Future Increase in Extreme Precipitation: Historical Data Analysis and Influential Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Study Methods
2.3.1. Definition of Extreme Indices
2.3.2. Line Tendency Test and TFPW–MK Trend Analysis
- (1)
- Calculate the linear trend of each index series (t = 1, 2, …, N):
- (2)
- Form a new series by removing the trend component from the series:
- (3)
- Calculate the first-order autocorrelation coefficient of the new series and perform a significance test on (the significance test is 0.1). If the test is successful, directly apply the Mann–Kendall (MK) method to test the original series . If not, proceed to step (4) for preprocessing.
- (4)
- Form a new series by removing the autocorrelation terms from the series, and then reintroduce the trend component to create a new series that is not affected by autocorrelation interference:
- (5)
- Substitute the new series into the MK test, which involves the following calculation steps:
2.3.3. Spatial Interpolation
2.3.4. Correlation Analysis
2.3.5. Influencing Factor Quantification
- (1)
- Factor detection: Factor detection mainly examines the strength of the driving force using a statistical measure denoted as . The calculation is as follows:
- (2)
- Interaction detection: Interaction detection can be used to determine the type of relationship between two factors and their impact on EPIs. The specific interactions are detailed in Table 2.
3. Results and Analysis
3.1. Spatiotemporal Variation in EPIs
3.2. Seasonal Variation in EPIs
3.3. Relationship Between Extreme Precipitation Indices and Total Precipitation
3.4. Relationship Between EPIs and the Regional Geographic Factors
3.5. Influence of Large-Scale Climate Factors on Extreme Precipitation
3.5.1. Contribution of Single Large-Scale Climate Factor
3.5.2. Influence of the Interaction of Large-Scale Climate Factors
4. Discussion
4.1. Evident Spatiotemporal Variability in Extreme Precipitation
4.2. Potential Drivers of Extreme Precipitation Variability
4.3. Exploring Uncertainty and Future Prospects
5. Conclusions
- (1)
- Most of the extreme precipitation indices showed increasing trends and these increasing trends account for about 80% of the stations. However, only CWD was significantly increased in about half of the stations (p < 0.05). Furthermore, RX1day and RX5day exhibited obvious increasing trends across all four seasons, with the most pronounced trends observed during spring and winter.
- (2)
- The increasing trends in extreme precipitation are mainly distributed in the south, whereas the downward trends are distributed in the northern part of the study area; extreme precipitation is mainly distributed in the central and eastern regions, with a higher concentration of precipitation in the Songhua River basin.
- (3)
- The increase in the total precipitation in Heilongjiang Province from 1961 to 2020 was primarily driven by R10mm, R20mm, and R25mm, whose correlation coefficients reached 0.97, 0.97, and 0.93, respectively. In contrast, CDD showed no correlation with the total precipitation.
- (4)
- The altitude exhibited a weak correlation with the EPIs, while the latitude and longitude demonstrated significant correlations. Meanwhile, an analysis identified that the AMO, MEI, IOD, Nino 3.4, NSI, WPSH, and EASMI were the most important factors affecting extreme precipitation. The importance of considering the combined impact of multiple factors on the EPIs, rather than focusing solely on any single factor, was highlighted.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021-the Physical Science basis. Interaction 2021, 49, 44–45. [Google Scholar]
- Gao, X.; Guo, M.; Yang, Z.; Zhu, Q.; Xu, Z.; Gao, K. Temperature dependence of extreme precipitation over mainland China. J. Hydrol. 2020, 583, 124595. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Zhou, S.; Yu, B.; Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 2023, 9, eabo1638. [Google Scholar] [CrossRef]
- Du, H.; Alexander, L.V.; Donat, M.G.; Lippmann, T.; Srivastava, A.; Salinger, J.; Kruger, A.; Choi, G.; He, H.S.; Fujibe, F.; et al. Precipitation From Persistent Extremes is Increasing in Most Regions and Globally. Geophys. Res. Lett. 2019, 46, 6041–6049. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef]
- Ogolo, E.O.; Matthew, O.J. Spatial and temporal analysis of observed trends in extreme precipitation events in different climatic zones of Nigeria. Theor. Appl. Climatol. 2022, 148, 1335–1351. [Google Scholar] [CrossRef]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Liu, W.; Min, L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Karki, R.; Thapa, B.R.; Maharjan, M.; Parajuli, B. Spatio-temporal variability of extreme precipitation in Nepal. Int. J. Climatol. 2018, 38, 4296–4313. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades. Int. J. Climatol. 2021, 41, 1024–1038. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Boulange, J.; Do, H.X.; Gosling, S.N.; Grillakis, M.G.; Koutroulis, A.G.; Leonard, M.; Liu, J.; Müller Schmied, H.; Papadimitriou, L.; et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 2021, 371, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Irannezhad, M.; Liu, J.; Chen, D. Extreme precipitation variability across the Lancang-Mekong River Basin during 1952–2015 in relation to teleconnections and summer monsoons. Int. J. Climatol. 2022, 42, 2614–2638. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.; Leung, L.R. Changes in temporal variability of precipitation over land due to anthropogenic forcings. Environ. Res. Lett. 2017, 12, 024009. [Google Scholar] [CrossRef]
- Tong, S.; Li, X.; Zhang, J.; Bao, Y.; Bao, Y.; Na, L.; Si, A. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960–2017. Sci. Total Environ. 2019, 649, 75–89. [Google Scholar] [CrossRef]
- Shi, P.; Yang, T.; Xu, C.-Y.; Yong, B.; Shao, Q.; Li, Z.; Wang, X.; Zhou, X.; Li, S. How do the multiple large-scale climate oscillations trigger extreme precipitation? Glob. Planet. Change 2017, 157, 48–58. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y.; Chen, S.; Horton, D.E.; Chen, X.; Liu, B.; Lin, K. Trends in Persistent Seasonal-Scale Atmospheric Circulation Patterns Responsible for Seasonal Precipitation Totals and Occurrences of Precipitation Extremes over Canada. J. Clim. 2019, 32, 7105–7126. [Google Scholar] [CrossRef]
- Huang, W.; Chen, F.; Feng, S.; Chen, J.; Zhang, X. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Hu, M.; Alias, N.E.; Nover, D. Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim. Dyn. 2015, 45, 2273–2292. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Fang, G.; Li, Y.; Li, Z.; Wang, F.; Xia, Z. Observed changes in extreme precipitation over the Tienshan Mountains and associated large-scale climate teleconnections. J. Hydrol. 2022, 606, 127457. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Li, J.; Lin, X.; Zheng, X.-T.; Fan, L.; Zhang, Y. Interannual variation in the East Asian summer monsoon-tropical Atlantic SST relationship modulated by the Interdecadal Pacific Oscillation. Npj Clim. Atmos. Sci. 2023, 6, 169. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhang, F.; Chen, L.; Pan, T.; Wang, B.; Ren, C. Changes of winter extreme precipitation in Heilongjiang province and the diagnostic analysis of its circulation features. Atmos. Res. 2020, 245, 105094. [Google Scholar] [CrossRef]
- Kirchmeier-Young, M.C.; Zhang, X. Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA 2020, 117, 13308–13313. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Gan, T.Y.; Shao, D. Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J. Hydrol. 2017, 550, 453–465. [Google Scholar] [CrossRef]
- Casanueva, A.; Rodriguez-Puebla, C.; Frias, M.D.; Gonzalez-Reviriego, N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2014, 18, 709–725. [Google Scholar] [CrossRef]
- Gayathri, M.S.; Adarsh, S.; Shehinamol, K.; Nizamudeen, Z.; Lal, M.R. Evaluation of change points and persistence of extreme climatic indices across India. Nat. Hazards 2022, 116, 2747–2759. [Google Scholar] [CrossRef]
- Dong, T.; Zhu, X.; Deng, R.; Ma, Y.; Dong, W. Detection and attribution of extreme precipitation events over the Asian monsoon region. Weather Clim. Extrem. 2022, 38, 100497. [Google Scholar] [CrossRef]
- Duan, W.; Zou, S.; Christidis, N.; Schaller, N.; Chen, Y.; Sahu, N.; Li, Z.; Fang, G.; Zhou, B. Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. Npj Clim. Atmos. Sci. 2022, 5, 33. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, Y.; Shen, G.; Xiao, C.; Xu, L.; Chen, N. Spatiotemporal characteristics and estimates of extreme precipitation in theYangtze River BasinusingGLDASdata. Int. J. Climatol. 2021, 41, E1812–E1830. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef]
- Ma, J.; Gao, Y. Analysis of Annual Precipitation and Extreme Precipitation Change in the Upper Yellow River Basin in Recent 50 Years. Plateau Meteorol. 2019, 38, 124–135. [Google Scholar]
- Qiu, D.; Wu, C.; Mu, X.; Zhao, G.; Gao, P. Changes in extreme precipitation in the Wei River Basin of China during 1957–2019 and potential driving factors. Theor. Appl. Climatol. 2022, 149, 915–929. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.; Wang, Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Chen, M.-T.; Wang, H.; Li, M.; Yu, Y. Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960–2013). Quat. Int. 2018, 476, 1–13. [Google Scholar] [CrossRef]
- Rao, X.; Lu, X.; Dong, W. Evaluation and Projection of Extreme Precipitation over Northern China in CMIP5 Models. Atmosphere 2019, 10, 691. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J. The characteristics of late summer extreme precipitation in northern China and associated large-scale circulations. Int. J. Climatol. 2020, 40, 5170–5187. [Google Scholar] [CrossRef]
- Yu, X.; Ma, Y. Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere 2022, 13, 1197. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, X.; Li, S.; Zhao, A.; Li, X.; Fan, J. Changes in extreme precipitation over Northeast China, 1960–2011. Quat. Int. 2013, 298, 177–186. [Google Scholar] [CrossRef]
- Song, X.; Song, S.; Sun, W.; Mu, X.; Wang, S.; Li, J.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Meng, F.; Li, T.; Fu, Q.; Liu, D.; Yang, L. Study on the calculation model of regional rainwater resource potential and its temporal and spatial distribution. J. Hydraul. Eng. 2020, 51, 556–568. [Google Scholar]
- Guo, S.; Yang, X.; Zhang, Z.; Zhang, F.; Liu, T. Spatial Distribution and Temporal Trend Characteristics of Agro-Climatic Resources and Extreme Climate Events during the Soybean Growing Season in Northeast China from 1981 to 2017. J. Meteorol. Res. 2020, 34, 1309–1323. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, R.; Wang, Y. Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ. Res. Lett. 2019, 14, 024005. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Guo, E.; Zhao, C.; Cao, T. Spatial and temporal variations of precipitation concentration and their relationships with large-scale atmospheric circulations across Northeast China. Atmos. Res. 2019, 222, 62–73. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhang, L.; Song, S.; Pan, T.; Ren, C.; Tan, Y. Mechanism and effects of the increase in winter temperatures in the Arctic region on cold winters in Heilongjiang Province, Northeast China for the period 1961–2018. J. Geogr. Sci. 2022, 32, 225–240. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Wang, K.; Wang, T. A study on the spatial and temporal evolution of multi-year extreme precipitation in the Huaihe River Basin. Theor. Appl. Climatol. 2023, 152, 397–405. [Google Scholar] [CrossRef]
- Deng, P.; Zhang, M.; Hu, Q.; Wang, L.; Bing, J. Pattern of spatio-temporal variability of extreme precipitation and flood-waterlogging process in Hanjiang River basin. Atmos. Res. 2022, 276, 106258. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, Y.; Lu, R. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos. Res. 2018, 209, 103–114. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 2018, 161, 381–391. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Zhang, X.; Harvey, K.D.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001, 37, 987–998. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kulkarni, A.; Von Storch, H. Monte Carlo Experiments on the Effect of Serial Correlation on the Mann-Kendall Test of Trend. Meteorol. Z. 1995, 4, 82–85. [Google Scholar] [CrossRef]
- Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [Google Scholar] [CrossRef]
- Dong, B.; Yu, Y. Tempo-spatial Variation Characteristics of Extreme Precipitation in Shanxi Province in Recent 60Years. J. Soil Water Conserv. 2022, 36, 135–141. [Google Scholar]
- Chen, J.; Tao, H.; Liu, J.; Zhai, J.; Su, B.; Jiang, T. Temporal and Spatial Variations of Extreme Precipitation in China-Pakistan Economic Corridor. Plateau Meteorol. 2021, 40, 1048–1056. [Google Scholar]
- Cheng, S.; Xu, L.; Qin, W.; Guo, Q. Temporal and spatial variation of extreme precipitation in the Longchuan River Basin in 1978–2015 years. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012026. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Variability, trends, and teleconnections of observed precipitation over Pakistan. Theor. Appl. Climatol. 2018, 134, 613–632. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Mondal, A.; Mujumdar, P.P. Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India. J. Hydrol. 2015, 521, 217–231. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Zhao, Q.; Zou, C.H.; Wang, K.F.; Gao, Q.; Yao, T. Spatial and temporal distribution characteristics of drought and its influencing factors in Heilongjiang Province, China from 1956 to 2015. Appl. Ecol. Environ. Res. 2019, 17, 2631–2650. [Google Scholar] [CrossRef]
- Sun, J.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef]
- Dong, S.; Sun, Y.; Zhang, X. Attributing observed increase in extreme precipitation in China to human influence. Environ. Res. Lett. 2022, 17, 095005. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Li, X.; Gong, J.; Cao, Q. Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration. Sci. Total Environ. 2023, 864, 161045. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Ran, L. Impacts of changes in land cover and topography on a heavy precipitation event in Central Asia. Atmos. Ocean. Sci. Lett. 2022, 15, 100207. [Google Scholar] [CrossRef]
- Guo, E.; Zhang, J.; Wang, Y.; Quan, L.; Zhang, R.; Zhang, F.; Zhou, M. Spatiotemporal variations of extreme climate events in Northeast China during 1960–2014. Ecol. Indic. 2019, 96, 669–683. [Google Scholar] [CrossRef]
- Asadieh, B.; Krakauer, N.Y. Global trends in extreme precipitation: Climate models versus observations. Hydrol. Earth Syst. Sci. 2015, 19, 877–891. [Google Scholar] [CrossRef]
- Tong, R.; Sun, W.; Han, Q.; Yu, J.; Tian, Z. Spatial and Temporal Variations in Extreme Precipitation and Temperature Events in the Beijing-Tianjin-Hebei Region of China over the Past Six Decades. Sustainability 2020, 12, 1415. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Liu, D.; He, P.; Li, Z.; Shi, M.; Xu, J. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960–2019. Environ. Sci. Pollut. Res. 2023, 30, 57316–57330. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; He, Y.; Cai, Y.; Cui, X.; Qu, X. Analysis of Spatiotemporal Variability in Extreme Climate and Potential Driving Factors on the Yunnan Plateau (Southwest China) during 1960–2019. Atmosphere 2021, 12, 1136. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Shi, X.; Li, W.; Wang, H.; Zhang, S.; Fang, G. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmos. Res. 2014, 138, 346–355. [Google Scholar] [CrossRef]
- Wu, S.; Hu, Z.; Wang, Z.; Cao, S.; Yang, Y.; Qu, X.; Zhao, W. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Quat. Int. 2021, 592, 80–96. [Google Scholar] [CrossRef]
- Du, H.; Xia, J.; Yan, Y.; Lu, Y.; Li, J. Spatiotemporal Variations of Extreme Precipitation in Wuling Mountain Area (China) and Their Connection to Potential Driving Factors. Sustainability 2022, 14, 8312. [Google Scholar] [CrossRef]
- Xu, F.; Zhou, Y.; Zhao, L. Spatial and temporal variability in extreme precipitation in the Pearl River Basin, China from 1960 to 2018. Int. J. Climatol. 2022, 42, 797–816. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Liu, Z.; Han, D.; Sun, P.; Jiang, H. Distribution of precipitation and its effect factors analysis in the central and western regions of Inner Mongolia during the last 60 years. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2015, 36, 84–94. [Google Scholar]
- Wang, D.; Dong, Z.; Ling, Z.; Jiang, F.; Zhu, S.; Chen, J. Spatiotemporal variability of extreme precipitation at different time scales and quantitative analysis of associated driving teleconnection factors: Insights from Taihu Basin, China. Ecol. Indic. 2022, 142, 109287. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.; Chen, Y.; Li, S.; Zhou, Y. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Schurer, A.P.; Hegerl, G.C.; Goosse, H.; Bollasina, M.A.; England, M.H.; Smith, D.M.; Tett, S.F.B. Role of multi-decadal variability of the winter North Atlantic Oscillation on Northern Hemisphere climate. Environ. Res. Lett. 2023, 18, 044046. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Garfinkel, C.I.; Butler, A.H. The Teleconnection of El Niño Southern Oscillation to the Stratosphere. Rev. Geophys. 2019, 57, 5–47. [Google Scholar] [CrossRef]
- Lu, J.; Wang, K.; Wu, G.; Ye, A.; Mao, Y. Inter-product biases in extreme precipitation duration and frequency across China. Environ. Res. Lett. 2024, 19, 114075. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
Index | Descriptive Name | Definition | Unit |
---|---|---|---|
R10mm | Number of heavy precipitation days | Annual count of days when RR ≥ 10 mm | days |
R20mm | Number of very heavy precipitation days | Annual count of days when RR ≥ 20 mm | days |
R25mm | Number of extremely heavy precipitation days | Annual count of days when RR ≥ 25 mm | days |
R95P | Very wet day precipitation | Annual total precipitation when RR > 95th percentile | mm |
R99P | Extremely wet day precipitation | Annual total precipitation when RR > 99th percentile | mm |
CDD | Consecutive dry days | Maximum number of consecutive dry days | days |
CWD | Consecutive wet days | Maximum number of consecutive wet days | days |
PRCPTOT | Wet day precipitation | Annual total PRCP in wet days | mm |
RX1day | Maximum 1-day precipitation | Annual maximum 1-day precipitation | mm |
RX5day | Maximum 5-day precipitation | Annual maximum consecutive 5-day precipitation | mm |
SDII | Simple daily intensity index | Average precipitation on wet days | mm/day |
Comparative Result | Interaction Type |
---|---|
Nonlinear weakening | |
Univariate weakening | |
Two-factor enhancement | |
Mutually independent | |
Nonlinear enhancement |
Indices | Units | Range of Regional Trends (Mean) (Decades−1) | Decreasing Trend (SS) | Increasing Trend (SS) | No Trend |
---|---|---|---|---|---|
R10 | days | 0.01~0.88 (0.3) | 0 (0) | 29 (1) | 0 |
R20 | days | −0.14~0.57 (0.2) | 3 (2) | 26 (1) | 0 |
R25 | days | −0.13~0.57 (0.1) | 4 (4) | 25 (2) | 0 |
R95P | mm | −2.62~17.14 (5.7) | 2 (2) | 27 (0) | 0 |
R99P | mm | −5.15~11.14 (3.4) | 4 (4) | 25 (0) | 0 |
CDD | days | −6.99~1.29 (0.2) | 25 (25) | 4 (0) | 0 |
CWD | days | −0.31~0.30 (0) | 10 (8) | 15 (8) | 4 |
PRCPTOT | mm | 1.10~32.36 (10.4) | 0 (0) | 29 (0) | 0 |
RX1day | mm | −1.24~6.48 (0.5) | 5 (5) | 24 (1) | 0 |
RX5day | mm | −1.31~6.80 (0.8) | 6 (6) | 23 (1) | 0 |
SDII | mm/day | −0.10~0.34 (0.1) | 4 (3) | 25 (0) | 0 |
Indices | Longitude | Latitude | Altitude |
---|---|---|---|
R10mm | 0.58 b | −0.37 a | 0.10 |
R20mm | 0.29 | −0.34 | −0.02 |
R25mm | 0.22 | −0.35 | −0.06 |
R95P | 0.58 b | −0.45 a | 0.08 |
R99P | 0.57 b | −0.49 b | 0.16 |
CDD | −0.70 b | 0.05 | −0.16 |
CWD | 0.38 a | −0.13 | 0.41 a |
PRCPTOT | 0.63 b | −0.39 a | 0.10 |
RX1day | −0.01 | −0.58 b | −0.09 |
RX5day | −0.08 | −0.39 a | 0.01 |
SDII | −0.37 a | −0.32 | −0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mu, X.; Meng, F.; Zheng, E.; Dong, F.; Li, T.; Xu, F. Future Increase in Extreme Precipitation: Historical Data Analysis and Influential Factors. Sustainability 2024, 16, 9887. https://doi.org/10.3390/su16229887
Zhang H, Mu X, Meng F, Zheng E, Dong F, Li T, Xu F. Future Increase in Extreme Precipitation: Historical Data Analysis and Influential Factors. Sustainability. 2024; 16(22):9887. https://doi.org/10.3390/su16229887
Chicago/Turabian StyleZhang, Hengfei, Xinglong Mu, Fanxiang Meng, Ennan Zheng, Fangli Dong, Tianxiao Li, and Fuwang Xu. 2024. "Future Increase in Extreme Precipitation: Historical Data Analysis and Influential Factors" Sustainability 16, no. 22: 9887. https://doi.org/10.3390/su16229887
APA StyleZhang, H., Mu, X., Meng, F., Zheng, E., Dong, F., Li, T., & Xu, F. (2024). Future Increase in Extreme Precipitation: Historical Data Analysis and Influential Factors. Sustainability, 16(22), 9887. https://doi.org/10.3390/su16229887