Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation
Abstract
:1. Introduction
2. Method
2.1. Leontief Model
2.2. Emissions Prediction Based on the Row Arrange Series Method (RAS)
2.3. Use of the Hypothetical Extraction Method (HEM) for Emission Linkage Analysis
2.4. Complex Network Analysis
2.4.1. Overall Network Characteristics
2.4.2. Centrality
2.5. Study Area
2.6. Data Source
2.7. Scenario Design
3. Results
3.1. Provincial Embodied Pollutant Emissions Derived by PBA and CBA
3.2. Sectoral Embodied Pollutant Emissions
3.3. Inter-Provincial Embodied Pollutants Transfer Paths
3.4. Complex Network Analysis of China’s Inter-Provincial Pollutants Transfer Paths
3.4.1. Overall Network Structure
3.4.2. Centrality Analysis
3.5. Scenarios Analysis
3.5.1. Analysis of the Impact of Trade Intensity on Pollutant Emissions
3.5.2. Analysis of the Influence of Trade Intensity on Embodied Pollutants’ Transfer Paths
3.5.3. Analysis of the Impacts of Trade Intensity on Pollutants’ Network Characteristics
- (i)
- The average clustering coefficient gradually increased with the strengthening of trade, while the average path length decreased. Moreover, the connections between provinces in embodied pollutants transfer paths became progressively closer. For example, the average clustering coefficient of SO2 gradually increased from 0.787 under ST2 to 0.812 under ST7. The average path length of SO2 gradually decreased from 2.495 in ST2 to 2.17 in ST7. This suggests that the interdependence between sectors would significantly increase with the strengthening of trade. Therefore, the government should adopt a more comprehensive approach to formulate emission reduction policies, ensuring concerted efforts are made to reduce emissions across diverse regions and sectors.
- (ii)
- The study reveals that alterations in inter-provincial trade exerted a substantial influence on betweenness centrality. Under the scenarios ST2, ST3, and ST4, the betweenness centrality of GD2 and HA2 was found to be the highest. However, the roles of GD2 and HA2 as pivotal points declined with the strengthening of inter-provincial trade. For example, the betweenness centrality of HA2 decreased by 45%, dropping from 2594 in ST2 to 1405 in ST5 within the NOX network. In contrast, trade reallocated resources and strengthened the centrality of JS2. Under ST5, ST6, and ST7, JS2 surpassed HA2 as having the largest betweenness centrality for NOX. Similarly, under the scenario ST7, SX2 surpasses GD2 as having the largest betweenness centrality in the PM2.5 and PM10 networks. As a result, greater attention should be directed towards provinces and sectors that serve as pivotal nodes in the transfer of pollution with changes in inter-provincial trade. Therefore, the government should scientifically assess the demand for upstream and downstream products in intermediary sectors such as HA2 and SX2. Subsidies should be provided to these sectors to develop cleaner production technologies.
- (iii)
- The results indicate that most closeness centrality remained relatively stable despite changes in trade. It could be found that the sectors like SX2, HA2, and HE2 that ranked high according to closeness centrality indicators did not change largely, indicating the stable central status of these sectors. Due to the strong industrial foundation and superior geographical location, these sectors can directly provide or receive pollutants, with limited reliance on intermediate departments.
3.6. Analysis of the Influence of Economy and Technology
4. Conclusions
- (1)
- The macro direction of emissions transfer paths was from the resource-rich northern and central provinces towards the trade-developed southern provinces. Complex network analysis revealed that GD2 and HN2 had the highest betweenness centrality, while SX2, HN3, HE2, and GD2 had high closeness centrality. The results imply that implementing energy-saving technologies and emission reduction policies in key provinces (i.e., Henan, Hebei, and Guangdong) will substantially reduce pollutant emissions nationwide.
- (2)
- The increase in inter-provincial trade intensity would lead to a corresponding rise in pollutants due to the relocation of production activities towards provinces with higher emission intensity. The escalation of inter-provincial trade has further exacerbated the issue of pollutant leakage and inequitable environmental accountability. Therefore, when formulating national pollution emission reduction policies, emission reduction tasks should be reasonably distributed among provinces and attention should be paid to the impact of inter-provincial trade to prevent outsourcing more pollution to the central and northern provinces.
- (3)
- Inter-provincial trade contributed to the transfer of embodied emissions, leading to emissions leakage. Production-based provinces and consumption-based provinces should adopt different emission reduction policies. For example, emission reduction policies for production-based provinces could be implemented, such as accelerating the coal desulfurization project, promoting the development of renewable energy, and implementing advanced pollutant removal and production technologies. From a consumption perspective, the Chinese government can exert influence over consumption behaviors through the implementation of environmentally friendly labels on products, imposing taxes on intermediate products based on embodied pollutant emissions, and allocating subsidies towards major emitters to bolster the adoption of advanced production technologies.
- (4)
- From the sector perspective, the industry sector, characterized by substantial energy consumption, was the predominant emitter of all pollutant production-based emissions, accounting for more than 40% of total emissions. From the consumption-based perspective, the industry sector accounted for the majority of pollutant emissions and the service sector contributed approximately 10%, while the electric power and agriculture sectors made negligible contributions.
- (5)
- Rapid economic development would increase energy and resource consumption, consequently leading to higher emissions. Developing emission reduction technologies can effectively balance the tradeoff between economic development and environmental emissions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.L.; Huang, G.H.; Liu, L.R.; Guan, Y.R.; Zhai, M.Y.; Li, Y.P. Revealing Dynamic Impacts of Socioeconomic Factors on Air Pollution Changes in Guangdong Province, China. Sci. Total Environ. 2020, 699, 134178. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.P.; Su, Y.X.; Fan, R.G.; Qin, M.; Fu, H.F. Exploring Provincial Carbon-Pollutant Emission Efficiency in China: An Integrated Approach with Social Network Analysis and Spatial Econometrics. Ecol. Indic. 2024, 159, 111662. [Google Scholar] [CrossRef]
- Seo, J.H.; Jeon, H.W.; Sung, U.J.; Sohn, J.-R. Impact of the COVID-19 Outbreak on Air Quality in Korea. Atmosphere 2020, 11, 1137. [Google Scholar] [CrossRef]
- Southerland, V.A.; Brauer, M.; Mohegh, A.; Hammer, M.S.; Van Donkelaar, A.; Martin, R.V.; Apte, J.S.; Anenberg, S.C. Global Urban Temporal Trends in Fine Particulate Matter (PM2.5) and Attributable Health Burdens: Estimates from Global Datasets. Lancet Planet. Health 2022, 6, e139–e146. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.Q.; Lyapustin, A.; Wang, J.; Dubovik, O.; Schwartz, J.; Sun, L.; Li, C.; Liu, S.; Zhu, T. First Close Insight into Global Daily Gapless 1 Km PM2.5 Pollution, Variability, and Health Impact. Nat. Commun. 2023, 14, 8349. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent Growth of Anthropogenic Non-Methane Volatile Organic Compound (NMVOC) Emissions in China during 1990–2017: Drivers, Speciation and Ozone Formation Potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Tong, D.; Zhang, Q.; Liu, F.; Geng, G.; Zheng, Y.; Xue, T.; Hong, C.; Wu, R.; Qin, Y.; Zhao, H.; et al. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030. Environ. Sci. Technol. 2018, 52, 12905–12914. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, M.T.; Shao, S.; Song, X.Q.; Wang, H. Socioeconomic Drivers and Mitigating Strategies of Volatile Organic Compounds Emissions in China’s Industrial Sector. Environ. Impact Assess. Rev. 2023, 101, 107102. [Google Scholar] [CrossRef]
- Mi, Z.; Zheng, J.; Meng, J.; Zheng, H.; Li, X.; Coffman, D.; Woltjer, J.; Wang, S.; Guan, D. Carbon Emissions of Cities from a Consumption-Based Perspective. Appl. Energy 2019, 235, 509–518. [Google Scholar] [CrossRef]
- Meng, J.; Huo, J.W.; Zhang, Z.K.; Zhang, Y.; Mi, Z.F.; Guan, D.B.; Feng, K.H. The Narrowing Gap in Developed and Developing Country Emission Intensities Reduces Global Trade’s Carbon Leakage. Nat. Commun. 2023, 14, 3775. [Google Scholar] [CrossRef]
- Lin, J.; Tong, D.; Davis, S.; Ni, R.; Tan, X.X.; Pan, D.; Zhao, H.Y.; Lu, Z.F.; Streets, D.; Feng, T.; et al. Global Climate Forcing of Aerosols Embodied in International Trade. Nat. Geosci. 2016, 9, 790–794. [Google Scholar] [CrossRef]
- Huo, J.W.; Meng, J.; Zheng, H.R.; Parikh, P.; Guan, D.B. Achieving Decent Living Standards in Emerging Economies Challenges National Mitigation Goals for CO2 Emissions. Nat. Commun. 2023, 14, 6342. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.H.; Chen, C. A Characteristics Analysis of Carbon Emission Based on Multi-Dimensional Carbon Emission Accounting Methods and Structural Decomposition Analysis: A Case Study of Beijing, China. Front. Earth Sci. 2023, 10, 1073167. [Google Scholar] [CrossRef]
- Ye, Q.L.; Krol, M.S.; Shan, Y.L.; Schyns, J.F.; Berger, M.; Hubacek, K. Allocating Capital-Associated CO2 Emissions along the Full Lifespan of Capital Investments Helps Diffuse Emission Responsibility. Nat. Commun. 2023, 14, 2727. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Meng, Z.H.; Lv, Z.F.; Wang, X.T.; Deng, F.Y.; Liu, Y.; Zhang, Y.N.; Shi, M.S.; Zhang, Q.; He, K.B. Emissions and Health Impacts from Global Shipping Embodied in US–China Bilateral Trade. Nat. Sustain. 2019, 2, 1027–1033. [Google Scholar] [CrossRef]
- Meng, J.; Mi, Z.F.; Guan, D.B.; Li, J.; Tao, S.; Li, Y.; Feng, K.H.; Liu, J.F.; Liu, Z.; Wang, X.J.; et al. The Rise of South–South Trade and Its Effect on Global CO2 Emissions. Nat. Commun. 2018, 9, 1871. [Google Scholar] [CrossRef]
- Liu, Y.S.; Cao, Y.; Hou, J.J.; Zhang, J.T.; Yang, Y.O.; Liu, L.C. Identifying Common Paths of CO2 and Air Pollutants Emissions in China. J. Clean. Prod. 2020, 256, 120599. [Google Scholar] [CrossRef]
- Zheng, H.Z.; Xu, L.Y. Production and Consumption-Based Primary PM2.5 Emissions_ Empirical Analysis from China’s Interprovincial Trade. Resour. Conserv. Recycl. 2020, 155, 104661. [Google Scholar] [CrossRef]
- Ou, J.M.; Huang, Z.J.; Klimont, Z.; Jia, G.L.; Zhang, S.H.; Li, C.; Meng, J.; Mi, Z.F.; Zheng, H.R.; Shan, Y.L.; et al. Role of Export Industries on Ozone Pollution and Its Precursors in China. Nat. Commun. 2020, 11, 5492. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhang, Y.J.; Su, B. How to Improve the Energy-Saving Performance of China’s Transport Sector? An Input–Output Perspective. J. Environ. Manag. 2024, 356, 120635. [Google Scholar] [CrossRef]
- Zhang, L.X.; Wang, Y.A.; Feng, C.Y.; Liang, S.; Liu, Y.; Du, H.B.; Jia, N. Understanding the Industrial NOx and SO2 Pollutant Emissions in China from Sector Linkage Perspective. Sci. Total Environ. 2021, 770, 145242. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.P.; Huang, G.H.; Lv, J.; Ma, Y.; Li, Y.F. A Multi-Scenario Input-Output Economy-Energy-Environment Nexus Management Model for Pearl River Delta Urban Agglomeration. J. Clean. Prod. 2021, 317, 128402. [Google Scholar] [CrossRef]
- Ma, X.Y.; Zhao, C.Y.; Song, C.C.; Meng, D.; Xu, M.; Liu, R.; Yan, Y.M.; Liu, Z.G. The Impact of Regional Policy Implementation on the Decoupling of Carbon Emissions and Economic Development. J. Environ. Manag. 2024, 355, 120472. [Google Scholar] [CrossRef] [PubMed]
- Markaki, M.; Papadakis, S. Productive Structure Optimization under Macroeconomic Constraints Based on Input-Output Analysis. Struct. Change Econ. Dyn. 2024, 70, 91–105. [Google Scholar] [CrossRef]
- Chen, X.P.; Li, Y.P.; Gao, P.P.; Liu, J.; Zhang, H. A Multi-Scenario BP-Neural-Network Ecologically-Extended Input-Output Model for Synergetic Management of Water-Electricity Nexus System—A Case Study of Fujian Province. J. Clean. Prod. 2023, 399, 136581. [Google Scholar] [CrossRef]
- Wang, G.Y.; Li, Y.P.; Liu, J.; Huang, G.H.; Chen, L.R.; Yang, Y.J.; Gao, P.P. A Two-Phase Factorial Input-Output Model for Analyzing CO2-Emission Reduction Pathway and Strategy from Multiple Perspectives—A Case Study of Fujian Province. Energy 2022, 248, 123615. [Google Scholar] [CrossRef]
- Chen, L.A.; Huang, G.H.; Luo, B.; Liu, L.R. Unveiling Environmental Implications of Canadian Electricity System’s Low-Carbon Transitions: A Multi-Regional Stochastic Optimization-Driven Input-Output Model. J. Clean. Prod. 2023, 420, 138363. [Google Scholar] [CrossRef]
- Sun, D.; Liu, Y.Y.; Yang, X.W.; Lyu, L.Q.; Yuan, J.H. Economic and Employment Effects of China’s Power Transition Based on Input–output and Scenario Simulation. Adv. Clim. Change Res. 2022, 13, 721–728. [Google Scholar] [CrossRef]
- Maeno, K.; Tokito, S.; Kagawa, S. CO2 Mitigation through Global Supply Chain Restructuring. Energy Econ. 2022, 105, 105768. [Google Scholar] [CrossRef]
- Li, R.R.; Wang, Q.; Wang, X.F.; Zhou, Y.L.; Han, X.Y.; Liu, Y. Germany’s Contribution to Global Carbon Reduction Might Be Underestimated—A New Assessment Based on Scenario Analysis with and without Trade. Technol. Forecast. Soc. Change 2022, 176, 121465. [Google Scholar] [CrossRef]
- Xu, Z.C.; Li, Y.; Chau, S.N.; Dietz, T.; Li, C.B.; Wan, L.W.; Zhang, J.D.; Zhang, L.W.; Li, Y.K.; Chung, M.G.; et al. Impacts of International Trade on Global Sustainable Development. Nat. Sustain. 2020, 3, 964–971. [Google Scholar] [CrossRef]
- Cai, H.; Qu, S.J.; Wang, M. Changes in China’s Carbon Footprint and Driving Factors Based on Newly Constructed Time Series Input–Output Tables from 2009 to 2016. Sci. Total Environ. 2020, 711, 134555. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.P.; Li, Y.P.; Huang, G.H.; Wang, S.G.; Suo, C.; Ma, Y. A Multi-Scenario Factorial Analysis and Multi-Regional Input-Output Model for Analyzing CO2 Emission Reduction Path in Jing-Jin-Ji Region. J. Clean. Prod. 2021, 300, 126782. [Google Scholar] [CrossRef]
- Chenery, H.B.; Watanabe, T. International Comparisons of the Structure of Production. Econometrica 1958, 26, 487–521. [Google Scholar] [CrossRef]
- Sajid, M.J.; Li, X.; Cao, Q. Demand and Supply-Side Carbon Linkages of Turkish Economy Using Hypothetical Extraction Method. J. Clean. Prod. 2019, 228, 264–275. [Google Scholar] [CrossRef]
- Duarte, R.; Sanchez-Choliz, J.; Bielsa, J. Water Use in the Spanish Economy: An Input/Output Approach. Ecol. Econ. 2002, 43, 71–85. [Google Scholar] [CrossRef]
- Schultz, S. Approaches to Identifying Key Sectors Empirically by Means of Input-output Analysis. J. Dev. Stud. 1977, 14, 77–96. [Google Scholar] [CrossRef]
- Li, Z.C.; Li, Z.Y.; Song, Y. Identification of Key Provinces and Sectors for Energy Conservation in China: Linkage Analyses Based on the Modified Hypothetical Extraction Method. Energy Strategy Rev. 2022, 44, 100998. [Google Scholar] [CrossRef]
- He, W.W.; Wang, Y.; Zuo, J.; Luo, Y.C. Sectoral Linkage Analysis of Three Main Air Pollutants in China’s Industry: Comparing 2010 with 2002. J. Environ. Manag. 2017, 202, 232–241. [Google Scholar] [CrossRef]
- Fang, G.C.; Huang, M.; Sun, C.W. Revealing the Hidden Carbon Flows in Global Industrial Sectors—Based on the Perspective of Linkage Network Structure. J. Environ. Manag. 2024, 356, 120531. [Google Scholar] [CrossRef]
- Li, Q.H.; Chen, C. Analyzing the Differences in the Quantitative and Spatial Characteristics of Inter-Provincial Embodied Carbon Transfers in China Induced via Various Demand Factors. Energies 2023, 16, 7721. [Google Scholar] [CrossRef]
- Sun, L.X.; Zhou, W.N.; Zhu, X.T.; Xia, X.H. Deforestation Embodied in Global Trade: Integrating Environmental Extended Input-Output Method and Complex Network Analysis. J. Environ. Manag. 2023, 325, 116479. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.F.; Cao, R.J.; Xia, N.N.; Hu, X.A.; Cai, W.G.; Liu, B.S. Spatial Correlation Network Structure of China’s Building Carbon Emissions and Its Driving Factors: A Social Network Analysis Method. J. Environ. Manag. 2022, 320, 115808. [Google Scholar] [CrossRef]
- Huang, L.; Kelly, S.; Shi, X.P.; Lv, K.J.; Lu, X.A.; Giurco, D. Maximizing the Effectiveness of Carbon Emissions Abatement in China across Carbon Communities. Energy Econ. 2022, 106, 105801. [Google Scholar] [CrossRef]
- Peng, S.; Wang, X.; Du, Q.; Wu, K.R.; Lv, T.T.; Tang, Z.; Wei, L.Y.; Xue, J.J.; Wang, Z. Evolution of Household Carbon Emissions and Their Drivers from Both Income and Consumption Perspectives in China during 2010–2017. J. Environ. Manag. 2023, 326, 116624. [Google Scholar] [CrossRef]
- Bai, H.T.; Feng, X.Y.; Hou, H.M.; He, G.; Dong, Y.; Xu, H. Mapping Inter-Industrial CO2 Flows within China. Renew. Sustain. Energy Rev. 2018, 93, 400–408. [Google Scholar] [CrossRef]
- Sun, L.C.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.J.; Mohsin, M.; Chaudhry, I.S. Analyzing Carbon Emission Transfer Network Structure among Provinces in China: New Evidence from Social Network Analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef]
- Hong, J.K.; Huang, H.; Wang, X.Z.; Dockerill, B.; Ye, J.X.; Zhang, S.H. Structural Effects of Provincial Digital Economy on Carbon Emissions within China: A Multi-Region Input-Output Based Structural Decomposition Analysis. Sci. Total Environ. 2024, 934, 173140. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, B.; Fang, D.L.; Zhang, B.Y.; Bai, J.H.; Liu, G.Y.; Zhang, Y. Drivers of Energy-Related PM2.5 Emissions in the Jing-Jin-Ji Region between 2002 and 2015. Appl. Energy 2021, 288, 116668. [Google Scholar] [CrossRef]
- Liu, Q.L.; Long, Y.; Wang, C.R.; Wang, Z.; Wang, Q.; Guan, D.B. Drivers of Provincial SO2 Emissions in China—Based on Multi-Regional Input-Output Analysis. J. Clean. Prod. 2019, 238, 117893. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zheng, H.R.; Zhang, Z.K.; Wang, Y.W.; Li, H.; Lu, Y.L. Critical Supply Chains of NOx Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration. J. Clean. Prod. 2022, 362, 132379. [Google Scholar] [CrossRef]
- Qi, P.; Lang, J.L.; Qi, H.Y.; Wang, X.Q. Emissions Leakage Embodied in Inter-Provincial Trade Brings Unexpected Air Quality and Health Benefits. Sci. Total Environ. 2023, 905, 167085. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Wang, J.W.; Wang, X.N.; Wu, H.; Guo, F.; Song, Y.H. A Study of CO2 Emissions in China’s Domestic Construction Industry Based on Non-Competitive Input-Output. Sustain. Prod. Consum. 2022, 32, 743–754. [Google Scholar] [CrossRef]
- Majeed, M.U.; Aslam, S.; Murtaza, S.A.; Attila, S.; Molnár, E. Green Marketing Approaches and Their Impact on Green Purchase Intentions: Mediating Role of Green Brand Image and Consumer Beliefs towards the Environment. Sustainability 2022, 14, 11703. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, H.Z.; Liu, J.F.; Xu, Y.A.; Wang, X.J.; Ma, J.M.; Xu, J.Y.; Yi, K.; Tao, S. Analysis of Multiple Drivers of Air Pollution Emissions in China via Interregional Trade. J. Clean. Prod. 2020, 244, 118507. [Google Scholar] [CrossRef]
- Wang, W.Z.; Hu, Y.; Lu, Y. Driving Forces of China’s Provincial Bilateral Carbon Emissions and the Redefinition of Corresponding Responsibilities. Sci. Total Environ. 2023, 857, 159404. [Google Scholar] [CrossRef]
- Xu, W.H.; Xie, Y.L.; Xia, D.H.; Ji, L.; Huang, G.H. Towards Low-Carbon Domestic Circulation: Insights from the Spatiotemporal Variations and Socioeconomic Determinants of Emissions Embedded within Cross-Province Trade in China. J. Environ. Manag. 2022, 320, 115916. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Yu, M.; Wang, K.; Zhang, R. Evaluation of Multiple Air Pollutant Emission Reductions in Northern China District via Resource Sharing. J. Clean. Prod. 2022, 379, 134743. [Google Scholar] [CrossRef]
- Wang, R. Ecological Network Analysis of China’s Energy-Related Input from the Supply Side. J. Clean. Prod. 2020, 272, 122796. [Google Scholar] [CrossRef]
- Yang, X.; Feng, K.H.; Su, B.; Zhang, W.Z.; Huang, S. Environmental Efficiency and Equality Embodied in China’s Inter-Regional Trade. Sci. Total Environ. 2019, 672, 150–161. [Google Scholar] [CrossRef]
- Tian, K.L.; Zhang, Y.; Li, Y.; Ming, X.; Jiang, S.R.; Duan, H.B.; Yang, C.H.; Wang, S.Y. Regional Trade Agreement Burdens Global Carbon Emissions Mitigation. Nat. Commun. 2022, 13, 408. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, K.; Hubacek, K.; Feng, F.; Shan, Y.L.; Wei, Y.M. Changes in Global Trade Patterns Increase Global Inequality towards Sustainable Development Goals. Ecol. Econ. 2025, 227, 108421. [Google Scholar] [CrossRef]
Province | Abbreviation | Province | Abbreviation |
---|---|---|---|
Beijing | BJ | Hubei | HB |
Tianjin | TJ | Hunan | HN |
Hebei | HE | Guangdong | GD |
Shanxi | SX | Guangxi | GX |
Inner Mongolia | IM | Hainan | HI |
Liaoning | LN | Chongqing | CQ |
Jilin | JL | Sichuan | SC |
Heilongjiang | HL | Guizhou | GZ |
Shanghai | SH | Yunnan | YN |
Jiangsu | JS | Tibet | TB |
Zhejiang | ZJ | Shaanxi | SN |
Anhui | AH | Gansu | GS |
Fujian | FJ | Qinghai | QH |
Jiangxi | JX | Ningxia | NX |
Shandong | SD | Xinjiang | XJ |
Henan | HA |
Scenarios | Setting | |||
---|---|---|---|---|
Trade scenario | ST0 | Current trade intensity (2017) | Current trade mode | |
ST1 | Reduction scenarios | Non-trade | ||
ST2 | 50% trade reduction | |||
ST3 | 30% trade reduction | |||
ST4 | 10% trade reduction | |||
ST5 | Strengthening scenarios | 10% trade strengthening | ||
ST6 | 30% trade strengthening | |||
ST7 | 50% trade strengthening | |||
Economic development scenario | SE1 | Economic growth was 4.0% | ||
SE2 | Economic growth was 4.5% | |||
SE3 | Economic growth was 5.0% | |||
Technology improvement scenario | SI1 | The rate of decline of pollutant intensity is determined according to the data for 2017–2020 | SE1–SI1 | Combining SE1 and SI1 |
SE2–SI1 | Combining SE2 and SI1 | |||
SE3–SI1 | Combining SE3 and SI1 | |||
SI2 | The rate of decline of pollutant intensity is designed to decline at 2% per year faster than SI1. | SE1–SI2 | Combining SE1 and SI2 | |
SE2–SI2 | Combining SE2 and SI2 | |||
SE3–SI2 | Combining SE3 and SI2 |
Pollutant | Network Density | Clustering Coefficient | Average Path Length | Betweenness Centrality | Closeness Centrality | ||
---|---|---|---|---|---|---|---|
Sector | Value | Sector | Value | ||||
SO2 | 0.107 | 0.799 | 2.279 | GD2 | 2130 | SX2 | 0.675 |
NOX | 0.109 | 0.68 | 2.31 | HA2 | 1651 | HA3 | 0.674 |
CO | 0.103 | 0.763 | 2.316 | HA2 | 1626 | HE2 | 0.668 |
VOC | 0.111 | 0.828 | 2.23 | GD2 | 1454 | GD2 | 0.653 |
PM2.5 | 0.101 | 0.755 | 2.25 | GD2 | 1546 | SX2 | 0.698 |
PM10 | 0.099 | 0.757 | 2.28 | GD2 | 1611 | SX2 | 0.691 |
Pollutant | Scenarios of Trade | Total Emissions (kt) | Clustering Coefficient | Average Path Length | Betweenness Centrality | Closeness Centrality | ||
---|---|---|---|---|---|---|---|---|
Sector | Value | Sector | Value | |||||
SO2 | ST0 | 9423 | 0.799 | 2.279 | GD2 | 2130 | SX2 | 0.675 |
ST1 | 9274 | |||||||
ST2 | 9366 | 0.787 | 2.495 | GD2 | 1984 | SX2 | 0.639 | |
ST3 | 9392 | 0.791 | 2.361 | GD2 | 2399 | SX2 | 0.662 | |
ST4 | 9413 | 0.802 | 2.3 | GD2 | 2224 | SX2 | 0.672 | |
ST5 | 9431 | 0.804 | 2.25 | GD2 | 2136 | SX2 | 0.694 | |
ST6 | 9444 | 0.803 | 2.2 | GD2 | 1998 | SX2 | 0.713 | |
ST7 | 9423 | 0.812 | 2.17 | GD2 | 2007 | SX2 | 0.813 | |
NOx | ST0 | 21,349 | 0.68 | 2.31 | HA2 | 1651 | HA3 | 0.674 |
ST1 | 20,754 | |||||||
ST2 | 21,096 | 0.66 | 2.547 | HA2 | 2594 | HA3 | 0.631 | |
ST3 | 21,205 | 0.664 | 2.43 | HA2 | 2119 | HA3 | 0.663 | |
ST4 | 21,302 | 0.671 | 2.35 | HA2 | 1850 | HA3 | 0.667 | |
ST5 | 21,391 | 0.689 | 2.27 | JS2 | 1588 | HA3 | 0.678 | |
ST6 | 21,471 | 0.687 | 2.2 | JS2 | 1517 | HA3 | 0.709 | |
ST7 | 21,547 | 0.681 | 2.15 | JS2 | 1284 | HA3 | 0.714 | |
CO | ST0 | 82,543 | 0.763 | 2.316 | HA2 | 1626 | HE2 | 0.668 |
ST1 | 80,735 | |||||||
ST2 | 81,813 | 0.755 | 2.465 | HA2 | 2293 | HE2 | 0.648 | |
ST3 | 82,139 | 0.747 | 2.36 | HA2 | 1847 | HE2 | 0.661 | |
ST4 | 82,417 | 0.76 | 2.32 | GD2 | 1912 | HE2 | 0.668 | |
ST5 | 82,654 | 0.768 | 2.22 | HE2 | 1482 | HE2 | 0.702 | |
ST6 | 82,851 | 0.769 | 2.19 | HA2 | 1535 | HE2 | 0.719 | |
ST7 | 83,013 | 0.78 | 2.16 | GD2 | 1389 | HE2 | 0.723 | |
VOC | ST0 | 25,523 | 0.828 | 2.23 | GD2 | 1454 | GD2 | 0.653 |
ST1 | 25,271 | |||||||
ST2 | 25,431 | 0.806 | 2.4 | GD2 | 1777 | GD2 | 0.624 | |
ST3 | 25,475 | 0.817 | 2.32 | GD2 | 1527 | GD2 | 0.642 | |
ST4 | 25,510 | 0.822 | 2.26 | GD2 | 1360 | GD2 | 0.649 | |
ST5 | 25,534 | 0.826 | 2.21 | GD2 | 2043 | GD2 | 0.619 | |
ST6 | 25,547 | 0.826 | 2.16 | GD2 | 1155 | SD2 | 0.691 | |
ST7 | 25,548 | 0.838 | 2.11 | GD2 | 1051 | SD2 | 0.712 | |
PM2.5 | ST0 | 4674 | 0.755 | 2.25 | GD2 | 1546 | SX2 | 0.698 |
ST1 | 4546 | |||||||
ST2 | 4625 | 0.741 | 2.438 | GD2 | 2162 | SX2 | 0.641 | |
ST3 | 4648 | 0.733 | 2.348 | GD2 | 1843 | SX2 | 0.657 | |
ST4 | 4666 | 0.746 | 2.273 | GD2 | 1623 | SX2 | 0.68 | |
ST5 | 4681 | 0.755 | 2.239 | GD2 | 1523 | SX2 | 0.702 | |
ST6 | 4692 | 0.758 | 2.213 | GD2 | 1378 | SX2 | 0.711 | |
ST7 | 4700 | 0.758 | 2.17 | SX2 | 1567 | SX2 | 0.738 | |
PM10 | ST0 | 6888 | 0.757 | 2.28 | GD2 | 1611 | SX2 | 0.691 |
ST1 | 6710 | |||||||
ST2 | 6821 | 0.75 | 2.454 | GD2 | 2166 | SX2 | 0.638 | |
ST3 | 6852 | 0.745 | 2.353 | GD2 | 1634 | SX2 | 0.656 | |
ST4 | 6877 | 0.751 | 2.299 | GD2 | 1638 | SX2 | 0.672 | |
ST5 | 6897 | 0.759 | 2.26 | GD2 | 1590 | SX2 | 0.698 | |
ST6 | 6912 | 0.757 | 2.21 | GD2 | 1464 | SX2 | 0.699 | |
ST7 | 6922 | 0.763 | 2.18 | SX2 | 1552 | SX2 | 0.728 |
(a) Transfer path ranking of SO2 in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | SX2 | HE2 | 26 |
2 | SX2 | JS2 | 25 | |
3 | SX2 | ZJ2 | 22 | |
ST2 | 1 | SX2 | HE2 | 17 |
2 | SX2 | ZJ2 | 15 | |
3 | SX2 | JS2 | 15 | |
ST3 | 1 | SX2 | HE2 | 21 |
2 | SX2 | JS2 | 19 | |
3 | SX2 | ZJ2 | 18 | |
ST4 | 1 | SX2 | HE2 | 25 |
2 | SX2 | JS2 | 23 | |
3 | SX2 | ZJ2 | 21 | |
ST5 | 1 | SX2 | HE2 | 28 |
2 | SX2 | JS2 | 26 | |
3 | SX2 | ZJ2 | 23 | |
ST6 | 1 | SX2 | HE2 | 30 |
2 | SX2 | JS2 | 29 | |
3 | SX2 | ZJ2 | 24 | |
ST7 | 1 | SX2 | HE2 | 31 |
2 | SX2 | JS2 | 31 | |
3 | SX2 | ZJ2 | 25 | |
(b) Transfer path ranking of NOx in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | HA3 | JS2 | 38 |
2 | HE2 | ZJ2 | 30 | |
3 | HE2 | GD2 | 29 | |
ST2 | 1 | HA3 | JS2 | 23 |
2 | HA3 | ZJ2 | 20 | |
3 | HA3 | GD2 | 19 | |
ST3 | 1 | HA3 | JS2 | 30 |
2 | HA3 | ZJ2 | 24 | |
3 | HA3 | GD2 | 23 | |
ST4 | 1 | HA3 | JS2 | 36 |
2 | HE2 | ZJ2 | 28 | |
3 | HA3 | ZJ2 | 27 | |
ST5 | 1 | HA3 | JS2 | 41 |
2 | HE2 | ZJ2 | 32 | |
3 | HE2 | GD2 | 32 | |
ST6 | 1 | HA3 | JS2 | 45 |
2 | HE2 | GD2 | 36 | |
3 | HE2 | ZJ2 | 36 | |
ST7 | 1 | HA3 | JS2 | 49 |
2 | HE2 | GD2 | 39 | |
3 | HE2 | ZJ2 | 39 | |
(c) Transfer path ranking of CO in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | HE2 | ZJ2 | 215 |
2 | HE2 | GD2 | 212 | |
3 | HA2 | GD2 | 160 | |
ST2 | 1 | HE2 | ZJ2 | 127 |
2 | HE2 | GD2 | 120 | |
3 | HA2 | GD2 | 99 | |
ST3 | 1 | HE2 | ZJ2 | 166 |
2 | HE2 | GD2 | 159 | |
3 | HA2 | GD2 | 127 | |
ST4 | 1 | HE2 | ZJ2 | 200 |
2 | HE2 | GD2 | 195 | |
3 | HA2 | GD2 | 150 | |
ST5 | 1 | HE2 | ZJ2 | 230 |
2 | HE2 | GD2 | 228 | |
3 | HE2 | JS2 | 172 | |
ST6 | 1 | HE2 | GD2 | 257 |
2 | HE2 | ZJ2 | 256 | |
3 | HE2 | JS2 | 195 | |
ST7 | 1 | HE2 | GD2 | 284 |
2 | HE2 | ZJ2 | 279 | |
3 | HE2 | JS2 | 216 | |
(d) Transfer path ranking of VOC in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | HA2 | GD2 | 44 |
2 | JS2 | GD2 | 39 | |
3 | SD2 | ZJ2 | 39 | |
ST2 | 1 | HA2 | GD2 | 27 |
2 | HA2 | ZJ2 | 24 | |
3 | JS2 | ZJ2 | 23 | |
ST3 | 1 | HA2 | GD2 | 35 |
2 | HA2 | ZJ2 | 30 | |
3 | JS2 | ZJ2 | 30 | |
ST4 | 1 | HA2 | GD2 | 42 |
2 | JS2 | GD2 | 36 | |
3 | JS2 | ZJ2 | 36 | |
ST5 | 1 | HA2 | GD2 | 27 |
2 | HA2 | ZJ2 | 24 | |
3 | JS2 | ZJ2 | 23 | |
ST6 | 1 | HA2 | GD2 | 52 |
2 | SD2 | JS2 | 48 | |
3 | SD2 | ZJ2 | 47 | |
ST7 | 1 | HA2 | GD2 | 56 |
2 | SD2 | JS2 | 54 | |
3 | SD2 | ZJ2 | 53 | |
(e) Transfer path ranking of PM2.5 in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | SX2 | HE2 | 14 |
2 | SX2 | JS2 | 13 | |
3 | SX2 | ZJ2 | 12 | |
ST2 | 1 | SX2 | HE2 | 9 |
2 | SX2 | ZJ2 | 8 | |
3 | SX2 | JS2 | 8 | |
ST3 | 1 | SX2 | HE2 | 12 |
2 | SX2 | JS2 | 10 | |
3 | SX2 | ZJ2 | 10 | |
ST4 | 1 | SX2 | HE2 | 14 |
2 | SX2 | JS2 | 13 | |
3 | SX2 | ZJ2 | 11 | |
ST5 | 1 | SX2 | HE2 | 15 |
2 | SX2 | JS2 | 14 | |
3 | SX2 | ZJ2 | 13 | |
ST6 | 1 | SX2 | HE2 | 16 |
2 | SX2 | JS2 | 16 | |
3 | SX2 | ZJ2 | 13 | |
ST7 | 1 | SX2 | HE2 | 17 |
2 | SX2 | JS2 | 17 | |
3 | SX2 | ZJ2 | 14 | |
(f) Transfer path ranking of PM10 in various trade scenarios | ||||
Scenarios of trade | Rank | Starting | Destination | Value |
ST0 | 1 | SX2 | HE2 | 20 |
2 | SX2 | JS2 | 18 | |
3 | SX2 | ZJ2 | 16 | |
ST2 | 1 | SX2 | HE2 | 12 |
2 | SX2 | ZJ2 | 11 | |
3 | SX2 | JS2 | 11 | |
ST3 | 1 | SX2 | HE2 | 16 |
2 | SX2 | JS2 | 14 | |
3 | SX2 | ZJ2 | 14 | |
ST4 | 1 | SX2 | HE2 | 18 |
2 | SX2 | JS2 | 17 | |
3 | SX2 | ZJ2 | 15 | |
ST5 | 1 | SX2 | HE2 | 21 |
2 | SX2 | JS2 | 20 | |
3 | SX2 | ZJ2 | 17 | |
ST6 | 1 | SX2 | HE2 | 22 |
2 | SX2 | JS2 | 22 | |
3 | HA2 | GD2 | 18 | |
ST7 | 1 | SX2 | HE2 | 23 |
2 | SX2 | JS2 | 23 | |
3 | HA2 | GD2 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Chen, C.; Dong, C.; Li, Q. Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation. Sustainability 2024, 16, 9915. https://doi.org/10.3390/su16229915
Zhou T, Chen C, Dong C, Li Q. Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation. Sustainability. 2024; 16(22):9915. https://doi.org/10.3390/su16229915
Chicago/Turabian StyleZhou, Tianfeng, Cong Chen, Cong Dong, and Qinghua Li. 2024. "Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation" Sustainability 16, no. 22: 9915. https://doi.org/10.3390/su16229915
APA StyleZhou, T., Chen, C., Dong, C., & Li, Q. (2024). Analyzing the Impacts of Inter-Provincial Trade on the Quantitative and Spatial Characteristics of Six Embodied Air Pollutants in China Through Multi-Scenario Simulation. Sustainability, 16(22), 9915. https://doi.org/10.3390/su16229915