Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs
Abstract
:1. Introduction
2. Model Description
2.1. Analysis Model
2.2. Model Assumptions
2.3. Governing Equations
2.4. Validation
3. Results and Discussion
3.1. Analysis of the Obstacle Height
3.2. Analysis of Channel Depth
3.3. Non-Uniformity
3.4. Pressure Drop
4. Conclusions
- (1)
- The installation of the obstacle and the reduction in the channel depth improved the performance of the fuel cell, with a greater degree of modification leading to higher performance improvements. Especially, the performance was remarkably improved in the low-voltage region, where the concentration loss is dominant;
- (2)
- The changes in the channel depth were more effective than the installation of obstacles at enhancing the mass transport and water removal capabilities of the channel;
- (3)
- The installation of obstacles can increase the performance of the fuel cell with lower non-uniformity and lower pressure losses compared to reductions in the channel depth. Therefore, the installation of obstacles has higher stability and durability and a long lifetime compared to the reduction in the channel depth;
- (4)
- However, the O0.1 case had higher non-uniformity compared to the D0.7 case. Therefore, in this case, the obstacle must be at least 0.2 mm in height to have the benefit of low non-uniformity when installed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Hayre, R.P.; Cha, S.-W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Jang, S.; Kang, Y.S.; Kim, D.; Park, S.; Seol, C.; Lee, S.; Kim, S.M.; Yoo, S.J. Multiscale Architectured Membranes, Electrodes, and Transport Layers for Next-Generation Polymer Electrolyte Membrane Fuel Cells. Adv. Mater. 2023, 35, e2204902. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.E.; Cho, G.Y. Effects of Ag Current Collecting Layer Fabricated by Sputter for 3D-Printed Polymer Bipolar Plate of Ultra-Light Polymer Electrolyte Membrane Fuel Cells. Sustainability 2022, 14, 2997. [Google Scholar] [CrossRef]
- Amirfazli, A.; Asghari, S.; Sarraf, M. An Investigation into the Effect of Manifold Geometry on Uniformity of Temperature Distribution in a PEMFC Stack. Energy 2018, 145, 141–151. [Google Scholar] [CrossRef]
- Ma, Y.; Gyoten, H.; Kageyama, M.; Kawase, M. Effects of Partially Narrowed Flow Channel on Performance of Polymer Electrolyte Fuel Cell. ECS Meet. Abstr. 2022, MA2022-02, 1454. [Google Scholar] [CrossRef]
- Li, L.; Lu, B.; Xu, W.; Wang, C.; Wu, J.; Tan, D. Dynamic Behaviors of Multiphase Vortex-Induced Vibration for Hydropower Energy Conversion. Energy 2024, 308, 132897. [Google Scholar] [CrossRef]
- Huang, Y.; Song, J.; Deng, X.; Chen, S.; Zhang, X.; Ma, Z.; Chen, L.; Wu, Y. Numerical Investigation of Baffle Shape Effects on Performance and Mass Transfer of Proton Exchange Membrane Fuel Cell. Energy 2023, 266, 126448. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.Y.; Yang, L. Enhancement Effects of the Obstacle Arrangement and Gradient Height Distribution in Serpentine Flow-Field on the Performances of a PEMFC. Energy Convers. Manag. 2022, 252, 115077. [Google Scholar] [CrossRef]
- Son, J.; Um, S.; Kim, Y.B. Effect of Baffle Pattern Applied to Cathode Parallel Channel on PEMFC Performance. Int. J. Precis. Eng. Manuf. Green Technol. 2024, 11, 145–159. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, K.; Chen, W.; Deng, Q.; Chen, B. Experimental Performance of Proton Exchange Membrane Fuel Cell with Novel Flow Fields and Numerical Investigation of Water-Gas Transport Enhancement. Energy Convers. Manag. 2023, 281, 116865. [Google Scholar] [CrossRef]
- Li, Z.; Xian, L.; Wang, Q.; Wang, J.; Chen, L.; Tao, W.Q. Performance Enhancement of Proton Exchange Membrane Fuel Cell by Utilizing a Blocked Regulated Tri-Serpentine Flow Field: Comprehensive Optimization with Variable Block Heights and Multiple Auxiliary Channels. Appl. Energy 2024, 372, 123768. [Google Scholar] [CrossRef]
- Atyabi, S.A.; Afshari, E. A Numerical Multiphase CFD Simulation for PEMFC with Parallel Sinusoidal Flow Fields. J. Therm. Anal. Calorim. 2019, 135, 1823–1833. [Google Scholar] [CrossRef]
- Houreh, N.B.; Shokouhmand, H.; Afshari, E. Effect of Inserting Obstacles in Flow Field on a Membrane Humidifier Performance for PEMFC Application: A CFD Model. Int. J. Hydrogen Energy 2019, 44, 30420–30439. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Song, H.; Wang, S.; Zhou, Y.; Hu, S.J. Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells. J. Power Sources 2006, 162, 1165–1171. [Google Scholar] [CrossRef]
- Tang, Q.; Li, B.; Yang, D.; Ming, P.; Zhang, C.; Wang, Y. Review of Hydrogen Crossover through the Polymer Electrolyte Membrane. Int. J. Hydrogen Energy 2021, 46, 22040–22061. [Google Scholar] [CrossRef]
- Kim, J.; Luo, G.; Wang, C.Y. Modeling Two-Phase Flow in Three-Dimensional Complex Flow-Fields of Proton Exchange Membrane Fuel Cells. J. Power Sources 2017, 365, 419–429. [Google Scholar] [CrossRef]
- Jiao, K.; Li, X. Water Transport in Polymer Electrolyte Membrane Fuel Cells. Prog. Energy Combust. Sci. 2011, 37, 221–291. [Google Scholar] [CrossRef]
- Li, S.; Yuan, J.; Xie, G.; Sundén, B. Effects of Agglomerate Model Parameters on Transport Characterization and Performance of PEM Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 8451–8463. [Google Scholar] [CrossRef]
- Lampinen, M.J.; Fomino, M. Analysis of Free Energy and Entropy Changes for Half-Cell Reactions. J. Electrochem. Soc. 1993, 140, 3537–3546. [Google Scholar] [CrossRef]
- Zhang, G.; Jiao, K. Three-Dimensional Multi-Phase Simulation of PEMFC at High Current Density Utilizing Eulerian-Eulerian Model and Two-Fluid Model. Energy Convers. Manag. 2018, 176, 409–421. [Google Scholar] [CrossRef]
- Iranzo, A.; Muñoz, M.; Rosa, F.; Pino, J. Numerical Model for the Performance Prediction of a PEM Fuel Cell. Model Results and Experimental Validation. Int. J. Hydrogen Energy 2010, 35, 11533–11550. [Google Scholar] [CrossRef]
- Khandelwal, M.; Mench, M.M. Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials. J. Power Sources 2006, 161, 1106–1115. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, M.; Hu, H.; Hou, Y.; Vesztergom, S.; Gálvez-Vázquez, M.d.J.; Zelocualtecatl Montiel, I.; Kolivoška, V.; Broekmann, P. Cracks as Efficient Tools to Mitigate Flooding in Gas Diffusion Electrodes Used for the Electrochemical Reduction of Carbon Dioxide. Small Methods 2022, 6, e2200369. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, C.; Zhang, Z. Numerical Investigation of the Water Transport and Performance of Proton Exchange Membrane Fuel Cell with an Imitating River Flow Field. Energy Convers. Manag. 2023, 276, 116532. [Google Scholar] [CrossRef]
- Son, J.; Um, S.; Kim, Y.B. Relationship between Number of Turns of Serpentine Structure with Metal Foam Flow Field and Polymer Electrolyte Membrane Fuel Cell Performance. Renew. Energy 2022, 188, 372–383. [Google Scholar] [CrossRef]
- Peron, J.; Mani, A.; Zhao, X.; Edwards, D.; Adachi, M.; Soboleva, T.; Shi, Z.; Xie, Z.; Navessin, T.; Holdcroft, S. Properties of Nafion® NR-211 Membranes for PEMFCs. J. Memb. Sci. 2010, 356, 44–51. [Google Scholar] [CrossRef]
- Li, S.; Sundén, B. Effects of Gas Diffusion Layer Deformation on the Transport Phenomena and Performance of PEM Fuel Cells with Interdigitated Flow Fields. Int. J. Hydrogen Energy 2018, 43, 16279–16292. [Google Scholar] [CrossRef]
- Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer Electrolyte Fuel Cell. J. Electrochem. Soc. 1991, 57, 498–501. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, G.; Xuan, J.; Jiao, K. Three-Dimensional Multi-Phase Model of PEM Fuel Cell Coupled with Improved Agglomerate Sub-Model of Catalyst Layer. Energy Convers. Manag. 2019, 199, 112051. [Google Scholar] [CrossRef]
- Xing, L.; Das, P.K.; Song, X.; Mamlouk, M.; Scott, K. Numerical Analysis of the Optimum Membrane/Ionomer Water Content of PEMFCs: The Interaction of Nafion® Ionomer Content and Cathode Relative Humidity. Appl. Energy 2015, 138, 242–257. [Google Scholar] [CrossRef]
- Yoo, B.; Lim, K.; Salihi, H.; Ju, H. A Parametric Study on the Performance Requirements of Key Fuel Cell Components for the Realization of High-Power Automotive Fuel Cells. Int. J. Heat Mass Transf. 2022, 186, 122477. [Google Scholar] [CrossRef]
- Ye, Q.; Nguyen, T. Van Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Functions. J. Electrochem. Soc. 2007, 154, B1242. [Google Scholar] [CrossRef]
- Xing, L.; Mamlouk, M.; Kumar, R.; Scott, K. Numerical Investigation of the Optimal Nafion® Ionomer Content in Cathode Catalyst Layer: An Agglomerate Two-Phase Flow Modelling. Int. J. Hydrogen Energy 2014, 39, 9087–9104. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, G.; Jiao, K. Characteristics of PEMFC Operating at High Current Density with Low External Humidification. Energy Convers. Manag. 2017, 150, 763–774. [Google Scholar] [CrossRef]
- Mohammadi Taghiabadi, M.; Zhiani, M. Degradation Analysis of Dead-Ended Anode PEM Fuel Cell at the Low and High Thermal and Pressure Conditions. Int. J. Hydrogen Energy 2019, 44, 4985–4995. [Google Scholar] [CrossRef]
- Wahdame, B.; Candusso, D.; François, X.; Harel, F.; Péra, M.C.; Hissel, D.; Kauffmann, J.M. Comparison between Two PEM Fuel Cell Durability Tests Performed at Constant Current and under Solicitations Linked to Transport Mission Profile. Int. J. Hydrogen Energy 2007, 32, 4523–4536. [Google Scholar] [CrossRef]
Geometrical Parameters | Value | Unit |
---|---|---|
Reaction area | 5.06 | cm2 |
Channel width | 1 | mm |
Rib width | 1.1 | mm |
BPP thickness | 1.5 | mm |
GDL thickness | 160 | µm |
MPL thickness | 90 | µm |
CL thickness | 5 | µm |
Membrane thickness | 25.4 | µm |
Gap between obstacles | 2.625 | mm |
Ref | O0.1 | O0.2 | O0.3 | O0.4 | D0.7 | D0.6 | D0.5 | D0.4 | |
---|---|---|---|---|---|---|---|---|---|
d1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 |
d2 | - | 0.1 | 0.2 | 0.3 | 0.4 | - | - | - | - |
Location | Description | Unit |
---|---|---|
Anode CL Cathode CL Other | kg m−3s−1 | |
All | kg m−2s−2 | |
Anode CL | kg m−3s−1 | |
Cathode CL | kg m−3s−1 | |
CL Other | kg m−3s−1 | |
All except membrane | kg m−3s−1 | |
CL | mol m−3 | |
Membrane | W m−3 | |
Anode CL | ||
Cathode CL | ||
MPL, GDL, chn | ||
BPP | ||
Anode CL | A m−3 | |
Cathode CL | ||
Anode CL | A m−3 | |
Cathode CL | ||
Anode CL | mol m−3 | |
Cathode CL |
Parameter | Value | Unit |
---|---|---|
Anode transfer coefficient [18], | 0.5 | - |
Cathode transfer coefficient [18], | 1.0 | - |
Entropy change by hydrogen oxidation [19], | 0.104 | J mol−1 K−1 |
Entropy change by oxygen reduction [19], | −326.36 | J mol−1 K−1 |
Electrical conductivity of BPP, GDL, MPL, CL [20,21], | 92,600, 8000, 5000, 5000 | S m−1 |
Thermal conductivity of BPP, MPL, CL, membrane [20,21,22], | 120, 1, 1, 0.16 | W m−1K−1 |
Through-plane thermal conductivity of GDL [20], | 1.7 | W m−1K−1 |
In-plane thermal conductivity of GDL [20], | 21 | W m−1K−1 |
Porosity of GDL, MPL [23], | 0.8, 0.7 | - |
Permeability of GDL, MPL, CL [20], | 1 × 10−11, 1 × 10−12, 1 × 10−13 | m2 |
Contact angle of GDL, MPL, CL [24], | 110, 130, 95 | deg |
Surface tension [24], | 0.0625 | N m−1 |
Latent heat of water phase change [25], | 2.36 × 106 | J kg−1 |
Membrane density [26], | 1970 | kg m−3 |
Membrane equivalent weight [26], | 1.050 | Kg mol−1 |
Condensation rate [17], | 100 | s−1 |
Evaporation rate [17], | 100 | s−1 |
Inertial coefficient [27], | 2.88 × 10−6 | |
Platinum loading [28], | 0.4 | mg cm−2 |
Platinum density [29], | 21,450 | kg m−3 |
Carbon loading, | 0.27 | mg cm−2 |
Carbon density [28], | 1800 | kg m−3 |
Agglomerate radius, | 0.2 | µm |
Ionomer volume fraction in catalyst layer [27], | 0.4 | - |
Ionomer volume fraction in agglomerate [27], | 0.5 | - |
Description | Equation | Unit | |
---|---|---|---|
Open-circuit voltage [1] | V | ||
Overpotential [25] | V | ||
Anode volumetric current density [30] | A m−3 | ||
Cathode reaction rate [30] | A m−3 | ||
Anode exchange current density [31] | A m−2 | ||
Cathode exchange current density [30] | A m−2 | ||
Proton conductivity [1] | S m−1 | ||
Effective proton conductivity [18] | Membrane | S m−1 | |
Effective electrical conductivity [18] | CL MPL, GDL | S m−1 | |
H2 and H2O diffusivity on anode side [32] | m2 s−1 | ||
O2 diffusivity on cathode side [31] | m2 s−1 | ||
H2O diffusivity on cathode side [31] | m2 s−1 | ||
Effective diffusivity [9] | m2 s−1 | ||
Dissolved O2 diffusivity in ionomer [31] | m2 s−1 | ||
Dissolved O2 diffusivity in liquid [31] | m2 s−1 | ||
Saturation pressure [17] | atm | ||
Water activity [17] | - | ||
Interfacial drag coefficient [31] | - | ||
Relative permeability [33] | m2 | ||
Capillary pressure [34] | Pa | ||
Liquid water diffusivity [31] | m2 s−1 | ||
Equilibrium water content [17] | - | ||
Electro-osmotic drag coefficient [28] | - | ||
Dissolved water diffusivity [17] | m2 s−1 | ||
Adsorption rate [28] | s−1 | ||
Desorption rate [28] | s−1 | ||
Molar volume [28] | m3 mol−1 |
Description | Equation | Unit |
---|---|---|
Cathode volumetric current density | A m−3 | |
Pt mass ratio in Pt/C particles | - | |
Pt/C volume fraction in catalyst layer | - | |
Active surface area | m−1 | |
CL porosity | - | |
Number of agglomerate particles per CL volume | - | |
Ionomer film thickness | m | |
Water film thickness | m | |
Effective agglomerate surface area of ionomer film | m−1 | |
Effective agglomerate surface area of water film | m−1 | |
Thiele modulus | - | |
Effectiveness factor | - |
Parameters | Value | Unit |
---|---|---|
Anode, cathode inlet temperature | 80/80 | °C |
Anode, cathode humidity | 100/100 | % |
Anode, cathode stoichiometry | 2.0/2.0 | - |
Reference current density | 1.0 | A cm−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.Y.; Song, D.K.; Kim, J.S.; Lee, S.H.; Min, G.W.; Son, J.H.; Cho, G.Y. Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs. Sustainability 2024, 16, 10144. https://doi.org/10.3390/su162210144
Jung DY, Song DK, Kim JS, Lee SH, Min GW, Son JH, Cho GY. Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs. Sustainability. 2024; 16(22):10144. https://doi.org/10.3390/su162210144
Chicago/Turabian StyleJung, Do Yeong, Dong Kun Song, Jung Soo Kim, Seung Heon Lee, Gyeong Won Min, Jong Hyun Son, and Gu Young Cho. 2024. "Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs" Sustainability 16, no. 22: 10144. https://doi.org/10.3390/su162210144
APA StyleJung, D. Y., Song, D. K., Kim, J. S., Lee, S. H., Min, G. W., Son, J. H., & Cho, G. Y. (2024). Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs. Sustainability, 16(22), 10144. https://doi.org/10.3390/su162210144