The Impact of Digital Economy Policy on Mariculture Green Total Factor Productivity in China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. SBM Model
3.2. Global Malmquist–Luenberger (GML) Index Model
3.3. Econometric Model
3.4. Indicator Selection
3.4.1. Selection of Productivity Measurement Indicators
3.4.2. Selection of Factors Influencing GTFP in Mariculture
3.5. Data
4. Results and Discussions
4.1. Measurement and Analysis of GTFP in Mariculture
4.1.1. Trends Analysis
4.1.2. Analysis of Regional Variations in Green Total Factor Productivity in Mariculture
4.1.3. Further Decomposition of Green Total Factor Productivity in Mariculture
4.1.4. Characterization of the Spatial and Temporal Features of MGTFP
4.2. An Empirical Analysis of the Influence of Digital Economy Policy on the Green Total Factor Productivity in Chinese Mariculture
4.2.1. Correlation Test
4.2.2. Baseline Regression
4.2.3. Heterogeneity Analysis
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
6. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Luo, M. China’s Aquaculture Products Account for More than 60% of the World’s Total Output People’s Daily Overseas Edition. Available online: https://news.cctv.com (accessed on 20 September 2021).
- Bureau of Fisheries and Fishery Administration, Ministry of Agriculture and Rural Affairs. National Economic Statistics Bulletin on Fisheries 2022. Available online: http://www.aqsc.agri.cn/xwzx/202207/t20220722_407410 (accessed on 22 July 2022).
- Bureau of Fisheries and Fisheries Administration, Ministry of Agriculture and Rural Affairs of the People’s Republic of China; National Aquatic Technology Extension Station; China Fisheries Society. 2023 China Fisheries Statistical Yearbook; China Agriculture Publishing House: Beijing, China, 2023. [Google Scholar]
- Liu, Y.; Pei, Z.B.; Jiang, Y.Y. The Construction of ‘Blue Granary’ in New Normal. Ocean. Dev. Manag. 2017, 34, 3–8. [Google Scholar]
- Shcherbakova, T. Service Business Model—A New Approach to Improving Efficiency in the Digital Economy. In Proceedings of the 2nd International Scientific and Practical Conference—Modern Management Trends and the Digital Economy: From Regional Development to Global Economic Growth (MTDE 2020), Yekaterinburg, Russia, 16–17 April 2020; Volume 138, pp. 1012–1017. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, Y.; Zhang, Q.; Xu, C. Research on the empowering effect of digital economy development on the green economic efficiency- empirical evidence from 285 Chinese cities. Appl. Econ. 2023, 56, 7686–7700. [Google Scholar] [CrossRef]
- Vazhenina, L.; Magaril, E.; Mayburov, I. Digital Management of Resource Efficiency of Fuel and Energy Companies in a Circular Economy. Energies 2023, 16, 3498. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, Y. How Does the Digital Economy Drive the Optimization and Upgrading of Industrial Structure? The Mediating Effect of Innovation and the Role of Economic Resilience. Sustainability 2024, 16, 1352. [Google Scholar] [CrossRef]
- Deevi, D.P.; Allur, N.S.; Dondapati, K.; Chetlapalli, H.; Kodadi, S.; Perumal, T. The Impact of the Digital Economy on Industrial Structure Upgrading and Sustainable Gntrepreneurial growth. Electron. Commer. Res. 2024. [Google Scholar] [CrossRef]
- China Academy of Information and Communications Technology. “Research Report on the Development of China’s Digital Economy”. 2024. Available online: http://221.179.172.81/images/20240828/53111724804104890.pdf (accessed on 27 August 2024).
- Kobayashi, M.; Msangi, S.; Batka, M.; Vannuccini, S.; Dey, M.M.; Anderson, J.L. Fish to 2030: The Role and Opportunity for Aquaculture. Aquac. Econ. Manag. 2015, 19, 282–300. [Google Scholar] [CrossRef]
- Wu, R.S. The Environmental Impact of Marine Fish Culture: Towards a Sustainable Future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Malakhova, L.; Voronov, V. Organochlorine Pollution of Mariculture Objects of the Crimea Coastal Area (Black Sea). In Impact of Pollution on Animal Products; Springer: Dordrecht, The Netherlands, 2008; pp. 169–176. [Google Scholar]
- Hakan, E.; Ragnar, T. Productivity development in Icelandic. Norwegian and Swedish fisheries. Appl. Econ. 2013, 45, 709–720. [Google Scholar]
- Singh, K. Farm Specific Economic Efficiency of Fish Productionin South Tripura District: A Stochastic Frontier Approach. Indian J. Agric. Econ. 2008, 63, 598–613. [Google Scholar]
- Zhu, A.F.; Ping, Y. Research on Temporal and Spatial Ddifferentiation of Green Production Efficiency of Marine Fishery in China Based on SFA Model. Ocean. Dev. Manag. 2023, 40, 133–143. [Google Scholar]
- Liu, Y. Research on the Dynamic Efficiency of Input and Output of Mariculture in China—Based on the Analysis of Panel data of 9 Provinces and Cities from 2004 to 2013. Mar. Dev. Manag. 2015, 32, 94–99. [Google Scholar]
- Alam, M.F.; Khan, M.A.; Huq, A.S.M.A. Technical efficiency in tilapia farming of Bangladesh: A stochastic frontier production approach. Aquac. Int. 2012, 20, 619–634. [Google Scholar] [CrossRef]
- Xu, Y.; Ji, J.Y.; Zhou, J.I. Study on the Impact of Intertidal Mudflat Culture on the Growth of Green Total Factor Productivity of Mariculture. Sci. Technol. Manag. Res. 2022, 42, 193–198. [Google Scholar]
- Asche, F.; Guttormsen, A.G.; Nielsen, R. Future Challenges for the Maturing Norwegian Salmon Aquaculture Industry: An Analysis of Total Factor Productivity Change from 1996 to 2008. Aquaculture 2013, 396, 43–50. [Google Scholar] [CrossRef]
- Gao, J.J.; Shi, Q.H.; Lu, K. Study on Technical Efficiency Evaluation of Chinese Marine Aquaculture. J. Agrotech. Econ. 2018, 1, 132–144. [Google Scholar] [CrossRef]
- Ji, J.Y.; Xu, Y.; Li, Y.M. Green Technology Efficiency Measurement and Influencing Factors Analysisin China’s Mariculture Areas. Sci. Technol. Manag. Res. 2021, 41, 205–212. [Google Scholar]
- del Águila, A.R.; Padilla, A.; Serarols, C.; Veciana, J.M. Digital economy and management in Spain. Internet Res. 2003, 13, 6–16. [Google Scholar] [CrossRef]
- Nocke, V.; Peitz, M.; Stahl, K. Platform Ownership. J. Eur. Econ. Assoc. 2007, 6, 1130–1160. [Google Scholar] [CrossRef]
- Ding, C.; Liu, C.; Zheng, C.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar] [CrossRef]
- Horton, J.J.; Zeckhauser, R.J. Owning, Using and Renting: Some Simple Economics of the “Sharing Economy”. Matl. Bur. Econ. Res. 2016; working paper. [Google Scholar] [CrossRef]
- Zervas, G.; Proserpio, D.; Byers, J.W. The Rise of the Sharing Economy: Estimating the Impact of Airbnb on the Hotel Industry. J. Mark. Res. 2017, 54, 687–705. [Google Scholar] [CrossRef]
- Hollenbeck, B. Online Reputation Mechanisms and the Decreasing Value of Chain Affiliation. J. Mark. Res. 2018, 55, 636–654. [Google Scholar] [CrossRef]
- Wang, W.X.; Yin, X.K.; Wang, C.G. Digital Economy Promotes the Modernization of Chinese Agriculture and Rural Areas: Measurement, Mechanism and Implications. Res. Agric. Mod. 2023, 44, 609–623. [Google Scholar]
- Fang, X.H.; Zhang, Y.; Yang, J.; Zhan, G. An Evaluation of Marine Economy Sustainable Development and the Ramifications of Digital Technologies in China Coastal Regions. Econ. Anal. Policy 2024, 82, 554–570. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhang, W.K.; Ge, Y. The Spatial Effect Analysis of OFDI on Green Total Factor Productivity. Chin. J. Manag. Sci. 2021, 29, 26–35. [Google Scholar]
- Emrouznejad, A.; Yang, G. A Framework for Measuring Global Malmquist–Luenberger Productivity Index With Co2 Emissions on Chinese Manufacturing Industries. Energy 2016, 115, 840–856. [Google Scholar] [CrossRef]
- Jiménez, S.F.; Zabala-Iturriagagoitia, J.M.; Zofio, J.L. Who Leads Research Productivity Growth? Guidelines for R&D Policy-Makers. Scientometrics 2013, 94, 273–303. [Google Scholar]
- Mankiw, G.N. Principle of Economics; Oxford University Press: London, UK, 1977. [Google Scholar]
- Sun, K.; Ji, J.; Li, L.; Zhang, C.; Liu, J.; Fu, C. Marine Fishery Economic Efficiency and Its Spatio-Temporal Differences Based on Undesirable Outputs in China. Resour. Sci. 2017, 39, 2040–2051. [Google Scholar]
- Tao, C.Q.; Ding, Y. How Digital Economy Policies Affect Manufacturing Enterprise Innovation: From the Perspective of Suitability Supply. Contemp. Financ. Econ. 2022, 448, 16–27. [Google Scholar]
- Zhao, L.; Tuo, Y.; Wang, Y.; Wang, X. Comparative Advantage and Specialization Analysis of Regional Marine Aquaculture in China. Mar. Sci. 2020, 44, 75–85. [Google Scholar]
- Zhang, Y.; Han, L.M.; Qin, H. Factors on Ecological Efficiency of Mariculture in China. Oceanol. Limnol. Sin. 2022, 53, 1289–1298. [Google Scholar]
- Zhang, Y.; Ji, J.Y. Decomposition and Influencing Factors of Green Total Factor Productivity of Mariculture Industry in China. Sci. Technol. Manag. Res. 2022, 42, 206–213. [Google Scholar]
- Ji, J.Y.; Li, Y.F. Research on Green Technology Progress Measurement and Influencing Factors in Marine Aquaculture Industry in China. J. Ocean. Univ. China Soc. Sci. 2019, 2, 45–51. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, L.; Liu, Y.; Wang, S. Impact of Digital Development and Technology Innovation on the Marine Fishery Economy Quality. Fishes 2024, 9, 266. [Google Scholar] [CrossRef]
- Qin, H.N. Research on the Influence of E-commerce Entrepreneurship Education on the Development of Marine Economy Based on the Entropy Method. J. Coast. Res. 2020, 111, 263–267. [Google Scholar] [CrossRef]
- Jian, L.X.; Su, Y.L.; Cao, S.S. Research on the Digital Economy Driving the High-Quality Development Of Marine Industry in Coastal Areas. J. Stat. Inf. 2021, 36, 28–40. [Google Scholar]
Panel A: Indicators | |||||
---|---|---|---|---|---|
Type | Indicators | Definition | Unit of Measurement | ||
Input | Land | Mariculture area | Hectare | ||
Labor | Number of mariculture professionals | Person | |||
Capital | Fishing vessel ownership at the end of the Period | Kilowatts | |||
Desired output | Farming output | Output of mariculture | Tons | ||
Undesired output | Pollution losses | Amount of pollution loss in fishery | Tons | ||
Panel B: Statistical Analysis | |||||
Type | Indicators | Mean | Std.Dev. | Min | Max |
Input | Land (Hectare) | 202,549 | 224,679 | 813 | 942,050 |
Labor (Person) | 224,970 | 149,326 | 1718 | 482,760 | |
Capital (Kilowatts) | 1.583 × 106 | 1.205 × 106 | 46,625 | 4.543 × 106 | |
Desired output | Farming output (Tons) | 1.793 × 106 | 1.607 × 106 | 5155 | 5.561 × 106 |
Undesired output | Pollution losses (Tons) | 8842 | 32,441 | 2 | 383,104 |
Variable | Observation | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|---|
117 | 1.004 | 0.017 | 0.976 | 1.039 | |
117 | 1.012 | 0.079 | 0.775 | 1.768 | |
117 | 0.999 | 0.013 | 0.956 | 1.051 | |
117 | 8.034 | 8.702 | 0 | 30 | |
117 | 9.232 | 1.171 | 5.820 | 12.106 | |
117 | 6.625 | 1.069 | 4.369 | 8.145 | |
117 | 10.200 | 1.264 | 7.208 | 12.390 | |
117 | 11.560 | 1.572 | 7.172 | 13.060 | |
117 | 10.790 | 0.530 | 9.354 | 11.840 |
Province | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tianjin | 1.002 | 0.918 | 1.097 | 0.991 | 1.453 | 0.775 | 0.940 | 0.975 | 0.964 | 0.988 | 1.092 | 1.090 | 1.013 | 1.047 | 1.028 | 1.768 | 1.071 |
Hebei | 0.894 | 0.942 | 1.013 | 0.940 | 1.043 | 0.976 | 1.006 | 0.992 | 1.019 | 0.992 | 1.007 | 0.983 | 0.985 | 1.012 | 1.005 | 1.027 | 0.990 |
Liaoning | 0.994 | 0.986 | 1.004 | 1.005 | 1.002 | 0.998 | 1.007 | 1.005 | 1.003 | 1.006 | 1.002 | 0.995 | 1.006 | 1.002 | 1.014 | 1.005 | 1.002 |
Jiangsu | 0.986 | 1.066 | 0.992 | 1.014 | 0.997 | 1.020 | 1.009 | 1.010 | 1.006 | 1.005 | 1.004 | 1.002 | 1.000 | 1.001 | 0.968 | 0.967 | 1.003 |
Zhejiang | 1.081 | 0.994 | 0.995 | 0.963 | 1.011 | 1.009 | 1.000 | 1.001 | 1.010 | 1.020 | 1.012 | 1.001 | 1.111 | 0.975 | 1.115 | 0.967 | 1.017 |
Fujian | 1.009 | 0.988 | 0.992 | 0.995 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 0.999 | 0.999 |
Shandong | 1.022 | 1.019 | 1.017 | 1.015 | 1.012 | 1.010 | 1.008 | 1.006 | 1.003 | 1.001 | 0.999 | 0.996 | 0.994 | 0.992 | 0.989 | 0.987 | 1.004 |
Guangdong | 1.071 | 0.967 | 1.005 | 1.010 | 1.005 | 1.000 | 1.002 | 1.003 | 1.003 | 1.003 | 0.999 | 1.005 | 1.008 | 0.999 | 0.998 | 0.998 | 1.005 |
Guangxi | 1.004 | 0.962 | 1.005 | 1.057 | 0.994 | 0.969 | 1.019 | 1.020 | 1.003 | 1.040 | 0.997 | 0.995 | 1.052 | 1.000 | 0.983 | 0.988 | 1.005 |
Hainan | 1.044 | 0.975 | 0.995 | 1.030 | 1.002 | 1.004 | 1.008 | 1.010 | 1.004 | 1.011 | 1.003 | 1.019 | 0.952 | 1.051 | 1.053 | 1.039 | 1.013 |
Mean | 1.011 | 0.982 | 1.011 | 1.002 | 1.052 | 0.976 | 1.000 | 1.002 | 1.001 | 1.007 | 1.011 | 1.009 | 1.012 | 1.008 | 1.016 | 1.074 |
Province | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tianjin | 0.992 | 0.965 | 1.045 | 0.998 | 1.002 | 1.000 | 1.000 | 1.000 | 0.984 | 0.967 | 1.051 | 1.000 | 0.994 | 1.006 | 1.000 | 1.000 | 1.000 |
Hebei | 0.997 | 0.990 | 1.007 | 0.956 | 1.052 | 0.977 | 1.000 | 0.989 | 1.008 | 0.993 | 1.002 | 0.992 | 0.990 | 1.007 | 0.998 | 1.019 | 0.999 |
Liaoning | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Jiangsu | 0.958 | 1.044 | 0.979 | 1.009 | 0.999 | 1.010 | 1.000 | 1.003 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.001 | 0.984 | 0.999 | 0.999 |
Zhejiang | 1.044 | 0.976 | 0.992 | 0.977 | 1.007 | 1.005 | 0.994 | 0.998 | 1.004 | 1.008 | 1.001 | 0.999 | 1.041 | 0.959 | 1.043 | 0.963 | 1.001 |
Fujian | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Shandong | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Guangdong | 1.011 | 0.995 | 1.001 | 1.007 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 1.001 | 1.001 | 1.000 | 1.000 | 1.000 | 1.001 |
Guangxi | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Hainan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.001 | 1.000 | 0.966 | 1.023 | 1.011 | 1.000 | 1.000 |
Mean | 1.000 | 0.997 | 1.003 | 0.995 | 1.006 | 0.999 | 0.999 | 0.999 | 1.000 | 0.997 | 1.005 | 0.999 | 0.999 | 1.000 | 1.004 | 0.998 |
Province | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tianjin | 1.010 | 0.952 | 1.050 | 0.993 | 1.450 | 0.775 | 0.940 | 0.975 | 0.980 | 1.022 | 1.039 | 1.090 | 1.018 | 1.041 | 1.028 | 1.768 | 1.071 |
Hebei | 0.897 | 0.951 | 1.005 | 0.984 | 0.991 | 0.999 | 1.006 | 1.002 | 1.011 | 0.999 | 1.005 | 0.991 | 0.995 | 1.006 | 1.007 | 1.008 | 0.991 |
Liaoning | 0.994 | 0.986 | 1.004 | 1.005 | 1.002 | 0.998 | 1.007 | 1.005 | 1.003 | 1.006 | 1.002 | 0.995 | 1.006 | 1.002 | 1.014 | 1.005 | 1.002 |
Jiangsu | 1.029 | 1.021 | 1.013 | 1.006 | 0.998 | 1.009 | 1.009 | 1.008 | 1.006 | 1.005 | 1.004 | 1.002 | 1.001 | 0.999 | 0.984 | 0.969 | 1.004 |
Zhejiang | 1.035 | 1.019 | 1.003 | 0.986 | 1.003 | 1.004 | 1.006 | 1.002 | 1.006 | 1.012 | 1.011 | 1.003 | 1.068 | 1.017 | 1.069 | 1.004 | 1.015 |
Fujian | 1.009 | 0.988 | 0.991 | 0.995 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 0.999 | 0.999 |
Shandong | 1.022 | 1.019 | 1.017 | 1.015 | 1.012 | 1.010 | 1.008 | 1.006 | 1.003 | 1.001 | 0.999 | 0.996 | 0.994 | 0.992 | 0.989 | 0.987 | 1.004 |
Guangdong | 1.059 | 0.971 | 1.003 | 1.003 | 1.005 | 1.000 | 1.002 | 1.003 | 1.003 | 1.003 | 1.001 | 1.004 | 1.007 | 0.999 | 0.998 | 0.998 | 1.004 |
Guangxi | 1.004 | 0.962 | 1.005 | 1.057 | 0.994 | 0.969 | 1.019 | 1.020 | 1.003 | 1.040 | 0.997 | 0.995 | 1.052 | 1.000 | 0.983 | 0.988 | 1.005 |
Hainan | 1.044 | 0.975 | 0.995 | 1.030 | 1.002 | 1.004 | 1.008 | 1.010 | 1.004 | 1.012 | 1.002 | 1.019 | 0.986 | 1.027 | 1.041 | 1.039 | 1.012 |
Mean | 1.010 | 0.985 | 1.009 | 1.007 | 1.046 | 0.977 | 1.000 | 1.003 | 1.002 | 1.010 | 1.006 | 1.010 | 1.013 | 1.008 | 1.012 | 1.076 |
1 | |||||||
0.357 ** | 1 | ||||||
−0.070 | 0.334 *** | 1 | |||||
0.206 ** | 0.014 | 0.158 *** | 1 | ||||
−0.072 | −0.300 *** | −0.284 *** | 0.135 | 1 | |||
0.132 * | 0.226 *** | 0.329 *** | 0.053 | −0.169 *** | 1 | ||
−0.279 *** | 0.018 | 0.411 *** | 0.289 *** | −0.026 | −0.108 | 1 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
0.015 ** | 0.038 ** | 0.036 ** | 0.036 ** | −0.000 | |
(0.01) | (0.02) | (0.02) | (0.02) | (0.00) | |
−0.000 | −0.000 | −0.000 | |||
(0.00) | (0.00) | (0.00) | |||
0.649 *** | 0.653 *** | 0.004 | |||
(0.24) | (0.24) | (0.01) | |||
0.304 *** | 0.307 *** | 0.003 | |||
(0.09) | (0.09) | (0.00) | |||
−1.843 *** | −1.864 *** | −0.021 * | |||
(0.41) | (0.41) | (0.01) | |||
0.751 | 0.759 | 0.007 | |||
(0.91) | (0.91) | (0.02) | |||
0.946 *** | 1.030 *** | 7.618 | 7.719 | 1.105 *** | |
(0.08) | (0.26) | (8.37) | (8.35) | (0.21) | |
Year | No | Yes | Yes | Yes | Yes |
Province | No | Yes | Yes | Yes | Yes |
N | 117 | 117 | 117 | 117 | 117 |
R2 | 0.043 | 0.191 | 0.379 | 0.382 | 0.141 |
Variables | (1) | (2) | (3) |
---|---|---|---|
The Bohai Rim Economic Circle in China | Yellow Sea and East Sea Economic Circle in China | South Sea Economic Circle in China | |
0.046 * | 0.001 ** | −0.000 | |
(0.03) | (0.00) | (0.00) | |
0.000 | −0.000 | −0.000 | |
(0.00) | (0.00) | (0.00) | |
0.687 | −0.042 *** | −0.002 | |
(0.52) | (0.01) | (0.00) | |
0.127 | −0.007 | 0.003 | |
(0.16) | (0.01) | (0.00) | |
−0.271 * | −0.033 *** | −0.008 | |
(0.15) | (0.01) | (0.01) | |
0.174 | −0.013 | 0.006 | |
(0.74) | (0.01) | (0.01) | |
−3.601 | 1.917 *** | 1.031 *** | |
(10.03) | (0.20) | (0.10) | |
Year | No | No | No |
Province | No | No | No |
N | 45 | 25 | 47 |
R2 | 0.210 | 0.731 | 0.062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Chen, F.; Cai, T.; Zhao, W.; Hu, Y. The Impact of Digital Economy Policy on Mariculture Green Total Factor Productivity in China. Sustainability 2024, 16, 9930. https://doi.org/10.3390/su16229930
Liu S, Chen F, Cai T, Zhao W, Hu Y. The Impact of Digital Economy Policy on Mariculture Green Total Factor Productivity in China. Sustainability. 2024; 16(22):9930. https://doi.org/10.3390/su16229930
Chicago/Turabian StyleLiu, Sukun, Fang Chen, Tiantian Cai, Wanli Zhao, and Ying Hu. 2024. "The Impact of Digital Economy Policy on Mariculture Green Total Factor Productivity in China" Sustainability 16, no. 22: 9930. https://doi.org/10.3390/su16229930
APA StyleLiu, S., Chen, F., Cai, T., Zhao, W., & Hu, Y. (2024). The Impact of Digital Economy Policy on Mariculture Green Total Factor Productivity in China. Sustainability, 16(22), 9930. https://doi.org/10.3390/su16229930