China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Environmentally Extended Multi-Regional Input–Output (EE-MRIO) Analysis
3. Results
3.1. Power Generation Structure of China from 1995 to 2021
3.2. Cross-Regional Carbon Footprint Assessment
3.3. Cross-Regional Spillover Impacts of PV Development on the Environment
4. Discussion
4.1. Spillover Impact of PV Development on the Economy and Environment at a Cross-Regional Scale
4.2. Roles and Challenges of PV Development in Achieving Carbon Neutrality
5. Conclusions
- (1)
- From 1995 to 2021, traditional thermal power remained the main source of electricity in China. From 1995 to 2007, China’s thermal power generation accounted for an average of over 80% of the total electricity generation. Since 2008, the proportion of thermal power generation declined gradually, continuously promoting energy structure transformation. From 2015 to 2020, the number of PV power stations in China increased from 1637 to 10,947, with the largest increase being noted in the Qinghai and Ningxia provinces.
- (2)
- The cross-regional carbon footprint of Qinghai Province in 2021 affected the carbon emissions of Shandong, Hebei, Inner Mongolia, and Jiangsu provinces; the carbon footprint was the highest in these regions, and their carbon emissions were mainly from the production and supply sectors of electricity and heat (S24), followed by metal smelting and rolling processing products (S14), non-metallic mineral products (S13), and the transportation, warehousing, and postal sectors (S29). The carbon footprint of Qinghai Province mainly flowed to the eastern region, followed by the southwestern, central, southern, northwestern, northern, and northeastern regions.
- (3)
- In terms of the spillover effects of PV development in Qinghai Province, in 2021, the thermal power outputs of Shandong, Inner Mongolia, Jiangsu, and Guangdong were the highest in China. The PV development in Qinghai Province strongly supported the electricity demand in the central and eastern coastal areas, especially in the Zhejiang, Guangdong, Sichuan, Jiangsu, and Henan provinces. The PV development in Qinghai Province substantially reduced the carbon emissions in the eastern, southwestern, and central regions through the distant supply of PV energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bhattarai, U.; Maraseni, T.; Apan, A. Assay of renewable energy transition: A systematic literature review. Sci. Total Environ. 2022, 833, 155159. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.S.; Vu, M.P.; Pham, M.H.; Nguyen, P.H.; Nguyen, D.T.; Nguyen, D.Q.; Dang, H.A. Study on the impact of rooftop solar power systems on the low voltage distribution power grid: A case study in Ha Tinh province, Vietnam. Energy Rep. 2023, 10, 1151–1160. [Google Scholar] [CrossRef]
- Li, Z.B.; Zhang, Y.; Wang, M. Solar energy projects put food security at risk. Science 2023, 381, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Duan, H.; Shan, Y.; Miller, T.R.; Yang, J.; Bai, X. Booming solar energy is encroaching on cropland. Nat. Geosci. 2023, 16, 932–934. [Google Scholar] [CrossRef]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Zeng, N. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef]
- Tanner, K.E.; Moore-o’leary, K.A.; Parker, I.M.; Pavlik, B.M.; Hernandez, R.R. Simulated solar panels create altered microhabitats in desert landforms. Ecosphere 2020, 11, e03089. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Zhang, W.; Chen, R.; Guo, S.; Zhang, P.; Du, P. Solar photovoltaic program helps turn deserts green in China: Evidence from satellite monitoring. J. Environ. Manag. 2022, 324, 116338. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, M.; Zhong, T.; Zhu, R.; Qian, Z.; Zhang, F.; Yan, J. Carbon mitigation potential afforded by rooftop photovoltaic in China. Nat. Commun. 2023, 14, 23–47. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Wang, K.; Zhang, C.; Dang, D.; Dou, H.; Lou, A. Strengthening grassland carbon source and sink management to enhance its contribution to regional carbon neutrality. Ecol. Indic. 2023, 152, 110341. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Zhang, R. Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023, 619, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Xu, X.; Huang, B.; Li, Z.; Wang, Y. Regional planning of solar photovoltaic technology based on LCA and multi-objective optimization. Conserv. Recycl. 2023, 195, 97–106. [Google Scholar] [CrossRef]
- Aryanfar, A.; Gholami, A.; Pourgholi, M.; Shahroozi, S.; Zandi, M.; Khosravi, A. Multi-criteria photovoltaic potential assessment using fuzzy logic in decision-making: A case study of Iran. Sustain. Energy Technol. Assess. 2020, 42, 100877. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, L.; Lu, Y.; Zhang, M.; Qin, W.; Wang, S.; Wang, L. Potential assessment of photovoltaic power generation in China. Renew. Sustain. Energy Rev. 2022, 154, 111900. [Google Scholar] [CrossRef]
- Suuronen, A.; Munoz-Escobar, C.; Lensu, A.; Kuitunen, M.; Guajardo Celis, N.; Espinoza Astudillo, P.; Kukkonen, J.V. The influence of solar power plants on microclimatic conditions and the biotic community in Chilean Desert environments. Environ. Manag. 2017, 60, 630–642. [Google Scholar] [CrossRef]
- Chen, R.; Tan, X.; Zhang, Y.; Chen, H.; Yin, B.; Zhu, X.; Chen, J. Monitoring rainfall events in desert areas using the spectral response of biological soil crusts to hydration: Evidence from the Gurbantunggut Desert, China. Remote Sens. Environ. 2023, 286, 113448. [Google Scholar] [CrossRef]
- Luo, L.; Zhuang, Y.; Liu, H.; Zhao, W.; Chen, J.; Du, W.; Gao, X. Environmental impacts of photovoltaic power plants in northwest China. Sustain. Energy Technol. Assess. 2023, 56, 103120. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, G.; Zhao, R.; Ding, X.; Fu, H. ML based approach for inverting penetration depth of SAR signals over large desert areas. Remote Sens. Environ. 2023, 295, 113643. [Google Scholar] [CrossRef]
- Yılmaz, O.; Alkan, M. Assessing the impact of unplanned settlements on urban renewal projects with GEE. Habitat Int. 2024, 149, 103. [Google Scholar] [CrossRef]
- Wu, D.C.; Liu, J.P. Spatial difference analysis of energy and carbon footprint among regions in China. Stat. Decis. 2017, 6, 132–136. (In Chinese) [Google Scholar]
- Sun, C.Z.; Yan, X.D. Measurement and transfer analysis of grey water footprint of Chinese provinces and industries based on a multi-regional input-output model. Prog. Geogr. 2020, 39, 207–218. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Y.; Li, C.; Yan, H.; Yu, S.; Wang, L.; Shi, Z. Telecoupling cropland soil erosion with distant drivers within China. J. Environ. Manag. 2021, 288, 112–395. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Sun, H.; Jiang, Z. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Appl. Energy 2016, 164, 882–890. [Google Scholar] [CrossRef]
- Kong, K.; Zhou, C.Y.; Jiao, S.Y. Research of The Pricing Mechanism of Cross-provincial and Cross-regional PV Power Trading and Suggestions for Optimization. J. North China Electr. Power Univ. Soc. Sci. 2022, 6, 51–59. (In Chinese) [Google Scholar]
- Sokołowski, J. Peer effects on photovoltaics (PV) adoption and air quality spillovers in Poland. Energy Econ. 2023, 125, 106808. [Google Scholar] [CrossRef]
- Leontief, W. Input-Output Economics; Oxford University Press: Oxford, UK, 1986; pp. 19–35. [Google Scholar]
- Hubacek, K.; Feng, K. Environmentally extended multi-region input–output analysis. In Elgar Encyclopedia of Ecological Economics; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 259–264. [Google Scholar]
- Zheng, H.R.; Többen, J.; Dietzenbacher, E.; Moran, D.; Meng, J.; Wang, D.; Guan, D. Entropy–based Chinese city-level MRIO table framework. Econ. Syst. Res. 2022, 34, 519–544. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Zhang, J.; Xing, Z. The impact of virtual water trade on urban water scarcity: A nested MRIO analysis of Yangtze River Delta cities in China. J. Clean. Prod. 2022, 381, 6–7. [Google Scholar] [CrossRef]
- Ünal, E.; Lin, B.; Managi, S. CO2 emissions embodied in bilateral trade in China: An input-output analysis. Environ. Impact Assess. Rev. 2023, 103, 107218. [Google Scholar] [CrossRef]
- Pan, L.; Liang, Z.H.; Liu, Z.Q.; Li, Y.N.; Chen, L. Analysis of Wind and Solar PV Power Development Situation in Northwest of China. Energy China 2022, 44, 56–62. (In Chinese) [Google Scholar]
- Lu, X.N.; Li, G.Q.; Yang, K.D.; Shi, Z.P.; Sun, J.X.; Zhang, C.Y. Analysis of spatial distribution and spatiotemporal changes of PV power stations in China from 2010 to 2021. Sol. Energy 2023, 11, 5–11. (In Chinese) [Google Scholar]
- Zheng, H.; Zheng, Z.; Wei, W.; Song, M.; Dietzenbacher, E.; Wang, X.; Guan, D. Regional determinants of China’s consumption-based emissions in the economic transition. Environ. Res. Lett. 2020, 15, 4–7. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Wei, W.; Meng, J.; Zhang, Z.; Song, M.; Guan, D. Chinese provincial multi-regional input-output database for 2012, 2015, and 2017. Sci. Data 2021, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Ni, Y.; Chen, H. Carbon emission fluctuations of Chinese inter-regional interaction: A network multi-hub diffusion perspective. Environ. Sci. Pollut. Res. 2023, 30, 52141–52156. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X.; Jiang, X.; Tatano, H. Assessing the Regional Economic Ripple Effect of Flood Disasters Based on a Spatial Computable General Equilibrium Model Considering Traffic Disruptions. Int. J. Disaster Risk Sci. 2023, 14, 488–505. [Google Scholar] [CrossRef]
- Chen, R.T. Research on the development status and problems of photovoltaic industry in Jiangsu Province. Energy Res. Util. 2024, 1, 43–45. (In Chinese) [Google Scholar]
- Bureau of Statistics of China. China Statistical Yearbook (1996–2022); China Statistics Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Cao, S.Y.; Xie, G.D. Applying input-output analysis for calculation of ecological footprint of China. Acta Ecol. Sin. 2007, 27, 1499–1507. (In Chinese) [Google Scholar]
- Fang, C.L.; Guan, X.L. Comprehensive Measurement and Spatial Distinction of Input-output Efficiency of Urban Agglomerations in China. Acta Geogr. Sin. 2011, 66, 1011–1022. (In Chinese) [Google Scholar]
- Liu, H.G.; Liu, W.D.; Liu, Z.G. The Quantitative Study on Inter-Regional Industry Transfer. China Ind. Econ. 2011, 6, 79–88. (In Chinese) [Google Scholar]
- Raa, T.T. The Economics of Input-Output Analysis; Cambridge University Press: Cambridge, UK, 2006; pp. 28–37. [Google Scholar]
- Miller, R.E.; Blair, P.D. Input-Output Analysis: Foundations and Extensions; Cambridge University Press: Cambridge, UK, 2009; pp. 26–34. [Google Scholar]
- Sun, J.W.; Chen, Z.G.; Zhao, R.Q.; Huang, X.J.; Lai, L. Research on Carbon Emission Footprint of China Based on Input-output Model. China Popul. Resour. Environ. 2010, 20, 28–34. (In Chinese) [Google Scholar]
- Zhou, J.; Shi, A.N. Method for Calculating Virtual Water Trade and Demonstration. China Popul. Resour. Environ. 2008, 4, 184–188. (In Chinese) [Google Scholar]
- Su, X.; Luo, C.; Ji, J.; Xi, X.; Chen, X.; Yu, Y.; Zou, W. Assessment of photovoltaic performance and carbon emission reduction potential of bifacial PV systems for regional grids in China. Sol. Energy 2024, 269, 12–23. [Google Scholar] [CrossRef]
- Li, M.; Lin, B. Clean energy business expansion and financing availability: The role of government and market. Energy Policy 2024, 191, 114–183. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Liang, Y.; Song, C.; Liao, S. Economic and carbon reduction potential assessment of vehicle-to-grid development in Guangdong province. Energy 2024, 302, 131742. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Liu, B.; Wang, K.; Wang, Z.; Kang, J. Optimization of coal power phaseout pathways ensuring energy security: Evidence from Shandong, China’s largest coal power province. Energy Policy 2024, 192, 114–180. [Google Scholar] [CrossRef]
- Li, Y.; Dai, M.; Hao, S.; Qiu, G.; Li, G.; Xiao, G.; Liu, D. Optimal generation expansion planning model of a combined thermal–wind–PV power system considering multiple boundary conditions: A case study in Xinjiang, China. Energy Rep. 2021, 7, 515–522. [Google Scholar] [CrossRef]
- Yin, J.N.; Huang, G.H.; Xie, Y.L.; An, Y.K. Carbon-subsidized inter-regional electric power system planning under cost-risk tradeoff and uncertainty: A case study of Inner Mongolia, China. Renew. Sustain. Energy Rev. 2021, 135, 110. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, S.; Su, Z.; Zhuang, Y. China’s future energy vision: Multi-scenario simulation based on energy consumption structure under dual carbon targets. Energy 2024, 301, 131751. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Luo, Y.; Chang, R.; Gao, X.Q. Study on impact of large-scaled photovoltaic development on local climate and ecosystem. Acta Energiae Solaris Sin. 2023, 44, 253–265. (In Chinese) [Google Scholar]
- Han, M.Y.; Xiong, J.; Liu, W.D. Spatio–temporal distribution, competitive development and emission reduction of China’s photovoltaic power generation. J. Nat. Resour. 2022, 37, 1338–1351. (In Chinese) [Google Scholar] [CrossRef]
- Tian, C.; Tan, Q.; Fang, G.; Wen, X. Hydrogen production to combat power surpluses in hybrid hydro–wind–photovoltaic power systems. Appl. Energy 2024, 371, 123627. [Google Scholar] [CrossRef]
- Sun, H.Z.; Shao, Z.H.; Feng, L. Shandong Weishan: Four in One’ escorts photovoltaic poverty alleviation. China Power Enterp. Manag. 2019, 20, 12–13. (In Chinese) [Google Scholar]
- Yu, H.Q.; Li, J.; An, H.G.; Wei, Q.C.; Tian, X.J.; Chen, R. Analysis on Carbon Dioxide Emission and Reduction of Thermal Power Plant. J. Beijing Jiaotong Univ. 2010, 34, 101–105. (In Chinese) [Google Scholar]
- Liu, J.C. Energy Saving Potential and Carbon Emissions Prediction for the Transportation Sector in China. Resour. Sci. 2011, 33, 640–646. (In Chinese) [Google Scholar]
- Zhang, H.F.; Bai, Y.P.; Wang, B.H.; Niu, J.P.; Wang, X.M. The change of industrial structure transformation and its eco-environment effect in Qinghai province. Econ. Geogr. 2008, 28, 748–751. (In Chinese) [Google Scholar]
- Zhu, Y.; Ke, J.; Wang, J.; Liu, H.; Jiang, S.; Blum, H.; Su, J. Water transfer and losses embodied in the West–East electricity transmission project in China. Appl. Energy 2020, 275, 115152. [Google Scholar] [CrossRef]
- Yu, C.H.; Zhao, J.; Qin, P.; Wang, S.S.; Lee, W.C. Comparison of misallocation between the Chinese thermal power and hydropower electricity industries. Econ. Model. 2022, 116, 106007. [Google Scholar] [CrossRef]
- Qiu, S.; Lei, T.; Yao, Y.B.; Wu, J.; Bi, S. Impact of high-quality-development strategy on energy demand of East China. Energy Strategy Rev. 2021, 38, 100699. [Google Scholar] [CrossRef]
- Bai, B.; Wang, Z.; Chen, J. Shaping the solar future: An analysis of policy evolution, prospects and implications in China’s photovoltaic industry. Energy Strategy Rev. 2024, 54, 101474. [Google Scholar] [CrossRef]
- Yang, Y.; Si, Z.; Jia, L.; Wang, P.; Huang, L.; Zhang, Y.; Ji, C. Whether rural rooftop photovoltaics can effectively fight the power consumption conflicts at the regional scale—A case study of Jiangsu Province. Energy Build. 2024, 306, 113. [Google Scholar] [CrossRef]
- Shan, Y.; Huang, Q.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef]
- Wu, J.G.; Wang, S.Y.; Gong, Q.; Xi, J.J. Impacts and Response of Solar Energy Utilization Projects on Ecosystem, Biodiversity and Environment. Res. Environ. Sci. 2024, 37, 1055–1070. (In Chinese) [Google Scholar]
- Zhao, Y.; Sun, H.; Ma, D. Exploring the impact of carbon finance policy on photovoltaic market development–An experience from China. Sol. Energy 2024, 272, 112494. [Google Scholar] [CrossRef]
- Liu, J.; Lin, X. Empirical analysis and strategy suggestions on the value-added capacity of photovoltaic industry value chain in China. Energy 2019, 180, 356–366. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, H.; Shen, G.; Ma, J.; Cheng, Y.; Russell, A.G.; Tao, S. Substantial differences in source contributions to carbon emissions and health damage necessitate balanced synergistic control plans in China. Nat. Commun. 2024, 15, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Li, H.; Ma, M.; Li, N.; Xue, S.; Wang, L.; Peng, L. Review on transaction status and relevant policies of southern route in China’s West–East Power Transmission. Renew. Energy 2013, 60, 454–461. [Google Scholar]
- Wu, H.W.; Wang, J.; Gong, Y.L.; Yang, H.R.; Zhang, M.; Huang, Z. Development Status and Application Prospect Analysis of Energy Storage Technology. J. Electr. Power 2021, 36, 434–443. (In Chinese) [Google Scholar]
- Su, J.; Zhou, L.M.; Li, R. Cost-benefit Analysis of Distributed Grid-connected Photovoltaic Power Generation. Proc. CSEE 2013, 33, 50–56. (In Chinese) [Google Scholar]
- Zhang, C.; Dai, J.; Ang, K.K.; Lim, H.V. Development of compliant modular floating photovoltaic farm for coastal conditions. Renew. Sustain. Energy Rev. 2024, 190, 114084. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, S.; Yu, L.; Fang, H. Operational decisions of photovoltaic closed-loop supply chains with industrial distributed photovoltaic subsidy policy in China. Environ. Technol. Innov. 2024, 34, 103619. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, J.; Liu, G.; Fang, Z.; Wang, D. Exploring interactions in water-related ecosystem services nexus in Loess Plateau. J. Env. Manag. 2023, 336, 117550. [Google Scholar] [CrossRef]
Intermediate Demand | Final Demand | Total Output | |||||||
---|---|---|---|---|---|---|---|---|---|
Region 1 | … | Region m | Region 1 | … | Region m | ||||
Sector 1 … Sector n | … | Sector 1 … Sector n | Total Demand | … | Total Demand | ||||
Intermediate Input | Region 1 | Sector 1 | Z11 | … | Z1m | Y11 | … | Y1m | X1 |
… | |||||||||
Sector n | |||||||||
… | … | ||||||||
Region m | Sector 1 | Zm1 | … | Zmm | Ym1 | … | Ymm | Xm | |
… | |||||||||
Sector n | |||||||||
Added Value | V1 | … | Vm | ||||||
Total Input | X1 | … | Xm | ||||||
Environmental Satellite Account | E1 | … | Em |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Jiang, C.; Wang, Y.; Wang, R.; Zhao, Y.; Yang, S. China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area. Sustainability 2024, 16, 9922. https://doi.org/10.3390/su16229922
Qu Z, Jiang C, Wang Y, Wang R, Zhao Y, Yang S. China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area. Sustainability. 2024; 16(22):9922. https://doi.org/10.3390/su16229922
Chicago/Turabian StyleQu, Zhun, Chong Jiang, Yixin Wang, Ran Wang, Ying Zhao, and Suchang Yang. 2024. "China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area" Sustainability 16, no. 22: 9922. https://doi.org/10.3390/su16229922
APA StyleQu, Z., Jiang, C., Wang, Y., Wang, R., Zhao, Y., & Yang, S. (2024). China’s Photovoltaic Development and Its Spillover Effects on Carbon Footprint at Cross-Regional Scale: Insights from the Largest Photovoltaic Industry in Northwest Arid Area. Sustainability, 16(22), 9922. https://doi.org/10.3390/su16229922