The Emission Balance of Selected Groups of Fuels Used in Households to Generate Pollution in the Małopolskie Voivodeship
Abstract
:1. Introduction
Purpose of Research
2. Materials and Methods
2.1. Data on Air Pollution
2.2. Data on Energy Consumption in Households
2.3. Analytical Tools
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Q.; An, X.Q.; Wang, Y.; Guo, J.P. An evaluation of resident exposure to respirable particulate matter and health economic loss in Beijing during Beijing 2008 Olympic Games. Sci. Total Environ. 2010, 408, 4026–4032. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office of Europe. Health Literacy: The Solid Facts; WHO Regional Office of Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- Hashim, D.; Boffetta, P. Occupational and environmental exposures and cancers in developing countries. Ann. Glob. Health 2014, 80, 393–411. [Google Scholar] [CrossRef] [PubMed]
- WHO. Air Pollution. Available online: http://www.who.int/airpollution/en/ (accessed on 1 June 2024).
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide, Global Update 2005, Summary of Risk Assessment; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO Regional Office for Europe: Copenhagen, Denmark, 2021; Available online: https://iris.who.int/handle/10665/346559 (accessed on 1 June 2024).
- de Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Dherani, M.; Pope, D.; Mascarenhas, M.; Smith, K.R.; Weber, M.; Bruce, N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: A systematic review and meta-analysis. Bull. World Health Organ. 2008, 86, 390–398. [Google Scholar] [CrossRef] [PubMed]
- EEA (European Environmental Agency). Air Quality Standards to the European Union and WHO. Available online: https://www.eea.europa.eu/themes/data-and-maps/figures/air-quality-standards-under-the (accessed on 1 June 2024).
- Yang, M.Z.; Chou, S.-Y. The impact of environmental regulation on fetal health: Evidence from the shutdown of a coal-fired power plant located upwind of New Jersey. J. Environ. Econ. Manag. 2018, 90, 269–293. [Google Scholar] [CrossRef]
- Drozdzol, K.; Junga, R.; Beben, D.; Kielland, T.; Jarzynski, P. The Influence of the Fan-Controlled Chimney Draft on the Pollutants Emission to the Environment. In INCREaSE 2023; Semião, J.F.L.C., Sousa, N.M.S., da Cruz, R.M.S., Prates, G.N.D., Eds.; Advances in Sustainability Science and Technology; Springer: Cham, Switzerland, 2023; pp. 141–156. [Google Scholar] [CrossRef]
- Kappos, A.D.; Bruckmann, P.; Eikmann, T.; Englert, N.; Heinrich, U.; Höppe, P.; Koch, E.; Krause, G.H.; Kreyling, W.G.; Rauchfuss, K.; et al. Health effects of particles in ambient air. Int. J. Hyg. Environ. Health 2004, 207, 399–407. [Google Scholar] [CrossRef]
- Chapman, R.S.; Watkinson, W.P.; Dreher, K.L.; Costa, D.L. Ambient particulate matter and respiratory and cardiovascular illness in adults: Particle-borne transition metals and the heart–lung axis. Environ. Toxicol. Pharmacol. 1997, 4, 331–338. [Google Scholar] [CrossRef]
- Peden, D.B. The epidemiology and genetics of asthma risk associated with air pollution. J. Allergy Clin. Immunol. 2005, 115, 213–219. [Google Scholar] [CrossRef]
- Institute of Meteorology and Water Management—National Research Institute (IMGiW). Available online: https://danepubliczne.imgw.pl (accessed on 1 June 2024).
- Jacobson, M.Z. Atmospheric Pollution: History, Science, and Regulation; Cambridge University Press: Cambridge, UK, 2002; p. 206. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. The effects of fuel standards on air pollution: Evidence from China. J. Dev. Econ. 2020, 146, 102488. [Google Scholar] [CrossRef]
- Air Protection Programs (APP). Available online: https://bip.mos.gov.pl/strategie-plany-programy/programy-ochrony-powietrza-dzialania-administracji-samorzadowej/programy-ochrony-powietrza-pop/ (accessed on 1 June 2024).
- Air Protection Programs and Short-Term Action Plans. Available online: https://powietrze.gios.gov.pl/pjp/content/air_protection_programs?lang=pl (accessed on 1 June 2024).
- LIFE Project—LIFE Integrated Project “Implementation of Air Quality Plan for the Małopolskie Voivodeship—The Małopolskie Voivodeship in a Healthy Atmosphere”. Available online: https://powietrze.malopolska.pl/en/life-project/ (accessed on 1 June 2024).
- New Air Protection Program for the Małopolskie Voivodeship. Available online: https://powietrze.gios.gov.pl/pjp/content/show/1002243?lang=en (accessed on 1 June 2024).
- Regional Action Plan for Climate and Energy for the Małopolskie Voivodeship. Available online: https://klimat.ekomalopolska.pl/dokumenty2/regionalny-plan-dzialan-dla-klimatu-i-energii/ (accessed on 1 June 2024).
- European Parliament and Council. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (CAFE Directive). Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 1 June 2024).
- Minister of the Environment. Regulation of the Minister of the Environment of 13 September 2012, on the Assessment of Substance Levels in the Air; Journal of Laws of the Republic of Poland, 2012, Item 1031; Ministry of the Environment: Warsaw, Poland, 2012. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20120001031/O/D20121031.pdf (accessed on 1 June 2024).
- Regional Department of Environmental Monitoring in Krakow of the Department of Environmental Monitoring. Roczna ocena jakości powietrza w województwie małopolskim. In Raport Wojewódzki za rok 2023; Regional Department of Environmental Monitoring in Krakow: Krakow, Poland, 2024. [Google Scholar]
- Statistics Poland (GUS). Available online: https://stat.gov.pl/en/ (accessed on 1 June 2024).
- Statistics Poland (GUS) in Kraków. Local Data Bank. Available online: https://bdl.stat.gov.pl/bdl/ (accessed on 1 June 2024).
- Supreme Audit Office (SAO). Ochrona powietrza przed zanieczyszczeniami. In Information on the Results of the Audit LKR.4104.007-00.2014; Supreme Audit Office: Warsaw, Poland, 2014. [Google Scholar]
- Supreme Audit Office (SAO). Ochrona powietrza przed zanieczyszczeniami. In Information on the Results of the Audit LKR.430.003.2018; Supreme Audit Office: Warsaw, Poland, 2018. [Google Scholar]
- EPA (European Environmental Agency). Guardian: Origins of the EPA. Available online: https://www.epa.gov/archive/epa/aboutepa/guardian-origins-epa.html (accessed on 1 June 2024).
- EPA. Summary of the Clean Air Act. Available online: https://www.epa.gov/laws-regulations/summary-clean-air-act (accessed on 1 June 2024).
- EEA (European Environmental Agency). Air Quality in Europe—2013 Report; EEA Report, No 9/2013; EEA: Copenhagen, Denmark, 2013.
- EPA (European Environmental Agency). Air Pollution in Europe: 2024 Reporting Status Under the National Emission Reduction Commitments Directive. Available online: https://www.eea.europa.eu/publications/national-emission-reduction-commitments-directive-2024 (accessed on 1 June 2024).
- European Topic Centre on Human Health and the Environment (ETC HE); Targa, J.; Colina, M.; Banyuls, L.; González Ortiz, A.; Soares, J. (Eds.) Status Report of Air Quality in Europe for Year 2022, Using Validated Data. Available online: https://www.eionet.europa.eu/etcs/etc-he/products/etc-he-products/etc-he-reports/etc-he-report-2023-2-status-report-of-air-quality-in-europe-for-year-2022-using-validated-and-up-to-date-data/@@download/file/ETC%20HE%202023-1_report_status_eionet_mix_2022_2023-03-21.pdf (accessed on 1 June 2024).
- European Parliament and Council. Report from The Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. The Third Clean Air Outlook. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A673%3AFIN&%3Bqid=1670510444610 (accessed on 1 June 2024).
- Ritchie, H.; Roser, M. Air Pollution. Available online: https://ourworldindata.org/air-pollution (accessed on 1 June 2024).
- Hall, R.E.; DeAngelis, D.G. Epa’s research program for controlling residential wood combustion emissions. J. Air Pollut. Control Assoc. 1980, 30, 862–867. [Google Scholar] [CrossRef]
- Imelda. Cooking that kills: Cleaner energy access, indoor air pollution, and health. J. Dev. Econ. 2020, 147, 102548. [Google Scholar] [CrossRef]
- Regional Department of Environmental Monitoring in Krakow of the Department of Environmental Monitoring. Roczna ocena jakości powietrza w województwie małopolskim. In Raport Wojewódzki za rok 2020; Regional Department of Environmental Monitoring in Krakow: Krakow, Poland, 2020. [Google Scholar]
- Minister of the Environment. Act of April 27, 2001, on Environmental Protection Law. Journal of Laws of the Republic of Poland, 2001, Item 627; Ministry of the Environment: Warsaw, Poland, 2001. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20010620627/U/D20010627Lj.pdf (accessed on 1 June 2024).
- Jaramillo, P.; Muller, N.Z. Air pollution emissions and damages from energy production in the US: 2002–2011. Energy Policy 2016, 90, 202–211. [Google Scholar] [CrossRef]
- Wang, X.C.; Klemeš, J.J.; Dong, X.; Fan, W.; Xu, Z.; Wang, Y.; Varbanov, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.-P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries. Energy Policy 2019, 128, 284–295. [Google Scholar] [CrossRef]
- Yi, F.; Ye, H.; Wu, X.; Zhang, Y.Y.; Jiang, F. Self-aggravation effect of air pollution: Evidence from residential electricity consumption in China. Energy Econ. 2020, 86, 104684. [Google Scholar] [CrossRef]
- Chowdhury, S.; Pozzer, A.; Haines, A.; Klingmüller, K.; Münzel, T.; Paasonen, P.; Sharma, A.; Venkataraman, C.; Lelieveld, J. Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environ. Int. 2022, 159, 07020. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhang, W.; Li, J.; Zou, Y. Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Appl. Energy 2016, 184, 714–726. [Google Scholar] [CrossRef]
- Zhao, B.; Zheng, H.; Wang, S.; Smith, K.R.; Lu, X.; Aunan, K.; Gu, Y.; Wang, Y.; Ding, D.; Xing, J.; et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl. Acad. Sci. USA 2018, 115, 12401–12406. [Google Scholar] [CrossRef]
- You, S.; Neoh, K.G.; Tong, Y.W.; Dai, Y.; Wang, C.-H. Variation of household electricity consumption and potential impact of outdoor PM2.5 concentration: A comparison between Singapore and Shanghai. Appl. Energy 2017, 188, 475–484. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland. Energies 2020, 13, 454. [Google Scholar] [CrossRef]
- Pająk, K.; Kvilinskyi, O.; Fasiecka, O.; Miśkiewicz, R. Energy security in regional policy in Wielkopolska region of Poland. Ekon. I Sr. 2017, 2, 122–138. [Google Scholar]
- Samek, L.; Stegowski, Z.; Styszko, K.; Furman, L.; Zimnoch, M.; Skiba, A.; Kistler, M.; Kasper-Giebl, A.; Rozanski, K.; Konduracka, E.; et al. Seasonal variations of chemical composition of PM2.5 fraction in the urban area of Krakow, Poland: PMF source attribution. Air Qual. Atmos. Health 2020, 13, 89–96. [Google Scholar] [CrossRef]
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef]
- Sałach, K.; Lewandowski, P. Energy Poverty in Poland, 2012 Description and Changes Over Time; Institute for Structural Research (IBS): Warsaw, Poland, 2018. [Google Scholar]
- Hurnik, M.; Specjal, A.; Popiolek, Z.; Kierat, W. Assessment of single-family house thermal renovation based on comprehensive on-site diagnostics. Energy Build. 2018, 158, 2–171. [Google Scholar] [CrossRef]
- Sobczyk, W. Sustainable Development of Rural Areas; Social Science Research Network: Rochester, NY, USA, 2014. [Google Scholar]
- Dudek, T. The Impacts of the Energy Potential of Forest Biomass on the Local Market: An Example of South-Eastern Poland. Energies 2020, 13, 4985. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J.; Gumińska, A.; Baran, Ł.; Barwa, M.; Czerw, K.; Gowik, P.; Makselan, K.; Potyka, K.; Psikuta, A. Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies 2020, 13, 2740. [Google Scholar] [CrossRef]
- Kobza, J.; Geremek, M.; Dul, L. Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environ. Monit. Assess. 2018, 190, 515. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies 2019, 12, 3558. [Google Scholar] [CrossRef]
- Statistics Poland. Energy 2020; Główny Urząd Statystyczny: Warsaw, Poland, 2020.
- Statistics Poland. Energy Efficiency in Poland in Years 2008–2018; Statistics Poland: Warsaw, Poland, 2019.
- Bouzarovski, S.; Herrero, S.T. Geographies of injustice: The socio-spatial determinants of energy poverty in Poland, the Czech Republic and Hungary. Post-Communist Econ. 2017, 29, 27–50. [Google Scholar] [CrossRef]
- Danek, T.; Weglinska, E.; Zareba, M. The influence of meteorological factors and terrain on air pollution concentration and migration: A geostatistical case study from Krakow, Poland. Sci. Rep. 2022, 12, 11050. [Google Scholar] [CrossRef]
- Rasoulinezhad, E.; Taghizadeh-Hesary, F.; Taghizadeh-Hesary, F. How Is Mortality Affected by Fossil Fuel Consumption, CO2 Emissions and Economic Factors in CIS Region? Energies 2020, 13, 2255. [Google Scholar] [CrossRef]
- Cakaj, A.; Lisiak-Zielińska, M.; Khaniabadi, Y.O.; Sicard, P. Premature deaths related to urban air pollution in Poland. Atmos. Environ. 2023, 301, 119723. [Google Scholar] [CrossRef]
- Szymańska, D.; Chodkowska-Miszczuk, J. Endogenous resources utilization of rural areas in shaping sustainable development in Poland. Renew. Sustain. Energy Rev. 2011, 15, 1497–1501. [Google Scholar] [CrossRef]
- Bezyk, Y.; Zathey, M. Analysis of exposure of inhabitants of Polish cities to air pollution with particulate matters with application of statistical and geostatistical tools. E3S Web Conf. 2019, 100, 00075. [Google Scholar] [CrossRef]
- Specjał, A.; Lipczyńska, A.; Hurnik, M.; Król, M.; Palmowska, A.; Popiołek, Z. Case Study of Thermal Diagnostics of Single-Family House in Temperate Climate. Energies 2019, 12, 4549. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Kobus, D.; Merenda, B.; Sówka, I.; Chlebowska-Styś, A.; Wroniszewska, A. Ambient air quality as a condition of effective healthcare therapy on the example of selected polish health resorts. Atmosphere 2020, 11, 882. [Google Scholar] [CrossRef]
- Księżopolski, K.; Pronińska, K. Study of Administrative and Procedural Barriers in the Development of Renewable Energy in Rural Areas; Foundation of the European Fund for the Development of Polish Villages: Warsaw, Poland, 2017; p. 68. [Google Scholar]
- Mitchell, E.J.S.; Lea-Langton, A.R.; Jones, J.M.; Williams, A.; Layden, P.; Johnson, R. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process. Technol. 2016, 142, 115–123. [Google Scholar] [CrossRef]
- Fuller, G.W.; Tremper, A.H.; Baker, T.D.; Yttri, K.E.; Butterfield, D. Contribution of wood burning to PM10 in London. Atmos. Environ. 2014, 87, 87–94. [Google Scholar] [CrossRef]
- Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmos. Environ. 2009, 43, 2186–2195. [Google Scholar] [CrossRef]
- Kowalski, J.; Nowak, A. Analysis of Structural Integrity. MATEC Web Conf. 2018, 174, 01023. [Google Scholar] [CrossRef]
- Świerszcz, K.; Szczurek, T.; Mitkow, S.Z.; Zalewski, J.; Ćwik, B. Knowledge of the Problem of Fuel Poverty Among Local Government Authorities: In The Aspect of Local Energy Security. J. East. Eur. Res. Bus. Econ. 2019, 2019, 780276. [Google Scholar] [CrossRef]
- Rosipal, R. Nonlinear Partial Least Squares: An Overview. In Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques; Lodhi, H., Yamanishi, Y., Eds.; Advances in Chemoinformatics and Computational Methods (ACCM): London, UK, 2011; pp. 169–189. [Google Scholar] [CrossRef]
- Martens, M.; Martens, H. Partial least-squares regression on design variables as an alternative to analysis of variance. Anal. Chim. Acta 1986, 191, 133–148. [Google Scholar] [CrossRef]
- Merino, A.; Garcia-Alvarez, D.; Sainz-Palmero, G.I.; Acebes, L.F.; Fuente, M.J. Knowledge Based Recursive Non-linear Partial Least Squares (RNPLS). ISA Trans. 2020, 100, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Nonlinear Regression with Python—A Simple Method to Fit Your Data Better. Available online: https://saturncloud.io/blog/nonlinear-regression-with-python-a-simple-method-to-fit-your-data-better/ (accessed on 1 June 2024).
- Least Squares Curve Fitting: Original Data, Fitted Curve, and Residuals. Available online: https://arunp77.medium.com/least-squares-curve-fitting-original-data-fitted-curve-and-residuals-5349f1b1c892 (accessed on 1 June 2024).
HEU-C | ||||
---|---|---|---|---|
Pollutant | Equation | Coefficient of Determination, R2 | Correlation Coefficient, R | p-Value * |
AS | ln(Y) = 0.0081656084 × X − 1.9431685 | 0.678 | 0.823 | 0.001 |
BaA | ln(Y) = −0.0022706025 × X + 2.123752 | 0.037 | 0.193 | 0.548 |
BaP | ln(Y) = 0.004448441 × X + 0.82712642 | 0.684 | 0.827 | 0.001 |
BbF | ln(Y) = 0.010787225 × X − 1.514722 | 0.682 | 0.826 | 0.001 |
BjF | ln(Y) = 0.011675137 × X − 1.9402408 | 0.338 | 0.581 | 0.131 |
Cd | ln(Y) = 0.010167501 × X − 3.0181146 | 0.657 | 0.81 | 0.001 |
Ni | ln(Y) = 0.0083546791 × X − 1.7209117 | 0.561 | 0.749 | 0.005 |
NO2 | ln(Y) = 0.0020115257 × X + 2.6877998 | 0.553 | 0.744 | 0.006 |
NOx | ln(Y) = 0.0021108913 × X + 3.4195439 | 0.457 | 0.676 | 0.016 |
Pb | ln(Y) = 0.010381718 × X − 6.6490436 | 0.771 | 0.878 | <0.001 |
PM10 | ln(Y) = 0.0057372885 × X + 1.2429274 | 0.841 | 0.917 | <0.001 |
PM2.5 | ln(Y) = 0.0072697594 × X + 0.75934121 | 0.758 | 0.871 | <0.001 |
SO2 | ln(Y) = 0.0067546475 × X + 0.36381761 | 0.813 | 0.902 | <0.001 |
HEU-O | ||||
---|---|---|---|---|
Pollutant | Equation | Coefficient of Determination, R2 | Correlation Coefficient, R | p-Value * |
AS | Y = 3.663833 − 0.02459442 × X + 5.3225431 × 10−5 × pow(X,2) | 0.801 | 0.895 | <0.001 |
BaA | Y = 18.750404 − 0.17767996 × X + 0.0005075984 × pow(X,2) | 0.117 | 0.342 | 0.277 |
BaP | Y = 12.131281 − 0.044516153 × X + 8.4178022 × 10−5 × pow(X,2) | 0.388 | 0.62 | 0.03 |
BbF | Y = 12.150257 − 0.080330643 × X + 0.00016313151 × pow(X,2) | 0.605 | 0.778 | 0.003 |
BjF | Y = 13.663362 − 0.11565859 × X + 0.0002766035 × pow(X,2) | 0.563 | 0.751 | 0.032 |
Cd | Y = 1.9187541 − 0.010791667 × X + 1.9520742 × 10−5 × pow(X,2) | 0.454 | 0.674 | 0.016 |
Ni | Y = 3.5342748 − 0.017647773 × X + 3.5070037 × 10−5 × pow(X,2) | 0.157 | 0.396 | 0.202 |
NO2 | Y = 48.850372 − 0.28720691 × X + 0.00076877484 × pow(X,2) | 0.539 | 0.734 | 0.007 |
NOx | Y = 121.56022 − 0.8223544 × X + 0.0022021104 × pow(X,2) | 0.734 | 0.856 | <0.001 |
Pb | Y = 0.072237366 − 0.00054926434 × X + 1.270877 × 10−6 × pow(X,2) | 0.626 | 0.791 | 0.002 |
PM10 | Y = 36.956761 − 0.22437645 × X + 0.00051324584 × pow(X,2) | 0.668 | 0.817 | 0.001 |
PM2.5 | Y = 34.674047 − 0.19433828 × X + 0.00038722552 × pow(X,2) | 0.709 | 0.842 | 0.001 |
SO2 | Y = 21.669981 − 0.13737027 × X + 0.0003111479 × pow(X,2) | 0.647 | 0.805 | 0.002 |
Pollutant | HEU-O (300 PJ) | HEU-C (300 PJ) | [%] |
---|---|---|---|
AS | 1.659 | −24.796 | 1.659 |
BaP | 8.686 | −25.278 | 8.686 |
BbF | 5.593 | −51.186 | 5.593 |
BjF | 4.770 | −16.139 | 4.770 |
Cd | 1.033 | −55.164 | 1.033 |
NO2 | 26.877 | 18.579 | 26.877 |
NOx | 57.559 | 26.757 | 57.559 |
Pb | 0.029 | −47.553 | 0.029 |
PM10 | 19.378 | −17.812 | 19.378 |
PM2.5 | 18.921 | −43.607 | 18.921 |
SO2 | 10.916 | −21.673 | 10.916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuła, R.; Maruta, M. The Emission Balance of Selected Groups of Fuels Used in Households to Generate Pollution in the Małopolskie Voivodeship. Sustainability 2024, 16, 9818. https://doi.org/10.3390/su16229818
Matuła R, Maruta M. The Emission Balance of Selected Groups of Fuels Used in Households to Generate Pollution in the Małopolskie Voivodeship. Sustainability. 2024; 16(22):9818. https://doi.org/10.3390/su16229818
Chicago/Turabian StyleMatuła, Rafał, and Michał Maruta. 2024. "The Emission Balance of Selected Groups of Fuels Used in Households to Generate Pollution in the Małopolskie Voivodeship" Sustainability 16, no. 22: 9818. https://doi.org/10.3390/su16229818
APA StyleMatuła, R., & Maruta, M. (2024). The Emission Balance of Selected Groups of Fuels Used in Households to Generate Pollution in the Małopolskie Voivodeship. Sustainability, 16(22), 9818. https://doi.org/10.3390/su16229818