Structural Performance of GFRP-Wrapped Concrete Elements: Sustainable Solution for Coastal Protection
Abstract
:1. Introduction
1.1. The Context
1.2. Proposed Solution—SEAHIVE®
2. Experimental Work
2.1. Test Specimens
2.2. Materials
2.2.1. GFRP Characterization
2.2.2. Concrete Characterization
2.3. Test Set-Up and Instrumentation
2.3.1. Half Unit Under Pure Compression
2.3.2. Unit Under Flexure
2.4. Loading Protocol
3. Results and Discussion
3.1. Compression Test Results
3.1.1. Crack Pattern and Failure Mode
3.1.2. Load–Displacement Curves
3.2. Flexure Test Results
3.2.1. Crack Pattern and Failure Mode
3.2.2. Load–Displacement Curves
3.3. Analysis
3.3.1. Specimens Under Compression
3.3.2. Specimens Under Flexure
4. Conclusions
- This method of casting and reinforcing presents several potential benefits, including the use of relatively inexpensive raw materials, easy automation, high productivity, and reduced need for reinforcing material due to the tensioned application of GFRP wraps on the product surface.
- The experimental results closely matched the predictions from the Finite Element Method (FEM) analysis, validating the accuracy and reliability of the FEM as a design tool for optimizing the reinforcing process in terms of amount as well as pre-tensioning.
- The pretension wrapping method enhances the bond between the longitudinal GFRP strips and the concrete, delaying the onset of catastrophic failure.
- Comparing the maximum tensile stress generated in samples during testing and the tensile modulus of rupture in concrete shows that causing the first crack in an element results in failure.
- Comparing the nominal moment capacity of the section () and the cracking moment () shows that the brittle failure of the elements is expected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration. Ocean and Coastal Resource Management in Your State: States and Territories Working with NOAA on Ocean and Coastal Management; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2011. [Google Scholar]
- Maul, G.A.; Duedall, I.W. Demography of coastal populations. In Encyclopedia of Coastal Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 692–700. [Google Scholar]
- Ghiasian, M.; Carrick, J.; Bisson, C.; Haus, B.K.; Baker, A.C.; Lirman, D.; Rhode-Barbarigos, L. Laboratory Quantification of the Relative Contribution of Staghorn Coral Skeletons to the Total Wave-Energy Dissipation Provided by an Artificial Coral Reef. J. Mar. Sci. Eng. 2021, 9, 1007. [Google Scholar] [CrossRef]
- Houston, J.R. The Economic Value of Beaches; Citeseer: Princeton, NJ, USA, 2002. [Google Scholar]
- Smith, A.B. US Billion-Dollar Weather and Climate Disasters, 1980-Present; NOAA: Washington, DC, USA, 2022. [Google Scholar]
- Ghiasian, S.; Mohammad, R. Structural Morphogenesis of Green/Gray Coastal Infrastructure: Paradigms for Shoreline Protection, n.d. Available online: https://scholarship.miami.edu/esploro/outputs/991031689717602976/filesAndLinks?institution=01UOML_INST&index=null (accessed on 30 September 2024).
- Thomas, R.S.; Hall, B. Seawall Design; Butterworth-Heinemann: Oxford, MI, USA, 2015. [Google Scholar]
- Kraus, N.C. The effects of seawalls on the beach: An extended literature review. J. Coast. Res. 1988, 1–28. [Google Scholar]
- Hosseinzadeh, N.; Ghiasian, M.; Andiroglu, E.; Lamere, J.; Rhode-Barbarigos, L.; Sobczak, J.; Sealey, K.S.; Suraneni, P. Concrete Seawalls: Load Considerations. Ecological Performance, Durability, and Recent Innovations. Eng. Arch, 2021. [Google Scholar] [CrossRef]
- Gittman, R.K.; Scyphers, S.B.; Smith, C.S.; Neylan, I.P.; Grabowski, J.H. Ecological consequences of shoreline hardening: A meta-analysis. Bioscience 2016, 66, 763–773. [Google Scholar] [CrossRef]
- Pace, N.L.; Morgan, N. Living shorelines: Eroding regulatory barriers to coastal resilience. Nat. Resour. Environ. 2016, 31, 44. [Google Scholar]
- Council, N.R.; Earth, L.D.; Studies, O.S.; Board, C.M.S.E.A.S. Coasts, Mitigating Shore Erosion Along Sheltered Coasts; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Currin, C.A. Living shorelines for coastal resilience. In Coastal Wetlands; Elsevier: Berlin/Heidelberg, Germany, 2019; pp. 1023–1053. [Google Scholar]
- Harasti, A.; Gilja, G.; Potočki, K.; Lacko, M. Scour at Bridge Piers Protected by the Riprap Sloping Structure: A Review. Water 2021, 13, 3606. [Google Scholar] [CrossRef]
- Farooq, R.; Ghumman, A.R. Impact Assessment of Pier Shape and Modifications on Scouring around Bridge Pier. Water 2019, 11, 1761. [Google Scholar] [CrossRef]
- Wardhana, K.; Hadipriono, F.C. Analysis of recent bridge failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–150. [Google Scholar] [CrossRef]
- Lagasse, P.F. Countermeasures to Protect Bridge Piers from Scour; Transportation Research Board: Washington, DC, USA, 2007. [Google Scholar]
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources Publication: Littleto, CO, USA, 2000. [Google Scholar]
- Unger, J.; Hager, W.H. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids 2007, 42, 1–19. [Google Scholar] [CrossRef]
- Breusers, H.N.C.; Raudkivi, A.J. Scouring: Hydraulic Structures Design Manual Series; CRC Press: Boca Raton, FL, USA, 2020; Volume 2. [Google Scholar]
- Fischenich, J.C.; Landers, M.N. Computing Scour; US Army Corps of Engineers: Washington, DC, USA, 2000. [Google Scholar]
- Wang, C.; Yu, X.; Liang, F. A review of bridge scour: Mechanism, estimation, monitoring and countermeasures. Nat. Hazards 2017, 87, 1881–1906. [Google Scholar] [CrossRef]
- Zaid, M.; Yazdanfar, Z.; Chowdhury, H.; Alam, F. A review on the methods used to reduce the scouring effect of bridge pier. Energy Procedia 2019, 160, 45–50. [Google Scholar] [CrossRef]
- Mansur, M.M.M.; Tan, K.-H.; Weng, W.W.W. Analysis of concrete beams with circular web openings using strut-and-tie models. Malays. J. Civ. Eng. 2006, 18, 15733. [Google Scholar] [CrossRef]
- Mansur, M.A.; Tan, K.-H. Concrete Beams with Openings: Analysis and Design; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Amiri, S.; Masoudnia, R.; Ameri, M.A. A review of design specifications of opening in the web for simply supported RC beams. J. Civ. Eng. Constr. Technol. 2011, 2, 82–89. [Google Scholar]
- Tan, K.-H.; Mansur, M.A. Design procedure for reinforced concrete beams with large web openings. Struct. J. 1996, 93, 404–411. [Google Scholar]
- Daniel, J.J.; Revathy, J. Experimental investigation on flexural strength of beams with opening. Int. J. Res. Manag. Tech. 2014, 4, 141–143. [Google Scholar]
- Al-Sheikh, S.A. Flexural behavior of RC beams with opening. Concr. Res. Lett. 2014, 5, 812–824. [Google Scholar]
- Aykac, S.; Yilmaz, M. Behaviour and strength of RC beams with regular triangular or circular web openings. J. Fac. Eng. Archit. Gazi Univ. 2011, 26. [Google Scholar]
- Aykac, B.; Kalkan, I.; Aykac, S.; Egriboz, Y.E. Flexural behavior of RC beams with regular square or circular web openings. Eng. Struct. 2013, 56, 2165–2174. [Google Scholar] [CrossRef]
- Yang, C.; Li, L.; Li, J. Service life of reinforced concrete seawalls suffering from chloride attack: Theoretical modelling and analysis. Constr. Build. Mater. 2020, 263, 120172. [Google Scholar] [CrossRef]
- Steputat, C.C.; Nolan, S.; Denty, L.; Kaminski, P.A.; Nanni, A. A seawall constructed with GFRP bars as structural reinforcing. Concr. Int. 2019, 41, 26–30. [Google Scholar]
- Balah, M.; Abdel-Mawla, S. Efficiency of permeable caisson seawall reinforced with fibre reinforced polymers. In Proceedings of the Composite Materials in Concrete Construction: Proceedings of the International Seminar Held at the University of Dundee, Scotland, UK, 5–6 September 2002; Thomas Telford Publishing: London, UK, 2002; pp. 265–275. [Google Scholar]
- Nanni, A.; Bakis, C.E.; Boothby, T.E. Test Methods for FRP-Concrete Systems Subjected to Mechanical Loads: State of the Art Review. J. Reinf. Plast. Compos. 1995, 14, 524–558. [Google Scholar] [CrossRef]
- Nanni, A.; De Luca, A.; Zadeh, H.J. Reinforced Concrete with FRP Bars; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Al-Rahmani, A.; Abed, F.H. Numerical investigation of hybrid FRP reinforced beams. In Proceedings of the 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet, Tunisia, 28–30 April 2013. [Google Scholar]
- FRP Reinforcing Bars in Reinforced Concrete Members. ACI Mater. J. 1993, 90, 34–39. [CrossRef]
- Hassanli, R.; Youssf, O.; Vincent, T.; Mills, J.E.; Manalo, A.; Gravina, R. Experimental study on compressive behavior of FRP-confined expansive rubberized concrete. J. Compos. Constr. 2020, 24, 04020034. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E. Retrofitting square columns using FRP-confined crumb rubber concrete to improve confinement efficiency. Constr. Build. Mater. 2017, 153, 146–156. [Google Scholar] [CrossRef]
- Rossini, M.; Matta, F.; Nolan, S.; Potter, W.; Nanni, A. AASHTO design specifications for GFRP-RC bridges. Proceedings of Italian Concrete Days 2018; Springer: Berlin/Heidelberg, Germany, 2020; pp. 432–444. [Google Scholar]
- ASTM D1475-13; Standard Test Method for Density of Liquid Coatings, Inks, and Related Products 1. ASTM: West Conshohocken, PA, USA, 2013. [CrossRef]
- ASTM D2343-17; Standard Test Method for Tensile Properties of Glass Fiber Strands, Yarns, and Rovings Used in Reinforced Plastics 1. ASTM: West Conshohocken, PA, USA, 2018. [CrossRef]
- A.R. ’Incerti, A. A.R. ’Incerti, A. and ’Savoia, M. ’Tilocca, Tensile test results on GFRP strips, n.d.
- Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules For Buildings. Available online: https://www.saiglobal.com/PDFTemp/Previews/OSH/IS/EN/2005/I.S.EN1992-1-1-2005.pdf (accessed on 29 September 2024).
- ACI 440.1R-15; Guide for the Design and Construction of Structural Concrete Reinforced with Fibre-Reinforced Polymer (FRP) Bars. Available online: www.concrete.org (accessed on 29 September 2024).
Specimen ID | D/t* | Loading Type | Specimen Length (mm) | Characteristics | Objectives |
---|---|---|---|---|---|
CS-1 | 0.25 | Monotonic quasi-static pure compression | 910 | Hollow unit with circular perforations (203-mm dia.) reinforced with externally bonded GFRP | Study the effect of pure compression and bending on the structural performance of SEAHIVE® |
CS-2 | |||||
FS-1 | Monotonic quasi-static flexure | 1830 | |||
FS-2 |
Designation | Specification | Density (g/cm3) | Elastic Modulus (MPa) | ) (MPa) | Ultimate Tension Force (N) | Ultimate Strain | Concrete Strength (MPa) |
---|---|---|---|---|---|---|---|
Fiberglass | 2400 Tex | 2.54 | 81,200 | 1280 | 1250 | 0.034 | N/A |
Concrete | C30/37 | 2.5 | 32,837 | N/A | N/A | 0.003 | 30.0 |
Load or Deflection | CS-1 | CS-2 | FS-1 | FS-2 |
---|---|---|---|---|
First cracking load (kN) | 145 | 172 | 73 | 75 |
Ultimate load (kN) | 360 | 354 | 227 | 315 |
Maximum deflection (mm) | 17 | 15 | 8.3 | 14.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojabi, S.S.; Mirdarsoltany, M.; Subacchi, C.; Nanni, A. Structural Performance of GFRP-Wrapped Concrete Elements: Sustainable Solution for Coastal Protection. Sustainability 2024, 16, 9775. https://doi.org/10.3390/su16229775
Mojabi SS, Mirdarsoltany M, Subacchi C, Nanni A. Structural Performance of GFRP-Wrapped Concrete Elements: Sustainable Solution for Coastal Protection. Sustainability. 2024; 16(22):9775. https://doi.org/10.3390/su16229775
Chicago/Turabian StyleMojabi, Seyed Sina, Mohammadamin Mirdarsoltany, Claudio Subacchi, and Antonio Nanni. 2024. "Structural Performance of GFRP-Wrapped Concrete Elements: Sustainable Solution for Coastal Protection" Sustainability 16, no. 22: 9775. https://doi.org/10.3390/su16229775
APA StyleMojabi, S. S., Mirdarsoltany, M., Subacchi, C., & Nanni, A. (2024). Structural Performance of GFRP-Wrapped Concrete Elements: Sustainable Solution for Coastal Protection. Sustainability, 16(22), 9775. https://doi.org/10.3390/su16229775