Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Young Sheep for Fattening Farm
3.2. Young Cattle for Fattening Farm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarıçiçek, Z. The effects of climate change on animal nutrition, production and product quality and solution suggestions. Black Sea J. Agric. 2022, 5, 491–509. [Google Scholar] [CrossRef]
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals 2020, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Rusu, T.; Moraru, P.I. Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania. Rom. Agric. Res. 2015, 32, 103–111. [Google Scholar]
- Dincă, G.; Netcu, I.-C.; El-Naser, A. Analyzing EU’s Agricultural Sector and Public Spending under Climate Change. Sustainability 2024, 16, 72. [Google Scholar] [CrossRef]
- Henry, B.K.; Eckard, R.J.; Beauchemin, K.A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12 (Suppl. 2), s445–s456. [Google Scholar] [CrossRef]
- Geletu, U.S.; Usmael, M.A.; Mummed, Y.Y.; Ibrahim, A.M. Quality of cattle meat and its compositional constituents. Vet. Med. Int. 2021, 1, 7340495. [Google Scholar] [CrossRef]
- Theodoridis, A.; Vouraki, S.; Morin, E.; Rupérez, L.R.; Davis, C.; Arsenos, G. Efficiency analysis as a tool for revealing best practices and innovations: The case of the sheep meat sector in Europe. Animals 2021, 11, 3242. [Google Scholar] [CrossRef]
- Gambelli, D.; Solfanelli, F.; Orsini, S.; Zanoli, R. Measuring the Economic Performance of Small Ruminant Farms Using Balanced Scorecard and Importance-Performance Analysis: A European Case Study. Sustainability 2021, 13, 3321. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- McCuistion, K.C.; Selle, P.H.; Liu, S.Y.; Goodband, R.D. Chapter 12 Sorghum as a Feed Grain for Animal Production. In Sorghum and Millets; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Popa, M.; Schitea, M.; Petcu, E.; Petrescu, E.; Dobre, Ș.C.; Petcu, V. Evaluation of New Alfalfa Genotypes for Forage, Quality and Seed Yield Potential under Different Field Trials. Rom. Agric. Res. 2024, 41, 477–488. [Google Scholar] [CrossRef]
- Manole, D.; Giumba, A.M.; Ganea, L. Sorghum, an alternative in complementarity with corn, adapted to climate changes. Amzacea Village, Constanta County, Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2023, 23, 501–512. [Google Scholar]
- Ronda, V.; Aruna, C.; Visarada, K.B.R.S.; Venkatesh Bhat, B. Chapter 14—Sorghum for Animal Feed. In Wood-Head Publishing Series in Food Science, Technology and Nutrition, Breeding Sorghum for Diverse End Uses; Aruna, C., Visarada, K.B.R.S., Bhat, B.V., Vilas Tonapi, A., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 229–238. ISBN 9780081018798. [Google Scholar] [CrossRef]
- Ran, T.; Fang, Y.; Wang, Y.T.; Yang, W.Z.; Niu, Y.D.; Sun, X.Z.; Zhong, R.Z. Effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fer-mentation, meat quality and blood metabolites of fattening lambs. Animal 2021, 15, 100146. [Google Scholar] [CrossRef] [PubMed]
- Arsenopoulos, K.V.; Katsarou, E.I.; Mendoza Roldan, J.A.; Fthenakis, G.C.; Papadopoulos, E. Haemonchus contortus parasitism in intensively managed cross-limousin beef calves: Effects on feed conversion and carcass characteristics and potential associations with climatic conditions. Pathogens 2022, 11, 955. [Google Scholar] [CrossRef]
- Sun, H.X.; Gao, T.S.; Zhong, R.Z.; Fang, Y.; Di, G.L.; Zhou, D.W. Effects of corn replacement by sorghum in diets on performance, nutrient utilization, blood parameters, antioxidant status, and meat colour stability in lambs. Can. J. Anim. Sci. 2018, 98, 723–731. [Google Scholar] [CrossRef]
- Soldado, D.; Bessa, R.J.B.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants—Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef]
- Lin, L.; Lu, Y.; Wang, W.; Luo, W.; Li, T.; Cao, G.; Du, C.; Wei, C.; Yin, F.; Gan, S.; et al. The Influence of High-Concentrate Diet Supplemented with Tannin on Growth Performance, Rumen Fermentation, and Antioxidant Ability of Fattening Lambs. Animals 2024, 14, 2471. [Google Scholar] [CrossRef]
- Proietti, I.; Frazzoli, C.; Mantovani, A. Exploiting Nutritional Value of Staple Foods in the World’s Semi-Arid Areas: Risks, Benefits, Challenges and Opportunities of Sorghum. Healthcare 2015, 3, 172–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; McCarl, B.A. Impacts of Climate Change on Livestock Location in the US: A Statistical Analysis. Land 2021, 10, 1260. [Google Scholar] [CrossRef]
- Ravikesavan, R.; Sivamurugan, A.P.; Iyanar, K.; Pramitha, J.L.; Nirmalakumari, A. Millet cultivation: An overview. In Handbook of Millets-Processing, Quality, and Nutrition Status; Springer: Singapore, 2022; pp. 23–47. [Google Scholar]
- Kurbanbayev, A.; Zargar, M.; Yancheva, H.; Stybayev, G.; Serekpayev, N.; Baitelenova, A.; Mukhanov, N.; Nogayev, A.; Akhylbekova, B.; Abdelkader, M. Ameliorating Forage Crop Resilience in Dry Steppe Zone Using Millet Growth Dynamics. Agronomy 2023, 13, 3053. [Google Scholar] [CrossRef]
- Hassan, Z.; Sebola, N.; Mabelebele, M. The Nutritional Use of Millet Grain for Food and Feed: A Review. Agric. Food Secur. 2021, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, V.G.; Vanniarajan, C.; Karthikeyan, A.; Ramalingam, J. Barnyard millet for food and nutritional security: Current status and future research direction. Front. Genet. 2020, 11, 500. [Google Scholar] [CrossRef]
- Daduwal, H.S.; Bhardwaj, R.; Srivastava, R.K. Pearl millet a promising fodder crop for changing climate: A review. Theor. Appl. Genetics. 2024, 137, 169. [Google Scholar] [CrossRef]
- Nasrullah; Khoso, A.N.; Soomro, J.; Marghazani, I.B.; Kakar, M.-U.-H.; Baloch, A.H.; Brohi, S.A.; Arain, M.A. Comparative investigation of feeding habits and apparent digestibility of maize, millet and sorghum fodders in sheep and goat. Pak. J. Agric. Res. 2020, 33, 433–439. [Google Scholar]
- de Assis, R.L.; de Freitas, R.S.; Mason, S.C. Pearl Millet Production Practices in Brazil: A Review. Exp. Agric. 2018, 54, 699–718. [Google Scholar] [CrossRef]
- Ganapathy, K.N.; Hariprasanna, K.; Tonapi, V. Breeding for Enhanced Productivity in Millets. In Millets and Pseudo Cereals; Woodhead Publishing: Sawston, UK, 2021; pp. 39–63. [Google Scholar]
- Vagnoni, E.; Franca, A.; Breedveld, L.; Porqueddu, C.; Ferrara, R.; Duce, P. Environmental performances of Sardinian dairy sheep production systems at different input levels. Sci. Total Environ. 2015, 502, 354–361. [Google Scholar] [CrossRef]
- Chetroiu, R.; Dragomir, V. Research on the breakeven point in milk and meat production at ruminants. Agrar. Econ. Rural. Dev. Trends Chall. 2022, 13, 133–141. [Google Scholar]
- Sulewski, P.; Kłoczko-Gajewska, A.; Sroka, W. Relations between Agri-Environmental, Economic and Social Dimensions of Farms’ Sustainability. Sustainability 2018, 10, 4629. [Google Scholar] [CrossRef]
- Chetroiu, R.; Cișmileanu, A.E.; Cofas, E.; Petre, I.L.; Rodino, S.; Dragomir, V.; Marin, A.; Turek-Rahoveanu, P.A. Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability. Sustainability 2022, 14, 7466. [Google Scholar] [CrossRef]
- Ferrazza, R.D.A.; Lopes, M.A.; Prado, D.G.D.O.; Lima, R.R.D.; Bruhn, F.R.P. Association between technical and economic performance indexes and dairy farm profitability. Rev. Bras. Zootec. 2020, 49, e20180116. [Google Scholar] [CrossRef]
- Kryszak, Ł.; Guth, M.; Czyżewski, B. Determinants of farm profitability in the EU regions. Does farm size matter? Agric. Econ./Zemědělská Ekon. 2021, 67, 90–100. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing farm profitability. Sustain. Agric. Rev. 2015, 15, 235–255. [Google Scholar]
- Lee, B.; Liu, J.-Y.; Chang, H.-H. The choice of marketing channel and farm profitability: Empirical evidence from small farmers. Agribusiness 2020, 36, 402–421. [Google Scholar] [CrossRef]
- Tüfekci, H.; Çelik, H.T. Effects of climate change on sheep and goat breeding. Black Sea J. Agric. 2021, 4, 137–145. [Google Scholar] [CrossRef]
- Koluman-Darcan, N.; Silanikove, N. The advantages of goats for future adaptation to climate change: A conceptual overview. Small Rumin. Res. 2018, 163, 34–38. [Google Scholar] [CrossRef]
- Simões, J.; Abecia, J.A.; Cannas, A.; Delgadillo, J.A.; Lacasta, D.; Voigt, K.; Chemineau, P. Managing sheep and goats for sustainable high yield production. Animal 2021, 15, 100293. [Google Scholar] [CrossRef]
- Chingala, G.; Mapiye, C.; Raffrenato, E.; Hoffman, L.; Dzama, K. Determinants of smallholder farmers’ perceptions of impact of climate change on beef production in Malawi. Clim. Chang. 2017, 142, 129–141. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Țogoe, D.; Mincă, N.A. The Impact of Heat Stress on the Physiological, Productive, and Reproductive Status of Dairy Cows. Agriculture 2024, 14, 1241. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; A review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Sterie, C.M.; Dragomir, V. Global trends on research towards agriculture adaptation to climate change. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. DOAJ Dir. Open Access J. 2023, 23, 759–766. [Google Scholar]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water depletion pattern and water use efficiency of forage sorghum, pearl millet, and corn under water limiting condition. Agric. Water Manag. 2020, 238, 106206. [Google Scholar] [CrossRef]
- Mirza, N.; Marla, S.S. Finger millet (Eleusine coracana L. Gartn.) breeding. Adv. Plant Breed. Strateg. Cereals 2019, 5, 83–132. [Google Scholar]
- Crookston, B.; Blaser, B.; Darapuneni, M.; Rhoades, M. Pearl millet forage water use efficiency. Agronomy 2020, 10, 1672. [Google Scholar] [CrossRef]
- Meena, R.P.; Joshi, D.; Bisht, J.K.; Kant, L. Global scenario of millets cultivation. In Millets and Millet Technology; Springer: Singapore, 2021; pp. 33–50. [Google Scholar]
- Chaparro, M.L.; Sanabria, P.J.; Jiménez, A.M.; Gómez, M.I.; Bautista, E.J.; Mesa, L. A circular economy approach for producing a fungal-based biopesticide employing pearl millet as a substrate and its economic evaluation. Bioresour. Technol. Rep. 2021, 16, 100869. [Google Scholar] [CrossRef]
- Tagade, A.; Sawarkar, A.N. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. Bioresour. Technol. 2023, 384, 129335. [Google Scholar] [CrossRef]
- Harish, M.S.; Axay, B.; Bhagirath, S. Millet production, challenges, and opportunities in the Asia-pacific region: A comprehensive review. Front. Sustain. Food Syst. 2024, 8, 1386469. [Google Scholar] [CrossRef]
- Visarada, K.B.R.S.; Aruna, C. Sorghum: A bundle of opportunities in the 21st century. In Breeding Sorghum for Diverse end Uses; Woodhead Publishing: Sawston, UK, 2019; pp. 1–14. [Google Scholar]
Forages | kg/Head/ Day | UNC | PDI (g) | Quantity/Head /Period | Price, RON/kg | Value/Head/ Period |
---|---|---|---|---|---|---|
Sorghum silage | 1.50 | 0.41 | 17.10 | 210 | 0.30 | 63 |
Maize silage | 1.50 | 0.3 | 19.5 | 210 | 0.15 | 32 |
Alfalfa hay | 0.40 | 0.20 | 30.00 | 56 | 0.9 | 50 |
Corn grains | 0.10 | 0.14 | 7.30 | 14 | 1.08 | 15 |
Barley grains | 0.10 | 0.12 | 6.5 | 14 | 1.09 | 15 |
Sunflower meal | 0.10 | 0.07 | 22.6 | 14 | 1.17 | 16 |
Total | 1.23 | 103.00 | 191.7 | |||
Norm | 1.23 | 100.00 |
Indicators | Average Daily Gain 200 g, Life Weight at Sale 40 kg/Head | ||
---|---|---|---|
RON/Head | RON/kg | Value/Farm | |
Value of production | 640.0 | 16.00 | 640,000 |
Value of main production | 640.0 | 16.00 | 640,000 |
Subsidies | 0.0 | 0.00 | 0.00 |
Gross product | 640.0 | 16.00 | 640,000 |
Total costs | 497.7 | 12.44 | 497,656 |
Costs for main production | 497.7 | 12.44 | 497,656 |
Variable costs | 429.6 | 10.74 | 429,639 |
Forage costs | 191.7 | 4.79 | 191,660 |
Biologic material cost | 195.6 | 4.89 | 195,600 |
Energy cost | 10.0 | 0.25 | 10,000 |
Medicines | 14.0 | 0.35 | 14,000 |
Other material costs | 6.0 | 0.15 | 6000 |
Supply | 10.0 | 0.25 | 10,032 |
Insurance cost | 2.3 | 0.06 | 2347 |
Fixed costs | 68.0 | 1.70 | 68,017 |
Labor cost | 40.0 | 1.00 | 40,000 |
General expenses | 10.4 | 0.26 | 10,432 |
Interest rates | 12.6 | 0.31 | 12,586 |
Amortization costs | 5.0 | 0.13 | 5000 |
Taxable income | 142.3 | 3.56 | 142,344 |
Taxes and fees | 14.2 | 0.36 | 14,234 |
Net income + subsidies | 128.1 | 3.20 | 128,109 |
Rate of return% | 28.6 | 28.6 | 29 |
Net income rate% | 25.7 | 25.7 | 26 |
Production cost | 497.7 | 12.44 | 497,656 |
Price | 640.0 | 16.00 | 640,000 |
Forages | kg/Head/ Day | UNC | PDI (g) | Quantity/Head /Period | Price, RON/kg | Value/Head/ Period |
---|---|---|---|---|---|---|
Alfalfa hay | 0.50 | 0.25 | 37.50 | 91 | 0.90 | 82 |
Green millet | 5.00 | 1.15 | 97.00 | 910 | 0.18 | 164 |
Sunflower meal | 0.48 | 0.34 | 108.48 | 87 | 1.17 | 102 |
Barley grains | 4.90 | 5.88 | 318.50 | 892 | 1.09 | 972 |
Total | 7.62 | 561.48 | 1320 | |||
Norm | 7.60 | 562.00 |
Forages | kg/Head/ Day | UNC | PDI (g) | Quantity/Head /Period | Price, RON/kg | Value/Head/ Period |
---|---|---|---|---|---|---|
Alfalfa hay | 1.20 | 0.59 | 90.00 | 220 | 0.90 | 198 |
Millet silage | 5.00 | 1.25 | 86.65 | 915 | 0.40 | 366 |
Sunflower meal | 0.41 | 0.29 | 92.66 | 75 | 1.17 | 88 |
Corn grains | 4.00 | 5.48 | 292.00 | 732 | 1.08 | 791 |
Total | 7.61 | 561.31 | 1442 | |||
Norm | 7.60 | 562.00 |
Indicators | Average Daily Gain 1000 g, Life Weight at Sale 450 kg/Head | ||
---|---|---|---|
RON/Head | RON/kg | Value/Farm | |
Value of production | 5422.5 | 12.05 | 542,250 |
Value of main production | 5152.5 | 11.45 | 515,250 |
Subsidies | 303.4 | 0.67 | 30,340 |
Gross product | 5725.9 | 12.72 | 572,590 |
Total costs | 5003.6 | 11.12 | 500,357 |
Costs for main production | 4733.6 | 10.52 | 473,357 |
Variable costs | 4151.9 | 9.23 | 415,191 |
Forages | 2762.0 | 6.14 | 276,196 |
Biologic material | 1200.0 | 2.67 | 120,000 |
Energy cost | 30.0 | 0.07 | 3000 |
Medicines | 75.0 | 0.17 | 7500 |
Other material costs | 10.0 | 0.02 | 1000 |
Supply | 60.6 | 0.13 | 6055 |
Insurance cost | 14.4 | 0.03 | 1440 |
Fixed costs | 851.7 | 1.89 | 85,165 |
Labor cost | 715.2 | 1.59 | 71,520 |
General expenses | 61.2 | 0.14 | 6115 |
Interest rates | 42.0 | 0.09 | 4200 |
Amortization costs | 33.3 | 0.07 | 3330 |
Taxable income | 418.9 | 0.93 | 41,893 |
Taxes and fees | 41.9 | 0.09 | 4189 |
Net income + subsidies | 680.4 | 1.51 | 68,044 |
Rate of return% | 8.9 | 8.9 | 8.9 |
Net income rate% | 14.4 | 14.4 | 14.4 |
Production cost | 4733.6 | 10.52 | 473,357 |
Price | 5152.5 | 11.45 | 515,250 |
Indicators | Measure Unit | Sheep | Cattle | Sheep/Cattle |
---|---|---|---|---|
Value of total production | RON/kg | 16.00 | 12.05 | 1.33 |
Value of main production | RON/kg | 16.00 | 11.45 | 1.40 |
Total costs | RON/kg | 12.44 | 11.12 | 1.12 |
Costs for main production | RON/kg | 12.44 | 10.52 | 1.18 |
Variable costs | RON/kg | 10.74 | 9.23 | 1.16 |
Material costs | RON/kg | 10.18 | 8.99 | 1.13 |
Fixed costs | RON/kg | 1.70 | 1.89 | 0.90 |
Labor cost | RON/kg | 1.00 | 1.59 | 0.63 |
Production cost | RON/kg | 12.44 | 10.52 | 1.18 |
Unitary price | RON/kg | 16.00 | 11.45 | 1.40 |
Profit/kg | RON | 3.56 | 0.93 | 3.83 |
Rate of return | % | 28.60 | 8.85 | 3.23 |
Margin on variable costs | RON | 5.26 | 2.82 | 1.87 |
Margin on variable costs % | % | 32.87 | 23.43 | 1.40 |
Break-even point in value units | RON | 206.94 | 3634.62 | |
Break-even point in physical units | kg/head | 12.93 | 317.43 | |
Operating risk rate | % | 32.33 | 70.54 | 0.46 |
Security index | 0.68 | 0.29 | 2.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chetroiu, R.; Rodino, S.; Dragomir, V.; Turek-Rahoveanu, P.A.; Manolache, A.M. Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative. Sustainability 2024, 16, 9858. https://doi.org/10.3390/su16229858
Chetroiu R, Rodino S, Dragomir V, Turek-Rahoveanu PA, Manolache AM. Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative. Sustainability. 2024; 16(22):9858. https://doi.org/10.3390/su16229858
Chicago/Turabian StyleChetroiu, Rodica, Steliana Rodino, Vili Dragomir, Petruța Antoneta Turek-Rahoveanu, and Alexandra Marina Manolache. 2024. "Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative" Sustainability 16, no. 22: 9858. https://doi.org/10.3390/su16229858
APA StyleChetroiu, R., Rodino, S., Dragomir, V., Turek-Rahoveanu, P. A., & Manolache, A. M. (2024). Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative. Sustainability, 16(22), 9858. https://doi.org/10.3390/su16229858