Advances in Global Oyster Reef Restoration: Innovations and Sustainable Ecological Approaches
Abstract
:1. Introduction
2. Literature Analysis
3. Factors Affecting Oyster Populations
4. Restoration Efforts for Oyster Reefs
4.1. Genetic Improvement of Oysters
4.1.1. Population Breeding
4.1.2. Selective Breeding
Oyster Species | Disease | Country | Results | Reference |
---|---|---|---|---|
Eastern oyster | Dermo | USA | A significant genetic variation in resistance to among different families of eastern oysters, with family 286 showing the highest resistance and family 242 the lowest. | [55] |
Crassostrea virginica | MSX | USA | Selected strains demonstrated a discernible enhancement in their capacity to survive against disease. The cumulative mortality rate declined significantly from 92% in the unselected strains to 32% in the fifth-generation selected strains. | [56] |
Crassostrea virginica | MSX and Dermo | USA | The F3-DEBY oysters demonstrated a significantly higher survival rate of 79% and showed better growth compared to the F3-JR and F1-LA strains. Additionally, the F4-DEBY strain had lower mortality and disease prevalence when compared to the control strains. | [57] |
Crassostrea virginica | Ostreid herpesvirus 1 (OsHV-1) | France | Selected groups showed significant survival improvements over four generations. For example, G1 (34.5%), G4 (69.0%) vs. controls (12.3%, 7.3%). | [51] |
Crassostrea gigas | ostreid herpesvirus 1 (OsHV-1) | USA | Survival rates improved by 10.3% and 21.2% after each selection cycle. | [58] |
Crassostrea gigas | Vibrio aestuarianus and OsHV-1 | France | Stock B showed improved resistance at the adult stage with a 14% reduction in death rates. | [59] |
Crassostrea gigas | Summer mortality | China | Heritability values ranged from 0.12 to 0.28, indicating potential for genetic improvement. | [60] |
Crassostrea gigas | Summer mortality | France | The high narrow-sense heritability range of 0.47 to 1.08 suggests a significant genetic influence on survival. | [61] |
4.1.3. Hybridization
4.2. Introduction of Oyster Nurseries
4.3. Specific Site Selection
4.3.1. Water Quality and Hydrodynamics
4.3.2. Substrate Suitability
4.3.3. Protection from Predators and Human Disturbances
4.4. Habitat Restoration
4.4.1. Artificial Substrates
4.4.2. Shell Recycling
4.4.3. Artificial Reefs Construction for Restoration
4.4.4. Three-Dimensional Printing Technology in Oyster Reefs Restoration
4.4.5. Use of Acoustics Technology in Oyster Reef Restoration
5. Challenges to Oyster Reef Restoration
- (1)
- Oyster reefs are complex ecosystems that are vulnerable to both environmental stressors and anthropogenic activities. The complex ecosystem dynamics can vary significantly between different habitats and regions. Understanding the complex interactions within the ecosystem can be challenging. In addition, natural variability in environmental conditions can affect the outcomes of restoration efforts, making it difficult to draw broad conclusions from specific studies.
- (2)
- There is a shortage of long-term monitoring and data collection. Oyster reef restoration often requires long-term studies to assess success. Short-term studies may not capture the full ecological impacts of restoration efforts. Furthermore, limited historical data on baseline conditions of oyster reefs can hinder the ability to evaluate changes and set restoration goals.
- (3)
- There are still many technical and methodological limitations in the field of oyster reef restoration. Globally, oyster reef restoration technology is still in its infancy. Determining the best methods for substrate placement, oyster culturing, and reef design often requires extensive experimentation and may not yield quick results. There is also a lack of standardized methods for evaluating restoration success, making it difficult to compare results across different studies and regions.
- (4)
- Understanding the genetic diversity of oyster populations and how oysters can adapt to changing environmental conditions is crucial for successful restoration, but research in these fields can be complex and resource-intensive. The impacts of climate change (e.g., rising sea levels and ocean acidification) can complicate research efforts, as these changes may alter the conditions under which restoration takes place and affect the survival of oysters.
- (5)
- Navigating environmental regulations and permitting processes can be time-consuming and may slow down research and restoration projects. In addition, integrating research findings into policy and management practices can be challenging due to differing priorities among agencies and stakeholders.
6. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- La Peyre, M.; Furlong, J.; Brown, L.A.; Piazza, B.P.; Brown, K. Oyster Reef Restoration in the Northern Gulf of Mexico: Extent, Methods and Outcomes. Ocean Coast. Manag. 2014, 89, 20–28. [Google Scholar] [CrossRef]
- Coen, L.D.; Brumbaugh, R.D.; Bushek, D.; Grizzle, R.; Luckenbach, M.W.; Posey, M.H.; Powers, S.P.; Tolley, S.G. Ecosystem Services Related to Oyster Restoration. Mar. Ecol. Prog. Ser. 2007, 341, 303–307. [Google Scholar] [CrossRef]
- Danovaro, R.; Aronson, J.; Cimino, R.; Gambi, C.; Snelgrove, P.V.R.; Van Dover, C. Marine Ecosystem Restoration in a Changing Ocean. Restor. Ecol. 2021, 29, e13432. [Google Scholar] [CrossRef]
- Salinas, V.; Cordone, G.; Marina, T.I.; Momo, F.R. Estimating the Impact of Biodiversity Loss in a Marine Antarctic Food Web. Diversity 2024, 16, 63. [Google Scholar] [CrossRef]
- Hooke, R.L.; Martín Duque, J.F.; Pedraza Gilsanz, J. Land Transformation by Humans: A Review. GSA Today 2012, 22, 4–10. [Google Scholar] [CrossRef]
- Morris, R.L.; Bilkovic, D.M.; Boswell, M.K.; Bushek, D.; Cebrian, J.; Goff, J.; Kibler, K.M.; La Peyre, M.K.; McClenachan, G.; Moody, J. The Application of Oyster Reefs in Shoreline Protection: Are We Over-engineering for an Ecosystem Engineer? J. Appl. Ecol. 2019, 56, 1703–1711. [Google Scholar] [CrossRef]
- Bugnot, A.B.; Dafforn, K.A.; Coleman, R.A.; Ramsdale, M.; Gibbeson, J.T.; Erickson, K.; Vila-Concejo, A.; Figueira, W.F.; Gribben, P.E. Linking Habitat Interactions and Biodiversity within Seascapes. Ecosphere 2022, 13, e4021. [Google Scholar] [CrossRef]
- Xu, W.; Tao, A.; Wang, R.; Qin, S.; Fan, J.; Xing, J.; Wang, F.; Wang, G.; Zheng, J. Review of Wave Attenuation by Artificial Oyster Reefs Based on Experimental Analysis. Ocean Eng. 2024, 298, 117309. [Google Scholar] [CrossRef]
- Smith, R.S.; Cheng, S.L.; Castorani, M.C.N. Meta-analysis of Ecosystem Services Associated with Oyster Restoration. Conserv. Biol. 2023, 37, e13966. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.A.X.; Halpern, B.S.; Jorge, M.A.; Lombana, A.L.; Lourie, S.A. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. Bioscience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Beck, M.W.; Brumbaugh, R.D.; Airoldi, L.; Carranza, A.; Coen, L.D.; Crawford, C.; Defeo, O.; Edgar, G.J.; Hancock, B.; Kay, M.C. Oyster Reefs at Risk and Recommendations for Conservation, Restoration, and Management. Bioscience 2011, 61, 107–116. [Google Scholar] [CrossRef]
- Reeves, S.E.; Renzi, J.J.; Fobert, E.K.; Silliman, B.R.; Hancock, B.; Gillies, C.L. Facilitating Better Outcomes: How Positive Species Interactions Can Improve Oyster Reef Restoration. Front. Mar. Sci. 2020, 7, 656. [Google Scholar] [CrossRef]
- Rodriguez, A.B.; Fodrie, F.J.; Ridge, J.T.; Lindquist, N.L.; Theuerkauf, E.J.; Coleman, S.E.; Grabowski, J.H.; Brodeur, M.C.; Gittman, R.K.; Keller, D.A. Oyster Reefs Can Outpace Sea-Level Rise. Nat. Clim. Chang. 2014, 4, 493–497. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Qin, X.; Zeng, Z.; Lin, Z.; Li, Q.Z. The Status, Problems, and Countermeasure of Oyster Industry in China Based on the Empirical Analyses of Shandong Fujian and Guangdong Guangxi Provinces. Mar. Sci 2017, 41, 125–129. [Google Scholar]
- Beck, M.; Brumbaugh, R.; Airoldi, L.; Carranza, A.; Coen, L.; Crawford, C.; Defeo, O.; Edgar, G.; Hancock, B.; Kay, M.; et al. Shellfish Reefs at Risk: A Global Analysis of Problems and Solutions; The Nature Conservancy: Arlington VA, USA, 2009. [Google Scholar]
- Howie, A.H.; Bishop, M.J. Contemporary Oyster Reef Restoration: Responding to a Changing World. Front. Ecol. Evol. 2021, 9, 689915. [Google Scholar] [CrossRef]
- Fitzsimons, J.A.; Branigan, S.; Gillies, C.L.; Brumbaugh, R.D.; Cheng, J.; DeAngelis, B.M.; Geselbracht, L.; Hancock, B.; Jeffs, A.; McDonald, T. Restoring Shellfish Reefs: Global Guidelines for Practitioners and Scientists. Conserv. Sci. Pract. 2020, 2, e198. [Google Scholar] [CrossRef]
- Load, C. For Nitrogen, Phosphorus and Sediment; The U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2010; Volume 93.
- Richardson, M.A.; Zhang, Y.; Connolly, R.M.; Gillies, C.L.; McDougall, C. Some like It Hot: The Ecology, Ecosystem Benefits and Restoration Potential of Oyster Reefs in Tropical Waters. Front. Mar. Sci. 2022, 9, 873768. [Google Scholar] [CrossRef]
- Lannig, G.; Flores, J.F.; Sokolova, I.M. Temperature-Dependent Stress Response in Oysters, Crassostrea Virginica: Pollution Reduces Temperature Tolerance in Oysters. Aquat. Toxicol. 2006, 79, 278–287. [Google Scholar] [CrossRef]
- Zhao, H.; Yuan, M.; Strokal, M.; Wu, H.C.; Liu, X.; Murk, A.; Kroeze, C.; Osinga, R. Impacts of Nitrogen Pollution on Corals in the Context of Global Climate Change and Potential Strategies to Conserve Coral Reefs. Sci. Total Environ. 2021, 774, 145017. [Google Scholar] [CrossRef]
- Millington, R.; Cox, P.M.; Moore, J.R.; Yvon-Durocher, G. Modelling Ecosystem Adaptation and Dangerous Rates of Global Warming. Emerg. Top. Life Sci. 2019, 3, 221–231. [Google Scholar]
- Rodríguez-Troncoso, A.P.; Carpizo-Ituarte, E.; Pettay, D.T.; Warner, M.E.; Cupul-Magaña, A.L. The Effects of an Abnormal Decrease in Temperature on the Eastern Pacific Reef-Building Coral Pocillopora Verrucosa. Mar. Biol. 2014, 161, 131–139. [Google Scholar] [CrossRef]
- Dutertre, M.; Beninger, P.G.; Barillé, L.; Papin, M.; Haure, J. Rising Water Temperatures, Reproduction and Recruitment of an Invasive Oyster, Crassostrea Gigas, on the French Atlantic Coast. Mar. Environ. Res. 2010, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McAfee, D.; O’Connor, W.A.; Bishop, M.J. Fast-growing Oysters Show Reduced Capacity to Provide a Thermal Refuge to Intertidal Biodiversity at High Temperatures. J. Anim. Ecol. 2017, 86, 1352–1362. [Google Scholar] [CrossRef]
- McAfee, D.; Cole, V.J.; Bishop, M.J. Latitudinal Gradients in Ecosystem Engineering by Oysters Vary across Habitats. Ecology 2016, 97, 929–939. [Google Scholar] [CrossRef]
- Malham, S.K.; Cotter, E.; O’Keeffe, S.; Lynch, S.; Culloty, S.C.; King, J.W.; Latchford, J.W.; Beaumont, A.R. Summer Mortality of the Pacific Oyster, Crassostrea Gigas, in the Irish Sea: The Influence of Temperature and Nutrients on Health and Survival. Aquaculture 2009, 287, 128–138. [Google Scholar] [CrossRef]
- Lowe, M.R.; Sehlinger, T.; Soniat, T.M.; La Peyre, M.K. Interactive Effects of Water Temperature and Salinity on Growth and Mortality of Eastern Oysters, Crassostrea Virginica: A Meta-Analysis Using 40 Years of Monitoring Data. J. Shellfish Res. 2017, 36, 683–697. [Google Scholar] [CrossRef]
- Ivanina, A.V.; Taylor, C.; Sokolova, I.M. Effects of Elevated Temperature and Cadmium Exposure on Stress Protein Response in Eastern Oysters Crassostrea Virginica (Gmelin). Aquat. Toxicol. 2009, 91, 245–254. [Google Scholar] [CrossRef]
- Marshall, D.A.; Lebreton, B.; Palmer, T.; De Santiago, K.; Pollack, J.B. Salinity Disturbance Affects Faunal Community Composition and Organic Matter on a Restored Crassostrea Virginica Oyster Reef. Estuar. Coast. Shelf Sci. 2019, 226, 106267. [Google Scholar] [CrossRef]
- Ricketts, O.M.A.; Isaac, S.R.; Lara, R.A.; Mendela, T.S.; Enzor, L.A.; Silver, A.C. Elevated Temperature and Decreased Salinity Impacts on Exogenous Vibrio Parahaemolyticus Infection of Eastern Oyster, Crassostrea Virginica. Front. Microbiol. 2024, 15, 1388511. [Google Scholar] [CrossRef]
- Rybovich, M.; La Peyre, M.K.; Hall, S.G.; La Peyre, J.F. Increased Temperatures Combined with Lowered Salinities Differentially Impact Oyster Size Class Growth and Mortality. J. Shellfish Res. 2016, 35, 101–113. [Google Scholar] [CrossRef]
- Li, S.-X.; Chen, L.-H.; Zheng, F.-Y.; Huang, X.-G. Influence of Eutrophication on Metal Bioaccumulation and Oral Bioavailability in Oysters, Crassostrea Angulata. J. Agric. Food Chem. 2014, 62, 7050–7056. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M.; Alexander, J.; Meritt, D.W.; North, E.W.; Stoecker, D.K. Harmful Algae Pose Additional Challenges for Oyster Restoration: Impacts of the Harmful Algae Karlodinium Veneficum and Prorocentrum Minimum on Early Life Stages of the Oysters Crassostrea Virginica and Crassostrea Ariakensis. J. Shellfish Res. 2007, 26, 919–925. [Google Scholar] [CrossRef]
- Tan, K.; Sun, Y.; Zhang, H.; Zheng, H. Effects of Harmful Algal Blooms on the Physiological, Immunity and Resistance to Environmental Stress of Bivalves: Special Focus on Paralytic Shellfish Poisoning and Diarrhetic Shellfish Poisoning. Aquaculture 2023, 563, 739000. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, K.; Hu, Z.; Hu, Q.; Tang, Y.Z. Toxic and Non-Toxic Dinoflagellates Host Distinct Bacterial Communities in Their Phycospheres. Commun. Earth Environ. 2023, 4, 263. [Google Scholar] [CrossRef]
- Boyer, K.; Zabin, C.; De La Cruz, S.; Grosholz, E.; Orr, M.; Lowe, J.; Latta, M.; Miller, J.; Kiriakopolos, S.; Pinnell, C. San Francisco Bay Living Shorelines: Restoring Eelgrass and Olympia Oysters for Habitat and Shore Protection. In Living Shorelines; CRC Press: Boca Raton, FL, USA, 2017; pp. 333–362. [Google Scholar]
- Baggett, L.P.; Powers, S.P.; Brumbaugh, R.D.; Coen, L.D.; DeAngelis, B.M.; Greene, J.K.; Hancock, B.T.; Morlock, S.M.; Allen, B.L.; Breitburg, D.L. Guidelines for Evaluating Performance of Oyster Habitat Restoration. Restor. Ecol. 2015, 23, 737–745. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Burke, R.P. Successful Recruitment, Survival and Long-Term Persistence of Eastern Oyster and Hooked Mussel on a Subtidal, Artificial Restoration Reef System in Chesapeake Bay. PLoS ONE 2018, 13, e0204329. [Google Scholar] [CrossRef]
- Havens, K.; Vitt, P.; Still, S.; Kramer, A.T.; Fant, J.B.; Schatz, K. Seed Sourcing for Restoration in an Era of Climate Change. Nat. Areas J. 2015, 35, 122–133. [Google Scholar] [CrossRef]
- Munroe, D.M.; Klinck, J.; Hofmann, E.E.; Powell, E.N. The Role of Larval Dispersal in Metapopulation Gene Flow: Local Population Dynamics Matter. J. Mar. Res. 2012, 70, 441–467. [Google Scholar] [CrossRef]
- Powell, E.N.; Hofmann, E.E.; Klinck, J.M. Oysters, Sustainability, Management Models, and the World of Reference Points. J. Shellfish Res. 2018, 37, 833–849. [Google Scholar] [CrossRef]
- Borsum, S.; Parsaeimehr, A.; Fuoco, M.; Liu, M.; Guo, X.; Gaffney, P.; Ozbay, G. Population Genetics of Delaware Inland Bays Oysters: A Case Study on Hatchery-Stocked Oyster Gardening. J. Shellfish Res. 2024, 43, 229–237. [Google Scholar] [CrossRef]
- Bucharova, A.; Bossdorf, O.; Hölzel, N.; Kollmann, J.; Prasse, R.; Durka, W. Mix and Match: Regional Admixture Provenancing Strikes a Balance among Different Seed-Sourcing Strategies for Ecological Restoration. Conserv. Genet. 2019, 20, 7–17. [Google Scholar] [CrossRef]
- Prober, S.M.; Byrne, M.; McLean, E.H.; Steane, D.A.; Potts, B.M.; Vaillancourt, R.E.; Stock, W.D. Climate-Adjusted Provenancing: A Strategy for Climate-Resilient Ecological Restoration. Front. Ecol. Evol. 2015, 3, 65. [Google Scholar] [CrossRef]
- Breed, M.F.; Stead, M.G.; Ottewell, K.M.; Gardner, M.G.; Lowe, A.J. Which Provenance and Where? Seed Sourcing Strategies for Revegetation in a Changing Environment. Conserv. Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Ramalho, C.E.; Byrne, M.; Yates, C.J. A Climate-Oriented Approach to Support Decision-Making for Seed Provenance in Ecological Restoration. Front. Ecol. Evol. 2017, 5, 275998. [Google Scholar] [CrossRef]
- Bersoza Hernández, A.; Brumbaugh, R.D.; Frederick, P.; Grizzle, R.; Luckenbach, M.W.; Peterson, C.H.; Angelini, C. Restoring the Eastern Oyster: How Much Progress Has Been Made in 53 Years? Front. Ecol. Environ. 2018, 16, 463–471. [Google Scholar] [CrossRef]
- Wan, W.; Qin, Y.; Shi, G.; Li, S.; Liao, Q.; Ma, H.; Li, J.; Suo, A.; Ding, D.; Yu, Z. Genetic Improvement of Aquaculture Performance for Tetraploid Pacific Oysters, Crassostrea Gigas: A Case Study of Four Consecutive Generations of Selective Breeding. Aquaculture 2023, 563, 738910. [Google Scholar] [CrossRef]
- Ewart, J.W.; Ford, S.E. History and Impact of MSX and Dermo Diseases on Oyster Stocks in the Northeast Region; Northeastern Regional Aquaculture Center, University of Massachusetts: Dartmouth, MA, USA, 1993. [Google Scholar]
- Degremont, L.; Nourry, M.; Maurouard, E. Mass Selection for Survival and Resistance to OsHV-1 Infection in Crassostrea Gigas Spat in Field Conditions: Response to Selection after Four Generations. Aquaculture 2015, 446, 111–121. [Google Scholar] [CrossRef]
- Salewski, E.A. Architectural Complexity of Oyster Reefs: Evaluating the Relationship between Interstitial Spaces and Macroinvertebrates. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2021. [Google Scholar]
- Tan, K.; Zhang, H.; Zheng, H. Selective Breeding of Edible Bivalves and Its Implication of Global Climate Change. Rev. Aquac. 2020, 12, 2559–2572. [Google Scholar] [CrossRef]
- Joyce, A.; Webb, S.; Mussely, H.; Heasman, K.; Elliot, A.; King, N. Toward Selective Breeding of a Hermaphroditic Oyster Ostrea Chilensis: Roles of Nutrition and Temperature in Improving Fecundity and Synchrony of Gamete Release. J. Shellfish Res. 2015, 34, 831–840. [Google Scholar] [CrossRef]
- Proestou, D.A.; Corbett, R.J.; Ben-Horin, T.; Small, J.M.; Allen, S.K., Jr. Defining Dermo Resistance Phenotypes in an Eastern Oyster Breeding Population. Aquac. Res. 2019, 50, 2142–2154. [Google Scholar] [CrossRef]
- Ford, S.E.; Haskin, H.H. Infection and Mortality Patterns in Strains of Oysters Crassostrea Virginica Selected for Resistance to the Parasite Haplosporidium Nelsoni (MSX). J. Parasitol. 1987, 73, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Calvo, L.M.R.; Calvo, G.W.; Burreson, E.M. Dual Disease Resistance in a Selectively Bred Eastern Oyster, Crassostrea Virginica, Strain Tested in Chesapeake Bay. Aquaculture 2003, 220, 69–87. [Google Scholar] [CrossRef]
- Divilov, K.; Schoolfield, B.; Cortez, D.M.; Wang, X.; Fleener, G.B.; Jin, L.; Dumbauld, B.R.; Langdon, C. Genetic Improvement of Survival in Pacific Oysters to the Tomales Bay Strain of OsHV-1 over Two Cycles of Selection. Aquaculture 2021, 543, 737020. [Google Scholar] [CrossRef]
- Dégremont, L.; Azéma, P.; Maurouard, E.; Travers, M.-A. Enhancing Resistance to Vibrio Aestuarianus in Crassostrea Gigas by Selection. Aquaculture 2020, 526, 735429. [Google Scholar] [CrossRef]
- Chi, Y.; Jiang, G.; Liang, Y.; Xu, C.; Li, Q. Selective Breeding for Summer Survival in Pacific Oyster (Crassostrea Gigas): Genetic Parameters and Response to Selection. Aquaculture 2022, 556, 738271. [Google Scholar] [CrossRef]
- Dégremont, L.; Ernande, B.; Bédier, E.; Boudry, P. Summer Mortality of Hatchery-Produced Pacific Oyster Spat (Crassostrea Gigas). I. Estimation of Genetic Parameters for Survival and Growth. Aquaculture 2007, 262, 41–53. [Google Scholar] [CrossRef]
- Bouchon-Brandely, M. On the Sexuality of the Common Oyster (Ostrea Edulis) and That of the Portuguese Oyster (O. Angulata). Artificial Fecundation of the Portuguese Oyster. J. Nat. Hist. 1882, 10, 328–330. [Google Scholar] [CrossRef]
- Li, S.; Qin, Y.; Shi, G.; Wan, W.; Liao, Q.; Ma, H.; Li, J.; Yu, Z.; Pan, Y.; Zhang, Y. Feasibility of Interspecific Hybridization between Iwagaki Oyster, Crassostrea Nippona and Portuguese Oyster, Crassostrea Angulata. Aquaculture 2023, 563, 739002. [Google Scholar] [CrossRef]
- Jiang, K.; Chen, C.; Jiang, G.; Chi, Y.; Xu, C.; Kong, L.; Yu, H.; Liu, S.; Li, Q. Genetic Improvement of Oysters: Current Status, Challenges, and Prospects. Rev. Aquac. 2024, 16, 796–817. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Li, Q. Whole-Genome Resequencing Identifies Candidate Genes and SNPs in Genomic Regions Associated with Shell Color Selection in the Pacific Oyster, Crassostrea Gigas. Aquaculture 2024, 586, 740768. [Google Scholar] [CrossRef]
- Tanyaros, S. The Effect of Substrate Conditioning on Larval Settlement and Spat Growth of the Cupped Oyster, Crassostrea Belcheri (Sowerby), in a Hatchery. Agric. Nat. Resour. 2011, 45, 629–635. [Google Scholar]
- Smith, R.S.; Pruett, J.L. Oyster Restoration to Recover Ecosystem Services. Ann. Rev. Mar. Sci. 2024, 17. Online ahead of print. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Saunders, M.I.; Abdullah, S.; Mills, M.; Beher, J.; Possingham, H.P.; Mumby, P.J.; Lovelock, C.E. The Cost and Feasibility of Marine Coastal Restoration. Ecol. Appl. 2016, 26, 1055–1074. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.; Bonačić, K.; Cameron, T.; Collins, K.; Da Costa, F.; Debney, A.; Van Duren, L.; Elzinga, J.; Fariñas-Franco, J.M.; Gamble, C. Site Selection for European Native Oyster (Ostrea Edulis) Habitat Restoration Projects: An Expert-derived Consensus. Aquat. Conserv. Mar. Freshw. Ecosyst. 2023, 33, 721–736. [Google Scholar] [CrossRef]
- Casas, S.M.; Lavaud, R.; La Peyre, M.K.; Comeau, L.A.; Filgueira, R.; La Peyre, J.F. Quantifying Salinity and Season Effects on Eastern Oyster Clearance and Oxygen Consumption Rates. Mar. Biol. 2018, 165, 1–13. [Google Scholar] [CrossRef]
- La Peyre, M.K.; Geaghan, J.; Decossas, G.; Peyre, J.F. La Analysis of Environmental Factors Influencing Salinity Patterns, Oyster Growth, and Mortality in Lower Breton Sound Estuary, Louisiana, Using 20 Years of Data. J. Coast. Res. 2016, 32, 519–530. [Google Scholar] [CrossRef]
- Coxe, N.; Casas, S.M.; Marshall, D.A.; La Peyre, M.K.; Kelly, M.W.; La Peyre, J.F. Differential Hypoxia Tolerance of Eastern Oysters from the Northern Gulf of Mexico at Elevated Temperature. J. Exp. Mar. Bio. Ecol. 2023, 559, 151840. [Google Scholar] [CrossRef]
- Powers, S.P.; Grabowski, J.H. Changes in Water Flow Alter Community Dynamics in Oyster Reefs. Ecosphere 2023, 14, e4405. [Google Scholar] [CrossRef]
- Galimany, E.; Lunt, J.; Freeman, C.J.; Reed, S.; Segura-García, I.; Paul, V.J. Feeding Behavior of Eastern Oysters Crassostrea Virginica and Hard Clams Mercenaria Mercenaria in Shallow Estuaries. Mar. Ecol. Prog. Ser. 2017, 567, 125–137. [Google Scholar] [CrossRef]
- Asmus, H.; Asmus, R. Material Exchange Processes between Sediment and Water in Coastal Ecosystems and Their Modeling. Estuar. Coast. Ecosyst. Model. 2011, 9, 355–382. [Google Scholar]
- Goelz, T.; Vogt, B.; Hartley, T. Alternative Substrates Used for Oyster Reef Restoration: A Review. J. Shellfish Res. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Moroney, D.A.; Walker, R.L. The Effects of Tidal and Bottom Placement on the Growth, Survival and Fouling of the Eastern Oyster Crassostrea Virginica. J. World Aquac. Soc. 1999, 30, 433–442. [Google Scholar] [CrossRef]
- Bliss, T.; Pelli, J.; Hein, R.; Manley, J.; Risse, M. Evaluation of Grow-out Gear on Eastern Oysters (Crassostrea Virginica) in Georgia; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2020.
- Tedford, K.N.; Castorani, M.C.N. Meta-Analysis Reveals Controls on Oyster Predation. Front. Mar. Sci. 2022, 9, 1055240. [Google Scholar] [CrossRef]
- Sanford, E.; Gaylord, B.; Hettinger, A.; Lenz, E.A.; Meyer, K.; Hill, T.M. Ocean Acidification Increases the Vulnerability of Native Oysters to Predation by Invasive Snails. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132681. [Google Scholar] [CrossRef]
- George, L.M.; De Santiago, K.; Palmer, T.A.; Beseres Pollack, J. Oyster Reef Restoration: Effect of Alternative Substrates on Oyster Recruitment and Nekton Habitat Use. J. Coast. Conserv. 2015, 19, 13–22. [Google Scholar] [CrossRef]
- Bonnard, M.; Boury, B.; Parrot, I. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions. Environ. Sci. Technol. 2019, 54, 26–38. [Google Scholar] [CrossRef]
- Mizuta, D.D.; Wikfors, G.H. Seeking the Perfect Oyster Shell: A Brief Review of Current Knowledge. Rev. Aquac. 2019, 11, 586–602. [Google Scholar] [CrossRef]
- Schlenoff, J.I. Effects of Shell Damage on Mortality of the Eastern Oyster (Crassostrea Virginica) in Normoxic and Anoxic Conditions. Master’s Thesis, University of Maryland, College Park, ML, USA, 2022. [Google Scholar]
- Hatchell, B.; Konchar, K.; Merrill, M.; Shea, C.; Smith, K. Use of Biodegradable Coir for Subtidal Oyster Habitat Restoration: Testing Two Reef Designs in Northwest Florida. Estuaries Coasts 2022, 45, 2675–2689. [Google Scholar] [CrossRef]
- Walters, L.J.; Roddenberry, A.; Crandall, C.; Wayles, J.; Donnelly, M.; Barry, S.C.; Clark, M.W.; Escandell, O.; Hansen, J.C.; Laakkonen, K. The Use of Non-Plastic Materials for Oyster Reef and Shoreline Restoration: Understanding What Is Needed and Where the Field Is Headed. Sustainability 2022, 14, 8055. [Google Scholar] [CrossRef]
- Gómez-Petersen, P.; Tortolero-Langarica, J.-J.-A.; Rodríguez-Troncoso, A.-P.; Cupul-Magaña, A.-L.; Ortiz, M.; Ríos-Jara, E.; Rodríguez-Zaragoza, F.-A. Testing the Effectiveness of Natural and Artificial Substrates for Coral Reef Restoration at Isla Isabel National Park, Mexico. Rev. Biol. Trop. 2023, 71, 1–14. [Google Scholar] [CrossRef]
- Riera, E.; Lamy, D.; Goulard, C.; Francour, P.; Hubas, C. Biofilm Monitoring as a Tool to Assess the Efficiency of Artificial Reefs as Substrates: Toward 3D Printed Reefs. Ecol. Eng. 2018, 120, 230–237. [Google Scholar] [CrossRef]
- Nitsch, C.K.; Walters, L.J.; Sacks, J.S.; Sacks, P.E.; Chambers, L.G. Biodegradable material for oyster reef restoration: First-year performance and biogeochemical considerations in a coastal lagoon. Sustainability 2021, 13, 7415. [Google Scholar] [CrossRef]
- Potet, M.; Fabien, A.; Chaudemanche, S.; Sebaibi, N.; Guillet, T.; Gachelin, S.; Cochet, H.; Boutouil, M.; Pouvreau, S. Which Concrete Substrate Suits You? Ostrea Edulis Larval Preferences and Implications for Shellfish Restoration in Europe. Ecol. Eng. 2021, 162, 106159. [Google Scholar] [CrossRef]
- Collins, K.J.; Hauton, C.; Jensen, A.C.; Mallinson, J.J. Solent Oyster Enhancement Reef Concrete Colonisation Trials. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1245, p. 12012. [Google Scholar]
- Graham, P.M.; Palmer, T.A.; Beseres Pollack, J. Oyster Reef Restoration: Substrate Suitability May Depend on Specific Restoration Goals. Restor. Ecol. 2017, 25, 459–470. [Google Scholar] [CrossRef]
- Walles, B.; Troost, K.; van den Ende, D.; Nieuwhof, S.; Smaal, A.C.; Ysebaert, T. From Artificial Structures to Self-Sustaining Oyster Reefs. J. Sea Res. 2016, 108, 1–9. [Google Scholar] [CrossRef]
- Brumbaugh, R.D.; Coen, L.D. Contemporary Approaches for Small-Scale Oyster Reef Restoration to Address Substrate versus Recruitment Limitation: A Review and Comments Relevant for the Olympia Oyster, Ostrea Lurida Carpenter 1864. J. Shellfish Res. 2009, 28, 147–161. [Google Scholar] [CrossRef]
- Kimbro, D.L.; Stallings, C.D.; White, J.W. Diminishing Returns in Habitat Restoration by Adding Biogenic Materials: A Test Using Estuarine Oysters and Recycled Oyster Shell. Restor. Ecol. 2020, 28, 1633–1642. [Google Scholar] [CrossRef]
- Rullens, V.; Lohrer, A.M.; Townsend, M.; Pilditch, C.A. Ecological Mechanisms Underpinning Ecosystem Service Bundles in Marine Environments–A Case Study for Shellfish. Front. Mar. Sci. 2019, 6, 409. [Google Scholar] [CrossRef]
- Colden, A.M.; Latour, R.J.; Lipcius, R.N. Reef Height Drives Threshold Dynamics of Restored Oyster Reefs. Mar. Ecol. Prog. Ser. 2017, 582, 1–13. [Google Scholar] [CrossRef]
- McAfee, D.; McLeod, I.M.; Boström-Einarsson, L.; Gillies, C.L. The Value and Opportunity of Restoring Australia’s Lost Rock Oyster Reefs. Restor. Ecol. 2020, 28, 304–314. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Zhang, Y.; Zhou, J.; Shaw, L.B.; Shi, J. Modeling Oyster Reef Restoration: Larval Supply and Reef Geometry Jointly Determine Population Resilience and Performance. Front. Mar. Sci. 2021, 8, 677640. [Google Scholar] [CrossRef]
- Lavan, B. Examining the Effect of Interstitial Space on Eastern Oysters (Crassostrea Virginica): Applications of Photogrammetry and Three-Dimensional Modeling. Master’s Thesis, James Madison University, Harrisonburg, VA, USA, 2019. [Google Scholar]
- Risinger, J.D. Biologically Dominated Engineered Coastal Breakwaters; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 2012; ISBN 9798802769300. [Google Scholar]
- Witte, S.; Dickson, J.; Franken, O.; Holthuijsen, S.; Govers, L.L.; Olff, H.; van Der Heide, T. Enhancing Ecological Complexity in Soft-bottom Coastal Ecosystems: The Impact of Introducing Hard Substrates. Restor. Ecol. 2024, 32, e14126. [Google Scholar] [CrossRef]
- Hanke, M.H.; Posey, M.H.; Alphin, T.D. The Influence of Habitat Characteristics on Intertidal Oyster Crassostrea Virginica Populations. Mar. Ecol. Prog. Ser. 2017, 571, 121–138. [Google Scholar] [CrossRef]
- Emslie, M.J.; Logan, M.; Cheal, A.J. The Distribution of Planktivorous Damselfishes (Pomacentridae) on the Great Barrier Reef and the Relative Influences of Habitat and Predation. Diversity 2019, 11, 33. [Google Scholar] [CrossRef]
- Ysebaert, T.; Walles, B.; Haner, J.; Hancock, B. Habitat Modification and Coastal Protection by Ecosystem-Engineering Reef-Building Bivalves. In Goods and Services of Marine Bivalves; Springer: Cham, Switzerland, 2019; pp. 253–273. [Google Scholar]
- Chowdhury, M.S.N.; La Peyre, M.; Coen, L.D.; Morris, R.L.; Luckenbach, M.W.; Ysebaert, T.; Walles, B.; Smaal, A.C. Ecological Engineering with Oysters Enhances Coastal Resilience Efforts. Ecol. Eng. 2021, 169, 106320. [Google Scholar] [CrossRef]
- Keaveney, S.; Keogh, C.; Gutierrez-Heredia, L.; Reynaud, E.G. Applications for Advanced 3D Imaging, Modelling, and Printing Techniques for the Biological Sciences. In Proceedings of the 2016 22nd International Conference on Virtual System & Multimedia (VSMM), Kuala Lumpur, Malaysia, 17–21 October 2016; pp. 1–8. [Google Scholar]
- Mohammed, J.S. Applications of 3D Printing Technologies in Oceanography. Methods Oceanogr. 2016, 17, 97–117. [Google Scholar] [CrossRef]
- Albalawi, H.I.; Khan, Z.N.; Valle-Pérez, A.U.; Kahin, K.M.; Hountondji, M.; Alwazani, H.; Schmidt-Roach, S.; Bilalis, P.; Aranda, M.; Duarte, C.M. Sustainable and Eco-Friendly Coral Restoration through 3D Printing and Fabrication. ACS Sustain. Chem. Eng. 2021, 9, 12634–12645. [Google Scholar] [CrossRef]
- Yoris-Nobile, A.I.; Slebi-Acevedo, C.J.; Lizasoain-Arteaga, E.; Indacoechea-Vega, I.; Blanco-Fernandez, E.; Castro-Fresno, D.; Alonso-Estebanez, A.; Alonso-Cañon, S.; Real-Gutierrez, C.; Boukhelf, F. Artificial Reefs Built by 3D Printing: Systematisation in the Design, Material Selection and Fabrication. Constr. Build. Mater. 2023, 362, 129766. [Google Scholar] [CrossRef]
- Reyes, G.; Vega-Coloma, M.; Antonova, A.; Ajdary, R.; Jonveaux, S.; Flanigan, C.; Lautenbacher, N.; Rojas, O.J. Direct CO2 Capture by Alkali-Dissolved Cellulose and Sequestration in Building Materials and Artificial Reef Structures. Adv. Mater. 2023, 35, 2209327. [Google Scholar] [CrossRef]
- dela Cruz, D.W.; Rinkevich, B.; Gomez, E.D.; Yap, H.T. Assessing an Abridged Nursery Phase for Slow Growing Corals Used in Coral Restoration. Ecol. Eng. 2015, 84, 408–415. [Google Scholar] [CrossRef]
- Berman, O.; Weizman, M.; Oren, A.; Neri, R.; Parnas, H.; Shashar, N.; Tarazi, E. Design and Application of a Novel 3D Printing Method for Bio-Inspired Artificial Reefs. Ecol. Eng. 2023, 188, 106892. [Google Scholar] [CrossRef]
- McAfee, D.; Williams, B.R.; McLeod, L.; Reuter, A.; Wheaton, Z.; Connell, S.D. Soundscape Enrichment Enhances Recruitment and Habitat Building on New Oyster Reef Restorations. J. Appl. Ecol. 2023, 60, 111–120. [Google Scholar] [CrossRef]
- Radford, C.A.; Jeffs, A.G.; Tindle, C.T.; Montgomery, J.C. Temporal Patterns in Ambient Noise of Biological Origin from a Shallow Water Temperate Reef. Oecologia 2008, 156, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Radford, C.A.; Stanley, J.A.; Simpson, S.D.; Jeffs, A.G. Juvenile Coral Reef Fish Use Sound to Locate Habitats. Coral Reefs 2011, 30, 295–305. [Google Scholar] [CrossRef]
- Williams, B.R. Enriching Marine Soundscapes to Restore Australia’s Lost Native Oyster Reefs. Doctoral Dissertation, University of Adelaide, Adelaide, Australia, 2023. [Google Scholar]
- Williams, B.; Lamont, T.A.C.; Chapuis, L.; Harding, H.R.; May, E.B.; Prasetya, M.E.; Seraphim, M.J.; Jompa, J.; Smith, D.J.; Janetski, N. Enhancing Automated Analysis of Marine Soundscapes Using Ecoacoustic Indices and Machine Learning. Ecol. Indic. 2022, 140, 108986. [Google Scholar] [CrossRef]
- Williams, B.R.; McAfee, D.; Connell, S.D. Anthropogenic Noise Disrupts Acoustic Cues for Recruitment. Proc. B 2024, 291, 20240741. [Google Scholar] [CrossRef]
- Lillis, A.; Eggleston, D.B.; Bohnenstiehl, D.R. Estuarine Soundscapes: Distinct Acoustic Characteristics of Oyster Reefs Compared to Soft-Bottom Habitats. Mar. Ecol. Prog. Ser. 2014, 505, 1–17. [Google Scholar] [CrossRef]
- Bertucci, F.; Parmentier, E.; Lecellier, G.; Hawkins, A.D.; Lecchini, D. Acoustic Indices Provide Information on the Status of Coral Reefs: An Example from Moorea Island in the South Pacific. Sci. Rep. 2016, 6, 33326. [Google Scholar] [CrossRef]
- Pieretti, N.; Danovaro, R. Acoustic Indexes for Marine Biodiversity Trends and Ecosystem Health. Philos. Trans. R. Soc. B 2020, 375, 20190447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, A.; Ahmad, A.; Zhao, Y.; Zhao, Y.; Yang, C.; Li, Y.; Tu, J.; Niu, F.; Kong, W.; Liu, X. Advances in Global Oyster Reef Restoration: Innovations and Sustainable Ecological Approaches. Sustainability 2024, 16, 9795. https://doi.org/10.3390/su16229795
Jamil A, Ahmad A, Zhao Y, Zhao Y, Yang C, Li Y, Tu J, Niu F, Kong W, Liu X. Advances in Global Oyster Reef Restoration: Innovations and Sustainable Ecological Approaches. Sustainability. 2024; 16(22):9795. https://doi.org/10.3390/su16229795
Chicago/Turabian StyleJamil, Asad, Ambreen Ahmad, Yong Zhao, Yuxuan Zhao, Chen Yang, Yanping Li, Jianbo Tu, Fuxin Niu, Wenliang Kong, and Xianhua Liu. 2024. "Advances in Global Oyster Reef Restoration: Innovations and Sustainable Ecological Approaches" Sustainability 16, no. 22: 9795. https://doi.org/10.3390/su16229795
APA StyleJamil, A., Ahmad, A., Zhao, Y., Zhao, Y., Yang, C., Li, Y., Tu, J., Niu, F., Kong, W., & Liu, X. (2024). Advances in Global Oyster Reef Restoration: Innovations and Sustainable Ecological Approaches. Sustainability, 16(22), 9795. https://doi.org/10.3390/su16229795