Effects of Traditional Agroforestry Practices on Cocoa Yields in Côte d’Ivoire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Collection
2.3. Choice of Variables
2.4. Model Formulation
3. Results
3.1. Species Selection
3.2. Information on Variables
3.3. Comparison between Ecological Zones
3.4. Yield Dynamics Based on Cropping Systems
3.5. Combined Effect of Inputs and Species on Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ruf, F. Les crises cacaoyères. La malédiction des âges d’or? (Cocoa Crises: The Bust after the Boom?). Cah. Détudes Afr. 1991, 31, 83–134. [Google Scholar]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the Future Climatic Suitability for Cocoa Farming of the World’s Leading Producer Countries, Ghana and Côte d’Ivoire. Clim. Chang. 2013, 119, 841–854. [Google Scholar] [CrossRef]
- Barima, Y.S.S.; Gislain Danmo, K.; Akoua Tamia Madeleine, K.; Jan, B. Cocoa Production and Forest Dynamics in Ivory Coast from 1985 to 2019. Land 2020, 9, 524. [Google Scholar] [CrossRef]
- Place, F.; Gauthier, M.; Buttoud, G. Promouvoir l’agroforesterie Dans Les Politiques Publiques; Guide Pour Les Décideurs; FAO: Rome, Italy, 2015. [Google Scholar]
- Baier, C.; Gross, A.; Thevs, N.; Glaser, B. Effects of Agroforestry on Grain Yield of Maize (Zea mays L.)—A Global Meta-Analysis. Front. Sustain. Food Syst. 2023, 7, 1167686. [Google Scholar] [CrossRef]
- De Baets, N.; Lebel, F. L’agroforesterie au Québec. Mémoire présenté à la Commission pour l’avenir de l’agriculture et de l’agroalimentaire québécois (CAAAQ) le 7 juin 2007 à Montréal, Canada. Available online: http://caaaq.gouv.qc.ca/userfiles/File/Memoire%20Laurentides-Montreal%20special/06-12-MS-Centre_expertise_produits_agroforestiers.pdf (accessed on 3 July 2024).
- Hughes, K.; Morgan, S.; Baylis, K.; Oduol, J.; Smith-Dumont, E.; Vågen, T.-G.; Kegode, H. Assessing the Downstream Socioeconomic Impacts of Agroforestry in Kenya. World Dev. 2020, 128, 104835. [Google Scholar] [CrossRef]
- Jahan, H.; Rahman, M.W.; Islam, M.S.; Rezwan-Al-Ramim, A.; Tuhin, M.M.-U.-J.; Hossain, M.E. Adoption of Agroforestry Practices in Bangladesh as a Climate Change Mitigation Option: Investment, Drivers, and SWOT Analysis Perspectives. Environ. Chall. 2022, 7, 100509. [Google Scholar] [CrossRef]
- Testa, R.; Schifani, G.; Rizzo, G.; Migliore, G. Assessing the Economic Profitability of Paulownia as a Biomass Crop in Southern Mediterranean Area. J. Clean. Prod. 2022, 336, 130426. [Google Scholar] [CrossRef]
- Miller, D.C.; Ordoñez, P.J.; Brown, S.E.; Forrest, S.; Nava, N.J.; Hughes, K.; Baylis, K. The Impacts of Agroforestry on Agricultural Productivity, Ecosystem Services, and Human Well-being in Low-and Middle-income Countries: An Evidence and Gap Map. Campbell Syst. Rev. 2020, 16, e1066. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Ordonez, P.J.; Baylis, K.; Hughes, K. The Impacts of Agroforestry Interventions on Agricultural Productivity, Ecosystem Services, and Human Well-being in Low- and Middle-income Countries: A Systematic Review. Campbell Syst. Rev. 2021, 17, e1167. [Google Scholar] [CrossRef]
- Fahmi, M.K.M.; Dafa-Alla, D.-A.M.; Kanninen, M.; Luukkanen, O. Impact of Agroforestry Parklands on Crop Yield and Income Generation: Case Study of Rainfed Farming in the Semi-Arid Zone of Sudan. Agrofor. Syst. 2016, 92, 785–800. [Google Scholar] [CrossRef]
- Smethurst, P.J.; Huth, N.I.; Masikati, P.; Sileshi, G.W.; Akinnifesi, F.K.; Wilson, J.; Sinclair, F. Accurate Crop Yield Predictions from Modelling Tree-Crop Interactions in Gliricidia-Maize Agroforestry. Agric. Syst. 2017, 155, 70–77. [Google Scholar] [CrossRef]
- Roupsard, O.; Audebert, A.; Ndour, A.P.; Clermont-Dauphin, C.; Agbohessou, Y.; Sanou, J.; Koala, J.; Faye, E.; Sambakhe, D.; Jourdan, C.; et al. How Far Does the Tree Affect the Crop in Agroforestry? New Spatial Analysis Methods in a Faidherbia Parkland. Agric. Ecosyst. Environ. 2020, 296, 106928. [Google Scholar] [CrossRef]
- Festus, A.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a Pathway to Agricultural Yield Impacts in Climate-Smart Agriculture Investments: Evidence from Southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Bado, B.V.; Whitbread, A.; Sanoussi Manzo, M.L. Improving Agricultural Productivity Using Agroforestry Systems: Performance of Millet, Cowpea, and Ziziphus-Based Cropping Systems in West Africa Sahel. Agric. Ecosyst. Environ. 2021, 305, 107175. [Google Scholar] [CrossRef]
- Clough, Y.; Dwi Putra, D.; Pitopang, R.; Tscharntke, T. Local and Landscape Factors Determine Functional Bird Diversity in Indonesian Cacao Agroforestry. Biol. Conserv. 2009, 142, 1032–1041. [Google Scholar] [CrossRef]
- Cerda, R.; Avelino, J.; Harvey, C.A.; Gary, C.; Tixier, P.; Allinne, C. Coffee Agroforestry Systems Capable of Reducing Disease-Induced Yield and Economic Losses While Providing Multiple Ecosystem Services. Crop Prot. 2020, 134, 105149. [Google Scholar] [CrossRef]
- Palma, J.; Graves, A.R.; Burgess, P.J.; Van Der Werf, W.; Herzog, F. Integrating Environmental and Economic Performance to Assess Modern Silvoarable Agroforestry in Europe. Ecol. Econ. 2007, 63, 759–767. [Google Scholar] [CrossRef]
- Jinger, D.; Kumar, R.; Kakade, V.; Dinesh, D.; Singh, G.; Pande, V.C.; Bhatnagar, P.R.; Rao, B.K.; Vishwakarma, A.K.; Kumar, D.; et al. Agroforestry for Controlling Soil Erosion and Enhancing System Productivity in Ravine Lands of Western India under Climate Change Scenario. Environ. Monit. Assess. 2022, 194, 267. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Gantzer, C.J. Soil and Water Ecosystem Services of Agroforestry. J. Soil Water Conserv. 2022, 77, 5A–11A. [Google Scholar] [CrossRef]
- Schwendenmann, L.; Veldkamp, E.; Moser, G.; Hölscher, D.; Köhler, M.; Clough, Y.; Anas, I.; Djajakirana, G.; Erasmi, S.; Hertel, D.; et al. Effects of an Experimental Drought on the Functioning of a Cacao Agroforestry System, Sulawesi, Indonesia. Glob. Chang. Biol. 2010, 16, 1515–1530. [Google Scholar] [CrossRef]
- Neupane, R.P.; Thapa, G.B. Impact of Agroforestry Intervention on Soil Fertility and Farm Income under the Subsistence Farming System of the Middle Hills, Nepal. Agric. Ecosyst. Environ. 2001, 84, 157–167. [Google Scholar] [CrossRef]
- Kanwal, M.S.; Yadava, A.K.; Vishvakarma, S.C.R. Crop Productivity and Soil Properties under Agroforestry System in Kosi Watershed of Kumaun Himalaya. Indian J. Ecol. 2022, 49, 21–30. [Google Scholar]
- Ramírez, O.A.; Somarriba, E.; Ludewigs, T.; Ferreira, P. Financial Returns, Stability and Risk of Cacao-Plantain-Timber Agroforestry Systems in Central America. Agrofor. Syst. 2001, 51, 141–154. [Google Scholar] [CrossRef]
- Gockowski, J.; Afari-Sefa, V.; Sarpong, D.B.; Osei-Asare, Y.B.; Agyeman, N.F. Improving the Productivity and Income of Ghanaian Cocoa Farmers While Maintaining Environmental Services: What Role for Certification? Int. J. Agric. Sustain. 2013, 11, 331–346. [Google Scholar] [CrossRef]
- Armengot, L.; Barbieri, P.; Andres, C.; Milz, J.; Schneider, M. Cacao Agroforestry Systems Have Higher Return on Labor Compared to Full-Sun Monocultures. Agron. Sustain. Dev. 2016, 36, 70. [Google Scholar] [CrossRef]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa Agroforestry Systems versus Monocultures: A Multi-Dimensional Meta-Analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- Koutouleas, A.; Sarzynski, T.; Bertrand, B.; Bordeaux, M.; Bosselmann, A.S.; Campa, C.; Etienne, H.; Turreira-García, N.; Léran, S.; Markussen, B.; et al. Shade Effects on Yield across Different Coffea Arabica Cultivars—How Much Is Too Much? A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 55. [Google Scholar] [CrossRef]
- Guillaune, K.A.; Hypolith, K.K.; Moreto, S.; Sidiky, B. Impact de l’agroforesterie Sur La Productivité Durable Des Sols Cacaocultivés Au Centre de La Côte d’Ivoire. Int. J. Innov. Appl. Stud. 2024, 41, 745–757. [Google Scholar]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional Shade-Tree Management in Tropical Agroforestry Landscapes—A Review: Multifunctional Shade-Tree Management. J. Appl. Ecol. 2011, 48, 619–629. [Google Scholar] [CrossRef]
- Diop, S.; Ndiaye, M.M.; Diallo, I.; Sene, B. Analyse des effets des facteurs d’intensification sur les types d’exploitations agricoles du mil sanio au Sénégal. Rev. Marocaine Sci. Agron. Vét. 2022, 10, 517–523. [Google Scholar]
- Konan, G.D.; Kpangui, K.B.; Kouakou, K.A.; Barima, Y.S.S. Typologie des systèmes agroforestiers à base de cacaoyers selon le gradient de production cacaoyère en Côte d’Ivoire: Typology of cocoa-based agroforestry systems according to the cocoa production gradient in Côte d’Ivoire. Int. J. Biol. Chem. Sci. 2023, 17, 378–391. [Google Scholar] [CrossRef]
- De Carvalho, A.F.; Fernandes-Filho, E.I.; Daher, M.; Gomes, L.D.C.; Cardoso, I.M.; Fernandes, R.B.A.; Schaefer, C.E.G.R. Microclimate and Soil and Water Loss in Shaded and Unshaded Agroforestry Coffee Systems. Agrofor. Syst. 2021, 95, 119–134. [Google Scholar] [CrossRef]
- Ameyaw, G.A.; Dzahini-Obiatey, H.K.; Domfeh, O. Perspectives on Cocoa Swollen Shoot Virus Disease (CSSVD) Management in Ghana. Crop Prot. 2014, 65, 64–70. [Google Scholar] [CrossRef]
- Oro, F.Z.; Lallie, H.-D.; Koné, N.; Kouadio, J.; Diallo, H.A. Comparison of the Prevalence of Cocoa Swollen Shoot Virus and the Prevalence of Phytophthora Sp in Petit-Bondoukou, South-West of Côte d’Ivoire. Int. J. Environ. Agric. Biotechnol. 2021, 5, 1659–1667. [Google Scholar]
- Kouakou, K.; Bi, K. Impact de la maladie virale du swollen shoot du cacaoyer sur la production de cacao en milieu paysan à Bazré (Côte d’Ivoire). J. Appl. Biosci. 2011, 43, 2947–2957. [Google Scholar]
- Salim Mohd, J.; Anuar, S.N.; Omar, K.; Tengku Mohamad, T.R.; Sanusi, N.A. The Impacts of Traditional Ecological Knowledge towards Indigenous Peoples: A Systematic Literature Review. Sustainability 2023, 15, 824. [Google Scholar] [CrossRef]
- Vanhove, W.; Yao, R.K.; N’Zi, J.-C.; N’Guessan Toussaint, L.A.; Kaminski, A.; Smagghe, G.; Van Damme, P. Impact of Insecticide and Pollinator-Enhancing Substrate Applications on Cocoa (Theobroma Cacao) Cherelle and Pod Production in Côte d’Ivoire. Agric. Ecosyst. Environ. 2020, 293, 106855. [Google Scholar] [CrossRef]
- Zakaria, N.; Norhisham, A.R.; Yasmin, I.; Yahya, M.S.; Sanusi, R.; Azhar, B. Insecticides May Compromise the Benefits of Tree-Crop Diversification on Arthropod Biodiversity in Cocoa Agroforestry Smallholdings. Agroecol. Sustain. Food Syst. 2024, 48, 1068–1093. [Google Scholar] [CrossRef]
- Silva, J.H.C.S.; Barbosa, A.D.S.; Gomes, D.D.S.; Aquino, I.D.S.; Silva, J.R.D. Dynamics of Plant Organic Matter Decomposition in Different Agricultural Landscapes. Rev. Caatinga 2023, 36, 135–144. [Google Scholar] [CrossRef]
- Tudorache, M.-D. Human Development in the European Union and Its Determinants. J. EU Res. Bus. 2020, 2020, 215473. [Google Scholar] [CrossRef]
- Sapra, S. A Regression Error Specification Test (RESET) for Generalized Linear Models. Econ. Bull. 2005, 3, 1–6. [Google Scholar]
- Aka Romain, A.; Klotioloma, C.; Pierre N’Guessan, W.; Kouakou, K.; Gnion Mathias, T.; F. N’Guessan, K.; Muller, E.; Zakra, N.; Boubacar Ismael, K.; Maryse Evlyne, A.; et al. Cocoa Swollen Shoot Disease in Côte D’ivoire: History of Expansion from 2008 to 2016. Int. J. Sci. 2020, 9, 52–60. [Google Scholar] [CrossRef]
- Ameyaw, G.A.; Kouakou, K.; Iqbal, M.J.; Belé, L.; Wolf, V.L.F.; Keith, C.V.; Bi, B.A.B.; Kouamé, C.; Livingstone, D.; Domfeh, O.; et al. Molecular Surveillance, Prevalence, and Distribution of Cacao Infecting Badnavirus Species in Côte d’Ivoire and Ghana. Viruses 2024, 16, 735. [Google Scholar] [CrossRef]
- Babin, R.; Oro, F.; N’Guessan, P.W.; Muller, E.; Wibaux, T.; Koffi, A.D.; Kassin, E.; Guiraud, B.; Cilas, C. The « BarCo » Project: For the Promotion of Barrier Crops to Curb the Expansion of the Cocoa Swollen Shoot Virus in Côte d’Ivoire; ICCO: Abidjan, Côte d’Ivoire, 2022; Available online: https://agritrop.cirad.fr/608657/13/ID608657-Complet.pdf (accessed on 3 July 2024).
- Akoua Miezan, N.; Zokou Fran, O.; N’go, O. Diversity of Mealybugs Vectors of Cacao Swollen Shoot in Nawa Region (Southwest, Cote d’Ivoire). J. Entomol. 2021, 18, 47–54. [Google Scholar] [CrossRef]
- Niether, W.; Schneidewind, U.; Armengot, L.; Adamtey, N.; Schneider, M.; Gerold, G. Spatial-Temporal Soil Moisture Dynamics under Different Cocoa Production Systems. CATENA 2017, 158, 340–349. [Google Scholar] [CrossRef]
- Ruf, F.O. The Myth of Complex Cocoa Agroforests: The Case of Ghana. Hum. Ecol. 2011, 39, 373–388. [Google Scholar] [CrossRef]
- Zahr, S.; Zahr, R.; El Hajj, R.; Khalil, M. Phytochemistry and Biological Activities of Citrus Sinensis and Citrus Limon: An Update. J. Herb. Med. 2023, 100737. [Google Scholar] [CrossRef]
- Shorbagi, M.; Fayek, N.M.; Shao, P.; Farag, M.A. Citrus Reticulata Blanco (the Common Mandarin) Fruit: An Updated Review of Its Bioactive, Extraction Types, Food Quality, Therapeutic Merits, and Bio-Waste Valorization Practices to Maximize Its Economic Value. Food Biosci. 2022, 47, 101699. [Google Scholar] [CrossRef]
- Oladeji, O.S.; Oluyori, A.P.; Dada, A.O. Antiplasmodial Activity of Benth. Leaf and Bark Extracts against Infected Mice. Saudi J. Biol. Sci. 2022, 29, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Louppe, D. Isoberlinia Doka: Une Essence Méconnue et Abondante Pour Une Production Durable de Bois d’oeuvre En Forêts Claires Soudano-Guinéennes; IUFRO: Vienna, Austria, 2000. [Google Scholar]
- Ahmed, H.A.; Halilu, M.E.; Mathias, S.N.; Lawal, M. Phytochemical Analysis and Free Radical Scavenging Activity of Isoberlinia Doka Leaves. GSC Biol. Pharm. Sci. 2018, 4, 48–52. [Google Scholar] [CrossRef]
- Olufolabo, K.O.; Lüersen, K.; Oguntimehin, S.A.; Nchiozem-Ngnitedem, V.-A.; Agbebi, E.A.; Faloye, K.O.; Nyamboki, D.K.; Rimbach, G.; Matasyoh, J.C.; Schmidt, B.; et al. In Vitro and in Silico Studies Reveal Antidiabetic Properties of Arylbenzofurans from the Root Bark of Morus Mesozygia Stapf. Front. Pharmacol. 2024, 15, 1338333. [Google Scholar] [CrossRef] [PubMed]
- Ajao, A.A.; Moteetee, A.N.; Sabiu, S. From Traditional Wine to Medicine: Phytochemistry, Pharmacological Properties and Biotechnological Applications of Raphia Hookeri G. Mann & H. Wendl (Arecaceae). South Afr. J. Bot. 2021, 138, 184–192. [Google Scholar]
- Adeneyi, A.A.; Akpabio, U.D. Nutritional Potential of Hard Seed of Raphia Hookeri. Obbeche J. 2011, 29, 366–369. [Google Scholar]
- Alain, K.Y.; Raphaël, D.E.; Gbèwonmèdéa, D.H.; Ménonvè, A.; Pascal, A.D.C.; Alain, A.G.; Mihaela, D.R.; Dominique, S.C.K. Phytochemical Screening, Antioxidant Capacity, Antibacterial and Anti- Inflammatory Activities of Ethanolic Extract of Cordia Senegalensis Leaves, a Plant Used in Benin to Treat Skin Diseases. Chem. Res. J. 2021, 6, 137–146. [Google Scholar]
Variables | Descriptions |
---|---|
Performance | Dependent variable expressing the quantity of cocoa produced per hectare |
Quantity of work (Qwo) | Quantitative variable indicating the time spent maintaining the plot. It is expressed in man-days (MDs). |
Quantities of inputs used | |
Organic fertilisation (OrgF) | Quantity of organic matter used (chicken droppings, livestock waste, etc.). This is expressed in bags per hectare (bags/ha). |
Chemical fertilisation (ChiF) | Quantity of chemical fertiliser used (NPK, Yara, etc.). This is expressed in kg/ha. |
Fungicide (Fung) | Quantity of fungicide used in L/ha |
Herbicide (Herb) | Quantity of herbicide used in L/ha |
Insecticide (Insec) | Quantity of insecticide used in L/ha |
No. | Description (Species) | Coding |
---|---|---|
01 | Citrus sp. | T9 |
02 | Anthonotha manii | T26 |
03 | Blighia unijugata | T36 |
04 | Cordia senegalensis | T55 |
05 | Isoberlinia doka | T90 |
06 | Milicia sp. | T111 |
07 | Morinda lucida | T117 |
08 | Morus mesozygia | T118 |
09 | Musanga cecropioides | T119 |
10 | Nauclea diderrichii | T122 |
11 | Raphia hookeri | T140 |
12 | Sterculia oblonga | T147 |
13 | Trilepisium madagascariense | T166 |
14 | Vernonia amygdalina | T168 |
Variables | Observation | Average | Standard Deviation |
---|---|---|---|
Yield (kg) | 150 | 602.77 | 439.28 |
Quantity of work (MD) | 150 | 88.66 | 57.73 |
Quantity of organic fertiliser (bags/ha) | 8 | 15.30 | 12.23 |
Quantity of chemical fertiliser (kg/ha) | 26 | 153.65 | 208.91 |
Quantity of fungicide (L/ha) | 35 | 25.61 | 31.43 |
Quantity of herbicide (L/ha) | 48 | 1.71 | 1.28 |
Quantity of insecticide (L/ha) | 131 | 2 | 1.60 |
Citrus sp. | 98 | 1.57 | 1.71 |
Anthonotha manii | 2 | 0.35 | 0.02 |
Blighia unijugata | 19 | 0.67 | 0.48 |
Cordia senegalensis | 1 | 1 | - |
Isoberlinia doka | 3 | 1 | 0.34 |
Milicia sp. | 53 | 0.64 | 0.11 |
Morinda lucida | 78 | 0.89 | 0.86 |
Morus mesozygia | 8 | 0.41 | 0.19 |
Musanga cecropioides | 5 | 1.08 | 2 |
Nauclea diderrichii | 2 | 0.86 | 0.80 |
Raphia hookeri | 21 | 0.80 | 0.63 |
Sterculia oblonga | 4 | 0.54 | 0.29 |
Trilepisium madagascariense | 3 | 0.45 | 0.34 |
Vernonia amygdalina | 23 | 1.62 | 2.70 |
Test | Test Statistics | p-Value | Null Hypothesis | Conclusion |
---|---|---|---|---|
Heteroscedasticity test | chi2 | 0.8602 | Homoscedasticity of residuals | We do not reject Ho |
Residual normality test | z | 0.00039 | Normal distribution of residuals | We do not reject Ho |
Model specification test | F | 0.3284 | Satisfactory specification | We do not reject Ho |
Variables | VIF | 1/VIF |
---|---|---|
Quantity of insecticide | 2.42 | 0.413547 |
Citrus sp. | 2.40 | 0.417017 |
Nauclea diderrichii | 2.22 | 0.449629 |
Quantity of work | 1.80 | 0.554767 |
Musanga cecropioides | 1.68 | 0.596546 |
Quantity of fungicide | 1.61 | 0.622868 |
Trilepisium madagascariense | 1.52 | 0.656445 |
Raphia hookeri | 1.51 | 0.662344 |
Anthonotha manii | 1.45 | 0.689848 |
Blighia unijugata | 1.42 | 0.702678 |
Milicia | 1.38 | 0.724755 |
Sterculia oblonga | 1.35 | 0.738070 |
Quantity of organic fertiliser | 1.34 | 0.745273 |
Morinda lucida | 1.28 | 0.778686 |
Quantity of herbicide | 1.28 | 0.782817 |
Isoberlinia doka | 1.26 | 0.795973 |
Morus mesozygia | 1.25 | 0.800799 |
Cordia senegalensis | 1.17 | 0.852146 |
Amount of chemical fertilisation | 1.09 | 0.913775 |
Vernonia amygdalina | 1.09 | 0.921617 |
Average FIV | 1.53 |
Variables | Coefficients | Standard Error | t | p-Value |
---|---|---|---|---|
Quantity of work | 1.537 | 0.571 | 2.69 | 0.008 *** |
Quantity of organic fertiliser | 4.530 | 7.002 | 0.65 | 0.519 |
Amount of chemical fertilisation | 0.193 | 0.248 | 0.78 | 0.438 |
Quantity of fungicide | −1.279 | 1.679 | −0.76 | 0.448 |
Quantity of herbicide | 16.888 | 25.829 | 0.65 | 0.514 |
Quantity of insecticide | 129.881 | 23.361 | 5.56 | 0.000 *** |
Citrus sp. | 44.080 | 24.181 | 1.81 | 0.071 * |
Anthonotha manii | −1541.597 | 743.994 | −2.07 | 0.040 ** |
Blighia unijugata | −150.429 | 104.591 | −1.44 | 0.153 |
Cordia senegalensis | 1034.723 | 325.928 | 3.17 | 0.002 *** |
Isoberlinia doka | 408.037 | 170.945 | 2.39 | 0.018 ** |
Milicia sp. | −4.592 | 64.418 | −0.07 | 0.943 |
Morinda lucida | 79.410 | 36.374 | 2.18 | 0.031 ** |
Morus mesozygia | 791.183 | 270.333 | 2.93 | 0.004 *** |
Musanga cecropioides | −62.394 | 83.510 | −0.75 | 0.456 |
Nauclea diderrichii | 314.959 | 308.043 | 1.02 | 0.308 |
Raphia hookeri | 139.717 | 83.442 | 1.67 | 0.096 * |
Sterculia oblonga | 57.848 | 296.232 | 0.20 | 0.845 |
Trilepisium madagascariense | 106.149 | 407.381 | 0.26 | 0.795 |
Vernonia amygdalina | −16.861 | 21.507 | −0.78 | 0.434 |
Constant | 121.028 | 56.098 | 2.16 | 0.033 |
Number of observations | 150 | |||
F (20, 129) | 9.54 | |||
Prob > F | 0.0000 *** | |||
R-squared | 0.5966 | |||
Adj R-squared | 0.5340 | |||
Root MSE | 299.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konaté, N.; Ouattara, Y.; Kouakou, A.K.; Barima, Y.S.S. Effects of Traditional Agroforestry Practices on Cocoa Yields in Côte d’Ivoire. Sustainability 2024, 16, 9927. https://doi.org/10.3390/su16229927
Konaté N, Ouattara Y, Kouakou AK, Barima YSS. Effects of Traditional Agroforestry Practices on Cocoa Yields in Côte d’Ivoire. Sustainability. 2024; 16(22):9927. https://doi.org/10.3390/su16229927
Chicago/Turabian StyleKonaté, N’Golo, Yaya Ouattara, Auguste K. Kouakou, and Yao S. S. Barima. 2024. "Effects of Traditional Agroforestry Practices on Cocoa Yields in Côte d’Ivoire" Sustainability 16, no. 22: 9927. https://doi.org/10.3390/su16229927
APA StyleKonaté, N., Ouattara, Y., Kouakou, A. K., & Barima, Y. S. S. (2024). Effects of Traditional Agroforestry Practices on Cocoa Yields in Côte d’Ivoire. Sustainability, 16(22), 9927. https://doi.org/10.3390/su16229927