWA/MoS2 | Thermal decomposition method, spin-coating, chemical etching method | 53.5 | 2.9/7.3 μs (rise/decay) | 2.8 × 1013 | UV-NIR | [138] |
V2O5/MoS2 | Hydrothermal method, spin-coating | 6.51 × 10−2 | - | - | UV-NIR | [185] |
GaN/MoS2 | Molecular beam epitaxy, PLD | 14.22 | 8.2 μs | - | 300–1000 nm | [186] |
GaAsSb/MoS2 | CVD | 11.7 | 50 μs | 1.64 × 1011 | 532 nm | [180] |
4.2.3. Two-Dimensional NM-Modified 2D MoS2
Architecture | Main Synthesis Method | R (A·W−1) | τ | D (Jones) | Spectral Response | Ref. |
---|---|---|---|---|---|---|
CsPbBr3/MoS2 | CVD | 4.40 | 0.72 ms | 2.5 × 1010 | - | [191] |
Graphene/MoS2 | CVD | 1.26 | - | - | 1400 nm | [194] |
WS2/MoS2 | CVD | 0.37 | 0.281/0.599 s (rise/decay) | - | Vis | [193] |
P-GeSe/n-MoS2 | ME | 0.105 | 110/750 ms (rise/decay) | 1.03 × 1010 | 380–1064 nm | [192] |
n-MoS2/p-GaN | Spin-coating | 35.6 | 200 ms | - | Vis-UV | [210] |
p-rGO/n-MoS2 | CVD | 2.10 | 18 ms | 5 × 1011 | Vis | [211] |
SiO2/MoS2 | ME | 4.05 × 104 | 0.78/1.13 ms (rise/decay) | 3.32 × 1011 | 447 to 1600 nm | [134] |
Sb2O3/MoS2 | CVD | 5.3 × 104 | <60 ms | 2.0 × 1015 | Vis-NIR | [212] |
PbSe/MoS2 | ME | 23.5 | - | 3.17 × 1010 | Vis-NIR | [213] |
Cs2Pb(SCN)2Br2/MoS2 | CVD | 1.22 × 105 | 166 ms | 1.16 × 1014 | Vis | [214] |
4.2.4. Other NM-Modified 2D MoS2
Architecture | Main Synthesis Method | R (A·W−1) | τ (ms) | D (Jones) | Spectral Response | Ref. |
---|---|---|---|---|---|---|
CZTS/MoS2 | CVD, magnetron sputtering | 79 | 81/79 (rise/decay) | - | 400–1100 nm | [215] |
GaN/MoS2 | DC-sputtering | ~103 | 5 | ~1011 | UV | [216] |
GaN/MoS2 | ME | ~104 | - | - | 280–700 nm | [222] |
GaN/MoSe2/MoS2 | Wet chemical etching | 82 | - | 1.79 × 1014 | 365 nm | [220] |
Ag NPs/Si NWAs/MoS2 | Metal-assisted chemical etching, CVD | 402.4 | 37 | 2.34 × 1012 | UV-vis | [221] |
5. Challenges for Future Research
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Long, M.S.; Wang, P.; Fang, H.H.; Hu, W.D. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Malik, M.; Iqbal, M.A.; Choi, J.R.; Pham, P.V. 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Front. Chem. 2022, 10, 905404. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J.Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, G.; Wu, H.; Ding, L.; Zhang, J.; Sun, M.; Li, Y.; Liu, Z.; Shao, Y.; Fang, Y.; et al. Highly sensitive water pollution monitoring using colloid-processed organic photodetectors. Nat. Water 2024, 2, 577–588. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yan, C.-Y.; Lou, Y.-Q. Dual-functional hybrid ZnSnO/Graphene nanocomposites with applications in high-performance UV photodetectors and ozone gas sensors. Ceram. Int. 2022, 48, 3527–3535. [Google Scholar] [CrossRef]
- Godavarthi, S.; Kushvaha, S.S.; Saha, D.; Altaf, M.; Nallabala, N.K.R.; Yuvaraj, C.; Reddy, M.R.; Kesarla, M.K.; Bakash, K.R.; Krishna, G.G.; et al. Realization of CO2 gas sensors and broadband photodetectors using metal/high-k CeO2/p-Si heterojunction. Ceram. Int. 2024, 50, 31845–31858. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.-G.; Murali, G.; Choi, S.H.; Chinh, N.D.; Kim, D.; Yang, W.; Kim, M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B 2020, 308, 127700. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Curr. Opin. Electrochem. 2019, 17, 56–64. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, X.; Zhao, H.; Zeng, Z.; You, W.; Quan, X. Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 2022, 427, 131572. [Google Scholar] [CrossRef]
- Ho, W.K.H.; Bao, Z.Y.; Gan, X.; Wong, K.Y.; Dai, J.; Lei, D. Probing Conformation Change and Binding Mode of Metal Ion-Carboxyl Coordination Complex through Resonant Surface-Enhanced Raman Spectroscopy and Density Functional Theory. J. Phys. Chem. Lett. 2019, 10, 4692–4698. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Chen, S.; Yu, H.; Quan, X. Three-Dimensional Porous HxTiS2 Nanosheet-Polyaniline Nanocomposite Electrodes for Directly Detecting Trace Cu (II) Ions. Anal. Chem. 2015, 87, 5605–5613. [Google Scholar] [CrossRef] [PubMed]
- Akkanen, S.T.M.; Fernandez, H.A.; Sun, Z. Optical modification of 2D materials: Methods and applications. Adv. Mater. 2022, 34, 2110152. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Teng, F.; He, J.H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 29, 1807672. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Wang, J.; Gan, X.; Zhu, T.; Ao, Y.; Wang, P. Recent Advances of Single-Atom Metal Supported at Two-Dimensional MoS2 for Electrochemical CO2 Reduction and Water Splitting. Atmosphere 2023, 14, 1486. [Google Scholar] [CrossRef]
- Gan, X.; Lei, D.; Wong, K.-Y. Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Mater. Today Energy 2018, 10, 352–367. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Schirhagl, R.; Quan, X. Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochim. Acta 2018, 185, 478. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Wong, K.-Y.; Lei, D.Y.; Zhang, Y.; Quan, X. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta 2018, 182, 38–48. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron. 2017, 89 Pt 1, 56–71. [Google Scholar] [CrossRef]
- Gan, X.; Lee, L.Y.S.; Wong, K.-y.; Lo, T.W.; Ho, K.H.; Lei, D.Y.; Zhao, H. 2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. ACS Appl. Energy Mater. 2018, 1, 4754–4765. [Google Scholar] [CrossRef]
- Shi, W.; Guo, F.; Li, M.; Shi, Y.; Shi, M.; Yan, C. Constructing 3D sub-micrometer CoO octahedrons packed with layered MoS2 shell for boosting photocatalytic overall water splitting activity. Appl. Surf. Sci. 2019, 473, 928–933. [Google Scholar] [CrossRef]
- Gan, X.; Ye, L.; Zhao, H.; Lei, D.; Ao, Y.; Zhao, D.; Wang, P. Microenvironment Control over Electrocatalytic Activity of g-C3N4/2H-MoS2 Superlattice-like Heterostructures for Hydrogen Evolution. Inorg. Chem. 2024, 63, 22074–22087. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gong, C.; Gan, X.; Zhao, H. Highly sensitive colorimetric detection of Cr (VI) in water through nano-confinement effect of CTAB-MoS2/rGO nanocomposites. J. Environ. Chem. Eng. 2023, 11, 109802. [Google Scholar] [CrossRef]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2014, 27, 176–180. [Google Scholar] [CrossRef]
- Gan, X.; Lei, D. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord. Chem. Rev. 2022, 469, 214665. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Lei, D.; Wang, P. Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 2020, 391, 424–434. [Google Scholar] [CrossRef]
- Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small 2017, 13, 1700894. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, R.; Li, J.-P.; Cao, J.-Y.; Qiu, F. Photodetectors based on two-dimensional MoS2 and its assembled heterostructures. Chip 2022, 1, 100017. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Y.; Kong, L.; Luo, C.; Lu, Z.; Tao, Q.; Song, W.; Ma, L.; Li, Z.; Li, W.; et al. Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS2. Small 2022, 18, 2107104. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, Y.; Jang, S.K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J.Y.; Kim, H.; Hwang, E.; Lee, S.; et al. Dye-Sensitized MoS2 Photodetector with Enhanced Spectral Photoresponse. ACS Nano 2014, 8, 8285–8291. [Google Scholar] [CrossRef]
- Kang, D.H.; Pae, S.R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J.W.; Yu, J.S.; Lee, S.; Shin, B.; Park, J.H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Ma, Y.; Ye, Q.; Lu, J.; Wang, W.; Zheng, Z.; Ma, C.; Yao, J.; Yang, G. Promoting 2D Material Photodetectors by Optical Antennas beyond Noble Metals. Adv. Sens. Res. 2023, 2, 2200079. [Google Scholar] [CrossRef]
- Gan, X.; Zhang, J.; Liu, J.; Bai, Y.; Su, X.; Wang, W.; Cao, Z.; Zhao, H.; Ao, Y.; Wang, P. Polyaniline Functionalization of Defective 1T-MoS2 Nanosheets for Improved Electron and Mass Transfer: Implications for Electrochemical Sensors. ACS Appl. Nano Mater. 2023, 6, 11725–11736. [Google Scholar] [CrossRef]
- Gan, X.; Lei, D.; Ye, R.; Zhao, H.; Wong, K.-Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 2021, 14, 2003–2022. [Google Scholar] [CrossRef]
- Wang, L.; Zou, X.; Lin, J.; Jiang, J.; Liu, Y.; Liu, X.; Zhao, X.; Liu, Y.F.; Ho, J.C.; Liao, L. Perovskite/Black Phosphorus/MoS2 Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. ACS Nano 2019, 13, 4804–4813. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, F.; Wang, D.; Chi, S.; Yu, H.; Lin, Z.; Zhang, H.; Chen, Y.; Wang, J.; Wu, Y. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858. [Google Scholar] [CrossRef]
- Hong, C.; Oh, S.; Dat, V.K.; Pak, S.; Cha, S.; Ko, K.-H.; Choi, G.-M.; Low, T.; Oh, S.-H.; Kim, J.-H. Engineering electrode interfaces for telecom-band photodetection in MoS2/Au heterostructures via sub-band light absorption. Light Sci. Appl. 2023, 12, 280. [Google Scholar] [CrossRef]
- Kim, K.S.; Ji, Y.J.; Kim, K.H.; Choi, S.; Kang, D.-H.; Heo, K.; Cho, S.; Yim, S.; Lee, S.; Park, J.-H. Ultrasensitive MoS2 photodetector by serial nano-bridge multi-heterojunction. Nat. Commun. 2019, 10, 4701. [Google Scholar] [CrossRef]
- Vera-Hidalgo, M.; Giovanelli, E.; Navio, C.; Perez, E.M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: A “click” reaction for 2H-MoS2 and WS2. J. Am. Chem. Soc. 2019, 141, 3767–3771. [Google Scholar] [CrossRef]
- Presolski, S.; Pumera, M. Covalent functionalization of MoS2. Mater. Today 2016, 19, 140–145. [Google Scholar] [CrossRef]
- Tuci, G.; Mosconi, D.; Rossin, A.; Luconi, L.; Agnoli, S.; Righetto, M.; Pham-Huu, C.; Ba, H.; Cicchi, S.; Granozzi, G. Surface engineering of chemically exfoliated MoS2 in a “click”: How to generate versatile multifunctional transition metal dichalcogenides-based platforms. Chem. Mater. 2018, 30, 8257–8269. [Google Scholar] [CrossRef]
- Lei, S.; Wang, X.; Li, B.; Kang, J.; He, Y.; George, A.; Ge, L.; Gong, Y.; Dong, P.; Jin, Z. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Gan, X.; Xiao, Z.; Dai, S.; Xiao, H.; Zhang, S.; Dong, S.; Zhao, H.; Wang, P. Single-atom dispersed Cu or Co on 2H-MoS2 monolayer for improving electrocatalytic activity of overall water splitting. Surf. Interfaces 2021, 27, 101538. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular functionalization of two-dimensional MoS2 nanosheets. Chem. A Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Czech, K.J.; Zhao, Y.; Zhai, J.; Hamers, R.J.; Wright, J.C.; Jin, S. Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces 2017, 9, 12734–12742. [Google Scholar] [CrossRef] [PubMed]
- Knirsch, K.C.; Berner, N.C.; Nerl, H.C.; Cucinotta, C.S.; Gholamvand, Z.; McEvoy, N.; Wang, Z.; Abramovic, I.; Vecera, P.; Halik, M. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 2015, 9, 6018–6030. [Google Scholar] [CrossRef]
- Presolski, S.; Wang, L.; Loo, A.H.; Ambrosi, A.; Lazar, P.; Ranc, V.; Otyepka, M.; Zboril, R.; Tomanec, O.e.; Ugolotti, J. Functional nanosheet synthons by covalent modification of transition-metal dichalcogenides. Chem. Mater. 2017, 29, 2066–2073. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.-S.; Cotlet, M. Light-induced interfacial phenomena in atomically thin 2D van der Waals material hybrids and heterojunctions. ACS Energy Lett. 2019, 4, 2323–2335. [Google Scholar] [CrossRef]
- Wang, T.; Luo, Z.; Li, C.; Gong, J. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 2014, 43, 7469–7484. [Google Scholar] [CrossRef]
- Kim, Y.; Woo, W.J.; Kim, D.; Lee, S.; Chung, S.m.; Park, J.; Kim, H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Adv. Mater. 2021, 33, 2005907. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wu, Z.; Han, C.; He, J.; Ni, Z.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhang, H.; Bai, L.; Hao, L.; Ma, T.; Huang, H. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147. [Google Scholar] [CrossRef]
- Lu, X.; Sun, L.; Jiang, P.; Bao, X. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater. 2019, 31, 1902044. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. Infomat 2019, 1, 33–53. [Google Scholar] [CrossRef]
- Yue, X.; Fan, J.; Xiang, Q. Internal electric field on steering charge migration: Modulations, determinations and energy-related applications. Adv. Funct. Mater. 2022, 32, 2110258. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Chen, L.; Ren, J.T.; Yuan, Z.Y. Enabling internal electric fields to enhance energy and environmental catalysis. Adv. Energy Mater. 2023, 13, 2203720. [Google Scholar] [CrossRef]
- Dai, C.; Liu, Y.; Wei, D. Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, Z.; Xiao, M.; Lou, Z.; Wei, Z.; Shen, G. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. Infomat 2020, 2, 291–317. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Hu, W. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670. [Google Scholar] [CrossRef] [PubMed]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Fuentes-Hernandez, C.; Chou, W.-F.; Khan, T.M.; Diniz, L.; Lukens, J.; Larrain, F.A.; Rodriguez-Toro, V.A.; Kippelen, B. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 2020, 370, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Li, S.; Liu, X.; Shi, Z.; Fang, X.; He, J.H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, 2003309. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Selamneni, V.; Sahatiya, P. Mixed dimensional transition metal dichalcogenides (TMDs) vdW heterostructure based photodetectors: A review. Microelectron. Eng. 2023, 269, 111926. [Google Scholar] [CrossRef]
- Li, G.-S.; Zhang, D.-Q.; Yu, J.C. A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. Environ. Sci. Technol. 2009, 43, 7079–7085. [Google Scholar] [CrossRef]
- Kamat, P.V.; Tvrdy, K.; Baker, D.R.; Radich, E.J. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 2010, 110, 6664–6688. [Google Scholar] [CrossRef]
- Li, J.; Cushing, S.K.; Bright, J.; Meng, F.; Senty, T.R.; Zheng, P.; Bristow, A.D.; Wu, N. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 2013, 3, 47–51. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in dye-sensitized solar cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Q.; Xia, Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem. Rev. 2024, 124, 8597–8619. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Sriram, P.; Manikandan, A.; Chuang, F.-C.; Chueh, Y.-L. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications. Small 2020, 16, 1904271. [Google Scholar] [CrossRef] [PubMed]
- Gelle, A.; Jin, T.; de la Garza, L.; Price, G.D.; Besteiro, L.V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2019, 120, 986–1041. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef]
- Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982. [Google Scholar] [CrossRef]
- Ueno, K.; Oshikiri, T.; Sun, Q.; Shi, X.; Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 2017, 118, 2955–2993. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, X.; Zhang, H.; Bai, X.; Ai, R.; Shao, L.; Wang, J. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453. [Google Scholar] [CrossRef]
- Liu, Q.-Y.; Zhong, Y.; Jiang, Z.-Z.; Chen, K.; Ma, S.; Wang, P.-F.; Wang, W.; Zhou, L.; Luoshan, M.-D.; Wang, Q.-Q. A controlled growth of triangular AuCu alloy nanostars and high photocatalytic activities of AuCu@CdS heterostars. J. Mater. Chem. C 2020, 8, 4869–4875. [Google Scholar] [CrossRef]
- Agrawal, A.; Cho, S.H.; Zandi, O.; Ghosh, S.; Johns, R.W.; Milliron, D.J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207. [Google Scholar] [CrossRef]
- Han, Q.; Lu, Z.; Gao, W.; Wu, M.; Wang, Y.; Wang, Z.; Qi, J.; Dong, J. Three-dimensional AuAg alloy NPs/graphene/AuAg alloy NP sandwiched hybrid nanostructure for surface enhanced Raman scattering properties. J. Mater. Chem. C 2020, 8, 12599–12606. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, T.; Gong, J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Basak, M. Diverse bio-sensing and therapeutic applications of plasmon enhanced nanostructures. Mater. Today 2022, 57, 225–261. [Google Scholar] [CrossRef]
- Howes, P.D.; Rana, S.; Stevens, M.M. Plasmonic nanomaterials for biodiagnostics. Chem. Soc. Rev. 2014, 43, 3835–3853. [Google Scholar] [CrossRef]
- Bigall, N.C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L.M.; Eychmüller, A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008, 8, 4588–4592. [Google Scholar] [CrossRef] [PubMed]
- Yockell-Lelièvre, H.; Lussier, F.; Masson, J.F. Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C 2015, 119, 28577–28585. [Google Scholar] [CrossRef]
- Mizuno, A.; Ono, A. Static and dynamic tuning of surface plasmon resonance by controlling interparticle distance in arrays of Au nanoparticles. Appl. Surf. Sci. 2019, 480, 846–850. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, B.Y.; Haque, F.; Ren, G.; Ou, J.Z. Plasmonic metal oxides and their biological applications. Mater. Horiz. 2022, 9, 2288–2324. [Google Scholar] [CrossRef]
- Liu, X.; Swihart, M.T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908–3920. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; Sáenz, J.J. Unusually Strong Optical Interactions between Particles in Quasi-One-Dimensional Geometries. Phys. Rev. Lett. 2004, 93, 243602. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Tao, L.; Chen, Z.; Li, Z.; Wang, J.; Xu, X.; Xu, J.-B. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices. Infomat 2021, 3, 36–60. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Shu, K.; Li, L.; Li, J. Improved performances of CVD-grown MoS2 based phototransistors enabled by encapsulation. Adv. Mater. Interfaces 2021, 8, 2100164. [Google Scholar] [CrossRef]
- Jin, H.; Debroye, E.; Keshavarz, M.; Scheblykin, I.G.; Roeffaers, M.B.; Hofkens, J.; Steele, J.A. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 2020, 7, 397–410. [Google Scholar] [CrossRef]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, P.; Liou, J.J.; Liao, W.; Chai, Y. Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Res. 2022, 16, 3104–3124. [Google Scholar] [CrossRef]
- Jiang, J.; Ling, C.; Xu, T.; Wang, W.; Niu, X.; Zafar, A.; Yan, Z.; Wang, X.; You, Y.; Sun, L. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332. [Google Scholar] [CrossRef]
- Fu, L.; Li, H.; Wang, L.; Yin, R.; Li, B.; Yin, L. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056. [Google Scholar] [CrossRef]
- Liu, C.; Su, H.; Pu, Y.; Guo, M.; Zhai, P.; Liu, Z.; Zhang, Z. Deep and shallow level defect passivation via fluoromethyl phosphonate for high performance air-processed perovskite solar cells. Nano Energy 2023, 118, 108990. [Google Scholar] [CrossRef]
- Li, J.; Bai, J.; Meng, M.; Hu, C.; Yuan, H.; Zhang, Y.; Sun, L. Improved Temporal Response of MoS2 Photodetectors by Mild Oxygen Plasma Treatment. Nanomater. 2022, 12, 1365. [Google Scholar] [CrossRef]
- Sun, C.; Xu, L.; Lai, X.; Li, Z.; He, M. Advanced Strategies of Passivating Perovskite Defects for High-Performance Solar Cells. Energy Environ. Mater. 2021, 4, 293–301. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Lin, J.; Chen, G.; Liu, B.; Huang, J.; Zhang, M.; Liang, G.; Lu, L.; Xu, P. Mitigating deep-level defects through a self-healing process for highly efficient wide-bandgap inorganic CsPbI3-xBrx perovskite photovoltaics. J. Mater. Chem. A 2022, 10, 17237–17245. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; He, Y.; Ge, C.; Zhao, Y.; Gao, L.; Tang, J. Low Noise and Fast Photoresponse of Few-Layered MoS2 Passivated by MA3Bi2Br9. ACS Photonics 2018, 5, 1877–1884. [Google Scholar] [CrossRef]
- Nalwa, H.S. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible devices. RSC Adv. 2020, 10, 30529–30602. [Google Scholar] [CrossRef]
- De Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Pena-Alvarez, M.; del Corro, E.; Morales-Garcia, A.; Kavan, L.; Kalbac, M.; Frank, O. Single layer molybdenum disulfide under direct out-of-plane compression: Low-stress band-gap engineering. Nano Lett. 2015, 15, 3139–3146. [Google Scholar] [CrossRef]
- Liu, T.; Liu, S.; Tu, K.-H.; Schmidt, H.; Chu, L.; Xiang, D.; Martin, J.; Eda, G.; Ross, C.A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223–226. [Google Scholar] [CrossRef]
- Shen, T.; Penumatcha, A.V.; Appenzeller, J. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors. Acs Nano 2016, 10, 4712–4718. [Google Scholar] [CrossRef]
- Dushaq, G.; Paredes, B.; Lu, J.-Y.; Chiesa, M.; Rasras, M. Tuning the photoluminescence of few-layer MoS2 nanosheets by mechanical nanostamping for broadband optoelectronic applications. ACS Appl. Nano Mater. 2020, 3, 10333–10341. [Google Scholar] [CrossRef]
- Sovizi, S.; Angizi, S.; Ahmad Alem, S.A.; Goodarzi, R.; Taji Boyuk, M.R.R.; Ghanbari, H.; Szoszkiewicz, R.; Simchi, A.; Kruse, P. Plasma processing and treatment of 2D transition metal dichalcogenides: Tuning properties and defect engineering. Chem. Rev. 2023, 123, 13869–13951. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin, C.-A.; Li, L.-J.; He, J.-H. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 2013, 7, 3905–3911. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Mao, J.; Ding, K.; Luo, W.; Hu, W.; Zhang, X.; Zhang, X.; Jie, J. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chuu, C.P.; Huang, J.K.; Chen, C.H.; Tsai, M.L.; Chang, Y.H.; Liang, C.T.; Chen, Y.Z.; Chueh, Y.L.; He, J.H.; et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 2014, 4, 3826. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Venkata Subbaiah, Y.; Saji, K.; Tiwari, A. Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater. 2016, 26, 2046–2069. [Google Scholar] [CrossRef]
- Ramasubramaniam, A.; Naveh, D.; Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter 2011, 84, 205325. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, B.; Wang, S.; Wang, D.; Wang, A.; Wang, Z.; Yu, H.; Zhang, H.; Chen, Y.; Zhao, M. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2717 nm. Adv. Mater. 2017, 29, 1605972. [Google Scholar] [CrossRef]
- Chowdhury, T.; Sadler, E.C.; Kempa, T.J. Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem. Rev. 2020, 120, 12563–12591. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Jiang, L.; Yu, H.; Zhao, Y.; Chen, H.; Yuan, X.; Liang, J.; Li, H.; Wu, Z. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991. [Google Scholar] [CrossRef]
- Zafar, Z.; Yi, S.; Li, J.; Li, C.; Zhu, Y.; Zada, A.; Yao, W.; Liu, Z.; Yue, X. Recent development in defects engineered photocatalysts: An overview of the experimental and theoretical strategies. Energy Environ. Mater. 2022, 5, 68–114. [Google Scholar] [CrossRef]
- Zhao, D.; Dong, C.L.; Wang, B.; Chen, C.; Huang, Y.C.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Pető, J.; Dobrik, G.; Kukucska, G.; Vancsó, P.; Koós, A.A.; Koltai, J.; Nemes-Incze, P.; Hwang, C.; Tapasztó, L. Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 2019, 3, 39. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Ren, L.; Li, J.; Kong, L.; Zeng, Y.; Tao, Q.; Wu, R.; Ma, H.; Zhao, B. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151. [Google Scholar] [CrossRef]
- Lloyd, D.; Liu, X.; Christopher, J.W.; Cantley, L.; Wadehra, A.; Kim, B.L.; Goldberg, B.B.; Swan, A.K.; Bunch, J.S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836–5841. [Google Scholar] [CrossRef]
- Dai, Z.; Hu, G.; Ou, Q.; Zhang, L.; Xia, F.; Garcia-Vidal, F.J.; Qiu, C.-W.; Bao, Q. Artificial metaphotonics born naturally in two dimensions. Chem. Rev. 2020, 120, 6197–6246. [Google Scholar] [CrossRef]
- Kim, H.; Uddin, S.Z.; Lien, D.-H.; Yeh, M.; Azar, N.S.; Balendhran, S.; Kim, T.; Gupta, N.; Rho, Y.; Grigoropoulos, C.P. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232–237. [Google Scholar] [CrossRef]
- Johari, P.; Shenoy, V.B. Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano 2012, 6, 5449–5456. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; Van Der Zant, H.S.; Steele, G.A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- He, K.; Poole, C.; Mak, K.F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, Q.; Ding, Y.; Zhang, X.; Wang, W.; Guo, X.; Ni, Z.; Lin, L.; Cai, Z.; Gu, X. High-responsivity and broadband MoS2 photodetector using interfacial engineering. ACS Appl. Mater. Interfaces 2023, 15, 46236–46246. [Google Scholar] [CrossRef]
- Lee, J.B.; Lim, Y.R.; Katiyar, A.K.; Song, W.; Lim, J.; Bae, S.; Kim, T.W.; Lee, S.K.; Ahn, J.H. Direct synthesis of a self-assembled WSe2/MoS2 heterostructure array and its optoelectrical properties. Adv. Mater. 2019, 31, 1904194. [Google Scholar] [CrossRef]
- Ying, H.; Li, X.; Wang, H.; Wang, Y.; Hu, X.; Zhang, J.; Zhang, X.; Shi, Y.; Xu, M.; Zhang, Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors. Adv. Opt. Mater. 2020, 8, 2000430. [Google Scholar] [CrossRef]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670. [Google Scholar] [CrossRef]
- Wu, D.; Lou, Z.; Wang, Y.; Yao, Z.; Xu, T.; Shi, Z.; Xu, J.; Tian, Y.; Li, X.; Tsang, Y.H. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol. Energy Mater. Sol. Cells 2018, 182, 272–280. [Google Scholar] [CrossRef]
- Chen, R.; Pei, Y.; Kang, Y.; Liu, J.; Xia, Y.; Wang, J.; Xu, H.; Jiang, C.; Li, W.; Xiao, X. A high-speed photodetector fabricated with tungsten-doped MoS2 by ion implantation. Adv. Electron. Mater. 2022, 8, 2200281. [Google Scholar] [CrossRef]
- Zhang, Q.; Ying, H.; Li, X.; Xiang, R.; Zheng, Y.; Wang, H.; Su, J.; Xu, M.; Zheng, X.; Maruyama, S. Controlled doping engineering in 2D MoS2 crystals toward performance augmentation of optoelectronic devices. ACS Appl. Mater. Interfaces 2021, 13, 31861–31869. [Google Scholar] [CrossRef]
- Xie, Y.; Liang, F.; Chi, S.; Wang, D.; Zhong, K.; Yu, H.; Zhang, H.; Chen, Y.; Wang, J. Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl. Mater. Interfaces 2020, 12, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Li, H.; Lu, G.; Yin, Z.; He, Q.; Li, H.; Zhang, Q.; Zhang, H. Optical Identification of Single- and Few-Layer MoS2 Sheets. Small 2012, 8, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.K.; Chen, C.H.; Chang, Y.H.; Cheng, Y.J.; Li, L.J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Yu, Y.C.; Wang, J.T.; Chang, C.S.; Li, L.J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325. [Google Scholar] [CrossRef]
- Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74. [Google Scholar] [CrossRef]
- Gant, P.; Huang, P.; de Lara, D.P.; Guo, D.; Frisenda, R.; Castellanos-Gomez, A. A strain tunable single-layer MoS2 photodetector. Mater. Today 2019, 27, 8–13. [Google Scholar] [CrossRef]
- Jian, P.; Chen, M.; Li, D.; Zhao, Y.; Liu, W.; Luo, Y.; Tian, X.; Peng, M.; Zhou, X.; Dai, J.; et al. Conformal Growth of Nano-Patterned Monolayer MoS2 with Periodic Strain via Patterned Substrate Engineering for High-performance Photodetectors. Laser Photonics Rev. 2024, 2401012. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Wang, L.; Chen, X.; Luo, M.; Guo, W.; Wang, S.-W.; Lu, W. MoS2 nanosheet photodetectors with ultrafast response. Appl. Phys. Lett. 2017, 111, 153502. [Google Scholar] [CrossRef]
- Gao, Y.; Du, Z.; Jiang, X.; Zheng, J.; Jiang, J.; Ye, S.; Zou, B.; Yang, T.; Zhao, J. Broadband MoS2 Square Nanotube-Based Photodetectors. ACS Appl. Nano Mater. 2023, 6, 7044–7054. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Li, Y.; You, C.; Chu, F.; Li, S.; An, B.; Ma, Y.; Liao, L.; Zhang, Y. Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector. J. Phys. Chem. Lett. 2020, 11, 4490–4497. [Google Scholar] [CrossRef] [PubMed]
- Majee, B.P.; Mishra, S.; Pandey, R.K.; Prakash, R.; Mishra, A.K. Multifunctional Few-Layer MoS2 for Photodetection and Surface-Enhanced Raman Spectroscopy Application with Ultrasensitive and Repeatable Detectability. J. Phys. Chem. C 2019, 123, 18071–18078. [Google Scholar] [CrossRef]
- Ge, R.; Lin, X.; Dai, H.; Wei, J.; Jiao, T.; Chen, Q.; Oyama, M.; Chen, Q.; Chen, X. Photoelectrochemical Sensors with Near-Infrared-Responsive Reduced Graphene Oxide and MoS2 for Quantification of Escherichia Coli O157:H7. ACS Appl. Mater. Interfaces 2022, 14, 41649–41658. [Google Scholar] [CrossRef]
- Chen, X.; Huang, H.; Wu, Q.; Xue, F.; Zhao, Z.; Liu, J.; Duan, H.; Chen, H. Triggering “signal-on” photoelectrochemical responses by heterojunction transition for selective detection of copper(II) based on Pd/MoS2@g-C3N4 nanocomposites. Anal. Chim. Acta 2023, 1283, 341940. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, G.; Li, J.; Zhang, Y.; Yu, Y.; Wei, Q. Photoelectrochemical determination of Hg(II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe. Microchim. Acta 2017, 184, 1379–1387. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Zhong, C.; Yang, Y.; Liang, X.; Chen, P.; Zhou, L. A simple photoelectrochemical aptasensor based on MoS2/rGO for aflatoxin B1 detection in grain crops. Anal. Methods 2024, 16, 1330–1340. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. Highly sensitive photoelectrochemical aptasensor based on MoS2 quantum dots/TiO2 nanotubes for detection of atrazine. Sens. Actuators B 2021, 334, 129652. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Yang, D.; Qin, J.; Wang, S.; Chen, D.; Wang, Z.; Liu, B. Signal-on sensor using MOF-MoS2 with high-performance photoelectrochemical activity for specific detection of Hg2+. Colloids Surf. A 2024, 703, 135034. [Google Scholar] [CrossRef]
- Zhang, Y.; Shan, J.; Zhang, L.; Zhou, S.; Yang, X.; Liao, J. Insights to the enhanced photoelectrochemical sensing of Cr(VI) by piezoelectric effect based on ZnO/MoS2 heterojunction nanoarrays: Piezoelectric field-induced II-type to Z-scheme system. Sens. Actuators B 2023, 396, 134563. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Y.; Cui, H.; You, F.; Yang, H.; Wang, K.; Wei, J.; Long, L.; Wang, C. Incorporation of ZnIn2S4 semiconductors with S-vacancy engineered MoS2 nanosheets to develop sensitive photoelectrochemical aptasensor for aflatoxin B1 detection. Sens. Actuators B 2024, 403, 135195. [Google Scholar] [CrossRef]
- Wang, P.; Krasavin, A.V.; Liu, L.; Jiang, Y.; Li, Z.; Guo, X.; Tong, L.; Zayats, A.V. Molecular plasmonics with metamaterials. Chem. Rev. 2022, 122, 15031–15081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Guo, J.; Zhang, X.; Liu, X.; Fu, Y.; Zhang, F.; Ma, C.; Shi, Z.; Cao, R. Designing of 0D/2D mixed-dimensional van der waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. Chem. Eng. J. 2021, 420, 129556. [Google Scholar] [CrossRef]
- Padgaonkar, S.; Olding, J.N.; Lauhon, L.J.; Hersam, M.C.; Weiss, E.A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772. [Google Scholar] [CrossRef]
- Wu, H.; Kang, Z.; Zhang, Z.; Zhang, Z.; Si, H.; Liao, Q.; Zhang, S.; Wu, J.; Zhang, X.; Zhang, Y. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der waals heterostructures. Adv. Funct. Mater. 2018, 28, 1802015. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X.; Zhang, Y. An Electrochemical Sensor based on p-aminothiophenol/Au Nanoparticle-Decorated HxTiS2 Nanosheets for Specific Detection of Picomolar Cu (II). Electrochim. Acta 2016, 190, 480–489. [Google Scholar] [CrossRef]
- Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 2015, 11, 2392–2398. [Google Scholar] [CrossRef]
- Fischer, H.; Martin, O.J. Engineering the optical response of plasmonic nanoantennas. Opt. Express 2008, 16, 9144–9154. [Google Scholar] [CrossRef]
- Li, J.; Nie, C.; Sun, F.; Tang, L.; Zhang, Z.; Zhang, J.; Zhao, Y.; Shen, J.; Feng, S.; Shi, H. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces 2020, 12, 8429–8436. [Google Scholar] [CrossRef]
- Li, G.; Song, Y.; Feng, S.; Feng, L.; Liu, Z.; Leng, B.; Fu, Z.; Li, J.; Jiang, X.; Liu, B. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure. ACS Appl. Electron. Mater. 2022, 4, 1626–1632. [Google Scholar] [CrossRef]
- You, H.; Li, S.; Fan, Y.; Guo, X.; Lin, Z.; Ding, R.; Cheng, X.; Zhang, H.; Lo, T.W.B.; Hao, J. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles. Nat. Commun. 2022, 13, 6144. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, W.; Huang, M.; Yang, X.; Zhu, C.; He, C.; Li, L.; Wang, Y.; Xie, Y.; Luo, Z.; et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. OEA 2021, 4, 210017. [Google Scholar] [CrossRef]
- Kolli, C.S.R.; Selamneni, V.; Muñiz Martínez, B.A.; Fest Carreno, A.; Emanuel Sanchez, D.; Terrones, M.; Strupiechonski, E.; De Luna Bugallo, A.; Sahatiya, P. Broadband, ultra-high-responsive monolayer MoS2/SnS2 quantum-dot-based mixed-dimensional photodetector. ACS Appl. Mater. Interfaces 2022, 14, 15415–15425. [Google Scholar] [CrossRef] [PubMed]
- Kundu, B.; Özdemir, O.; Dalmases, M.; Kumar, G.; Konstantatos, G. Hybrid 2D-QD MoS2-PbSe quantum dot broadband photodetectors with high-sensitivity and room-temperature operation at 2.5 µm. Adv. Opt. Mater. 2021, 9, 2101378. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Wang, W.; Li, C.; Wei, S.; Liu, H.; Luo, L.; Du, W.; Shen, K.; Ren, A. Plasmonic MXene nanoparticle-enabled high-performance two-dimensional MoS2 photodetectors. ACS Appl. Mater. Interfaces 2022, 14, 8243–8250. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, W.; Ning, Z. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. Small 2020, 16, 2003397. [Google Scholar] [CrossRef]
- Deka Boruah, B. Zinc oxide ultraviolet photodetectors: Rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 2019, 1, 2059–2085. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, G.; Wu, G.; Zeng, J.; Sun, Y.; Li, C.; Liu, L.; Wang, J.; Lu, H.-L.; Chai, Y.; et al. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector. Appl. Phys. Lett. 2023, 122, 253503. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Meng, Y.; Quan, Q.; Lai, Z.; Li, D.; Xie, P.; Yip, S.; Kang, X.; Bu, X. Mixed-dimensional anti-ambipolar phototransistors based on 1D GaAsSb/2D MoS2 heterojunctions. ACS Nano 2022, 16, 11036–11048. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Li, B.; Wang, X.; Zhou, Z.; Li, J.; Wei, Z. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS Nano 2016, 10, 8938–8946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Zhang, X.; Ma, Z.; Li, J.; Zhang, C.; Shaikenova, A.; Renat, B.; Liu, B. High-performance ultraviolet-visible light-sensitive 2D-MoS2/1D-ZnO heterostructure photodetectors. ChemistrySelect 2020, 5, 3438–3444. [Google Scholar] [CrossRef]
- Raveesh, S.; Yadav, V.K.S.; Paily, R. CuO single-nanowire-based white-light photodetector. IEEE Electron. Device Lett. 2021, 42, 1021–1024. [Google Scholar] [CrossRef]
- Um, D.-S.; Lee, Y.; Lim, S.; Park, S.; Lee, H.; Ko, H. High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 33955–33962. [Google Scholar] [CrossRef]
- Sahatiya, P.; Badhulika, S. Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared. J. Mater. Chem. C 2017, 5, 12728–12736. [Google Scholar] [CrossRef]
- Singh, D.K.; Pant, R.K.; Nanda, K.K.; Krupanidhi, S.B. Pulsed laser deposition for conformal growth of MoS2 on GaN nanorods for highly efficient self-powered photodetection. Mater. Adv. 2022, 3, 6343–6351. [Google Scholar] [CrossRef]
- Yang, G.; Gu, Y.; Yan, P.; Wang, J.; Xue, J.; Zhang, X.; Lu, N.; Chen, G. Chemical vapor deposition growth of vertical MoS2 nanosheets on p-GaN nanorods for photodetector application. ACS Appl. Mater. Interfaces 2019, 11, 8453–8460. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Yim, W.; Park, S.J.; Son, B.H.; Kim, Y.C.; Cao, T.T.; Sim, Y.; Moon, Y.J.; Nguyen, V.C.; Seong, M.J. Phototransistors with Negative or Ambipolar Photoresponse Based on As-Grown Heterostructures of Single-Walled Carbon Nanotube and MoS2. Adv. Funct. Mater. 2018, 28, 1802572. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. A Review: Nanomaterials Applied in Graphene-Based Electrochemical Biosensors. Sens. Mater. 2015, 27, 191–215. [Google Scholar]
- Xiao, Z.; Gan, X.; Zhu, T.; Lei, D.; Zhao, H.; Wang, P. Activating the Basal Planes in 2H-MoTe2 Monolayers by Incorporating Single-Atom Dispersed N or P for Enhanced Electrocatalytic Overall Water Splitting. Adv. Sustain. Syst. 2022, 6, 2100515. [Google Scholar] [CrossRef]
- Song, X.; Liu, X.; Yu, D.; Huo, C.; Ji, J.; Li, X.; Zhang, S.; Zou, Y.; Zhu, G.; Wang, Y. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Wang, X.; Chen, Z.; Weller, D.; Wang, Y.; Shi, L.; Ma, X.; Ding, C.; Li, W.; Guo, S. Polarization-sensitive self-powered type-II GeSe/MoS2 van der Waals heterojunction photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15406–15413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Qian, M.; Xie, H.; Mu, H. Chemical vapor deposited WS2/MoS2 heterostructure photodetector with enhanced photoresponsivity. J. Phys. D Appl. Phys. 2022, 55, 175101. [Google Scholar] [CrossRef]
- Vabbina, P.; Choudhary, N.; Chowdhury, A.-A.; Sinha, R.; Karabiyik, M.; Das, S.; Choi, W.; Pala, N. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction. ACS Appl. Mater. Interfaces 2015, 7, 15206–15213. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Pham, P.V.; Bodepudi, S.C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, P.; Liao, Q.; Kang, Z.; Si, H.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411. [Google Scholar] [CrossRef]
- Susarla, S.; Kutana, A.; Hachtel, J.A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J.C.; Yakobson, B.I.; Tiwary, C.S.; Ajayan, P.M. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 2017, 29, 1702457. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Park, J.-H.; Tao, L.; Kim, K.K.; Lee, Y.H.; Xu, J.-B. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 2019, 57, 214–221. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45–53. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.-m.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Dai, M.; Chen, H.; Wang, F.; Long, M.; Shang, H.; Hu, Y.; Li, W.; Ge, C.; Zhang, J.; Zhai, T.; et al. Ultrafast and Sensitive Self-Powered Photodetector Featuring Self-Limited Depletion Region and Fully Depleted Channel with van der Waals Contacts. ACS Nano 2020, 14, 9098–9106. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A.T.S. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Li, X.; Ma, Z.; Li, L.; Su, J.; Yan, Y.; Song, X.; Xia, C. Photovoltaic Field-Effect Photodiodes Based on Double van der Waals Heterojunctions. ACS Nano 2021, 15, 14295–14304. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J.C.; Jiang, C.; Liu, Q. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539. [Google Scholar] [CrossRef]
- Yang, S.; Wu, M.; Wang, B.; Zhao, L.-D.; Huang, L.; Jiang, C.; Wei, S.-H. Enhanced electrical and optoelectronic characteristics of few-layer type-II SnSe/MoS2 van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2017, 9, 42149–42155. [Google Scholar] [CrossRef]
- Huo, N.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572. [Google Scholar] [CrossRef]
- Yufei, Y.; Sun, W. Two-Dimensional MoS2 on p-Type GaN for UV-Vis Photodetectors. ACS Appl. Nano Mater. 2024, 7, 84–91. [Google Scholar] [CrossRef]
- Kumar, R.; Goel, N.; Raliya, R.; Biswas, P.; Kumar, M. High-performance photodetector based on hybrid of MoS2 and reduced graphene oxide. Nanotechnology 2018, 29, 404001. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Liu, L.; Huang, J.; Nie, A.; Zhai, K.; Wang, B.; Wen, F.; Mu, C.; Zhao, Z.; Gong, Y.; et al. High-Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb2O3/Monolayer MoS2 Crystals Grown via Chemical Vapor Deposition. Adv. Opt. Mater. 2020, 8, 2000168. [Google Scholar] [CrossRef]
- Peng, M.; Tao, Y.; Hong, X.; Liu, Y.; Wen, Z.; Sun, X. One-step synthesized PbSe nanocrystal inks decorated 2D MoS2 heterostructure for high stability photodetectors with photoresponse extending to near-infrared region. J. Mater. Chem. C 2022, 10, 2236–2244. [Google Scholar] [CrossRef]
- Chu, K.-L.; Chen, C.-H.; Shen, S.-W.; Huang, C.-Y.; Chou, Y.-X.; Liao, M.-Y.; Tsai, M.-L.; Wu, C.-I.; Chueh, C.-C. A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chem. Eng. J. 2021, 422, 130112. [Google Scholar] [CrossRef]
- Agrawal, A.V.; Kaur, K.; Kumar, M. Interfacial study of vertically aligned n-type MoS2 flakes heterojunction with p-type Cu-Zn-Sn-S for self-powered, fast and high performance broadband photodetector. Appl. Surf. Sci. 2020, 514, 145901. [Google Scholar] [CrossRef]
- Goel, N.; Kumar, R.; Roul, B.; Kumar, M.; Krupanidhi, S. Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D Appl. Phys. 2018, 51, 374003. [Google Scholar] [CrossRef]
- Algadi, H.; Das, T.; Ren, J.; Li, H. High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen doped graphene quantum dots (NH2 GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv. Compos. Hybrid Mater. 2023, 6, 56. [Google Scholar] [CrossRef]
- Li, Z.; Luo, J.; Hu, S.; Liu, Q.; Yu, W.; Lu, Y.; Liu, X. Strain enhancement for a MoS2-on-GaN photodetector with an Al2O3 stress liner grown by atomic layer deposition. Photonics Res. 2020, 8, 799–805. [Google Scholar] [CrossRef]
- Kallatt, S.; Nair, S.; Majumdar, K. Asymmetrically Encapsulated Vertical ITO/MoS2/Cu2O Photodetector with Ultrahigh Sensitivity. Small 2017, 14, 1702066. [Google Scholar] [CrossRef]
- Maity, S.; Sarkar, K.; Kumar, P. Layered heterostructures based on MoS2/MoSe2 nanosheets deposited on GaN substrates for photodetector applications. ACS Appl. Nano Mater. 2023, 6, 4224–4235. [Google Scholar] [CrossRef]
- Mao, C.-H.; Dubey, A.; Lee, F.-J.; Chen, C.-Y.; Tang, S.-Y.; Ranjan, A.; Lu, M.-Y.; Chueh, Y.-L.; Gwo, S.; Yen, T.-J. An ultrasensitive gateless photodetector based on the 2D bilayer MoS2-1D Si nanowire-0D Ag nanoparticle hybrid structure. ACS Appl. Mater. Interfaces 2021, 13, 4126–4132. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Low, M.X.; Taylor, P.D.; Tawfik, S.A.; Spencer, M.J.; Kuriakose, S.; Arash, A.; Xu, C.; Sriram, S.; Gupta, G. 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector. ACS Appl. Electron. Mater. 2021, 3, 2407–2414. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef] [PubMed]
Sensing Material | Main Synthesis Method | Target | R (A·W−1) | Linear Range | Detection Limit | Wavelength | Ref. |
---|---|---|---|---|---|---|---|
Few-layer MoS2/Si | CVD | Rhodamine 6G | 0.1413 | 10−3–10−9 M | 10−9 M | White light | [154] |
rGO/MoS2 | Hydrothermal | Escherichia Coli O157:H7 | - | 5.0–5.0 × 106 CFU·mL−1 | 2.0 CFU·mL–1 | NIR | [155] |
Pd/MoS2@g-C3N4 | Solvothermal exfoliation | Cu2+ | 9.3 | 1 μM–1 mM | 0.21 μM | - | [156] |
Au@Ag-MoS2/ct-DNA/CdSe | ME | Hg2+ | - | 10 pmol·L−1–100 nmol·L−1 | 5 pmol·L−1 | 430 nm | [157] |
rGO/MoS2 | Hydrothermal | Aflatoxin B1 | - | 0.001–100 ng·mL−1 | 2.18 pg·mL−1 | 465 nm | [158] |
MoS2 QDs/TiO2 NTs | Hydrothermal | Atrazine | - | 0.5–107.8 ng·L−1 | 0.2 ng·L−1 | Vis-UV | [159] |
MOF-MoS2 | Hydrothermal | Hg2+ | - | 0.01–1000 nM | 0.25 pM | - | [160] |
ZnO/MoS2 | Hydrothermal | Cr (VI) | - | 0.008–640 µM | 7 nM | - | [161] |
ZnIn2S4/V-MoS2 | Hydrothermal | Aflatoxin B1 | - | 0.05–50 ng·mL−1 | 17 pg·mL−1 | Vis-UV | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Gan, X.; Schirhagl, R. Two-Dimensional MoS2-Based Photodetectors. Sustainability 2024, 16, 10137. https://doi.org/10.3390/su162210137
Ye L, Gan X, Schirhagl R. Two-Dimensional MoS2-Based Photodetectors. Sustainability. 2024; 16(22):10137. https://doi.org/10.3390/su162210137
Chicago/Turabian StyleYe, Leilei, Xiaorong Gan, and Romana Schirhagl. 2024. "Two-Dimensional MoS2-Based Photodetectors" Sustainability 16, no. 22: 10137. https://doi.org/10.3390/su162210137
APA StyleYe, L., Gan, X., & Schirhagl, R. (2024). Two-Dimensional MoS2-Based Photodetectors. Sustainability, 16(22), 10137. https://doi.org/10.3390/su162210137