Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Experimental Design
2.3. Assay Method
2.4. Method of Calculation
- (1)
- Soil organic carbon mineralization (CO2):
- (2)
- Soil organic carbon mineralization rate (mg·kg−1·d−1) = soc mineralization/.
- (3)
- Cumulative mineralization of soil organic carbon.
- (4)
- The first-order kinetic equation was used to study the kinetic data of organic carbon cumulative mineralization.
2.5. Statistical Analysis
3. Results
3.1. GBC and CBC Characterization Analysis
3.2. Effects of Adding Different Proportions of GBC and CBC on Soil Properties
3.3. Effects of Adding Different Proportions of GBC and CBC on Soil Organic Carbon Mineralization
3.4. Effects of Adding Different Proportions of GBC and CBC on Different Carbon Fractions in Soil
3.5. Effects of Adding Different Proportions of GBC and CBC on Soil Enzyme Activities
3.6. Analysis of Relationship
4. Discussion
4.1. Effects of GBC and CBC Application on Soil Physical and Chemical Properties
4.2. Effects of GBC and CBC on Soil Organic Carbon Mineralization
4.3. Effects of GBC and CBC on Soil Carbon Fractions
4.4. Effects of GBC and CBC on Soil Enzyme Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.Y.; Song, K.F.; Huang, Q.; Wang, T.Y.; Zhang, G.B.; Ma, J.; Zhu, Y.W.; Xu, H. Responses of rice yield, CH4 and N2O emissions from paddy fields to long-term elevated atmospheric CO2 concentration. Environ. Sci. 2021, 42, 5021–5029. [Google Scholar] [CrossRef]
- Qiu, C.J.; Ciais, P.; Zhu, D.; Guenet, B.; Peng, S.S.; Petrescu, A.M.R.; Lauerwald, R.; Makowski, D.; Gallego-Sala, A.V.; Charman, D.J.; et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 2021, 7, eabf1332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.T.; Tian, H.Q.; You, Y.F.; Liang, X.Z.; Ouyang, Z.T.; Pan, N.Q.; Pan, S.F. Balancing Non-CO2 GHG Emissions and Soil Carbon Change in US Rice Paddies: A Retrospective Meta-Analysis and Agricultural Modeling Study. Agu Adv. 2024, 5, e2023AV001052. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Zheng, J.B.; Wang, D.; Wang, F.H.; Wang, Y.Y.; Wang, Z.F.; Gao, M. The characteristics of soluble organic carbon loss in purple soil sloping land under different fertilization conditions. Environ. Sci. 2021, 42, 967–976. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Polifka, S.; Fischer, D.; Glaser, B. Long-term biochar and soil organic carbon stability—Evidence from field experiments in Germany. Sci. Total Environ. 2024, 954, 176340. [Google Scholar] [CrossRef]
- Ding, X.Y.; Li, G.T.; Zhao, X.R.; Lin, Q.M.; Wang, X. Biochar application significantly increases soil organic carbon under conservation tillage: An 11-year field experiment. Biochar 2023, 5, 28. [Google Scholar] [CrossRef]
- Gan, H.Y.; Schoening, I.; Schall, P.; Ammer, C.; Schrumpf, M. Soil Organic Matter Mineralization as Driven by Nutrient Stoichiometry in Soils Under Differently Managed Forest Stands. Front. For. Glob. Chang. 2020, 3, 99. [Google Scholar] [CrossRef]
- Xie, G.X.; Su, Q.Q.; Yang, N.; Yang, S.E.; Huang, Q.T.; Qu, T.T. Analysis and Countermeasures on the Development and Change of Leading Agricultural Economic Industry in Guangxi. Anhui Agric. Sci. 2024, 52, 255–259. [Google Scholar]
- Li, Z.L.; Xie, D.T. Research progress on the relationship between citrus growth and ecological factors. Chin. Agric. Sci. Bull. 2003, 19, 181–184+189. [Google Scholar]
- Lyu, H.; Zhang, Q.; Shen, B. Application of biochar and its composites in catalysis. Chemosphere 2020, 240, 124842. [Google Scholar] [CrossRef]
- Thi Thu Nhan, N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Lu, Y.; Silveira, M.L.; Cavigelli, M.; O’Connor, G.A.; Vendramini, J.M.B.; Erickson, J.E.; Li, Y.C. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 2. Greenhouse gas emissions. J. Environ. Qual. 2020, 49, 1421–1434. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-L.; Lee, C.-H.; Jien, S.-H. Reduction of Nutrient Leaching Potential in Coarse-Textured Soil by Using Biochar. Water 2020, 12, 2012. [Google Scholar] [CrossRef]
- Lu, Y.; Silveira, M.L.; O’Connor, G.A.; Vendramini, J.M.B.; Erickson, J.E.; Li, Y.C.; Cavigelli, M. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching. J. Environ. Qual. 2020, 49, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L.; Anderson, T.R.; Ballantine, K.A. Biochar Simultaneously Reduces Nutrient Leaching and Greenhouse Gas Emissions in Restored Wetland Soils. Wetlands 2020, 40, 1981–1991. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Yang, C.; Lu, S. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Sci. Total Environ. 2022, 805, 150325. [Google Scholar] [CrossRef]
- Abhishek, K.; Shrivastava, A.; Vimal, V.; Gupta, A.K.; Bhujbal, S.K.; Biswas, J.K.; Singh, L.; Ghosh, P.; Pandey, A.; Sharma, P.; et al. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Sci. Total Environ. 2022, 853, 158562. [Google Scholar] [CrossRef]
- Lu, W.; Ding, W.; Zhang, J.; Li, Y.; Luo, J.; Bolan, N.; Xie, Z. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem. 2014, 76, 12–21. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Zheng, J.; Wang, D. Differences in Soil Organic Carbon Accumulation After 8 Years of Biochar Application with High and Low Rates. J. Soil Sci. Plant Nutr. 2023, 23, 4987–4996. [Google Scholar] [CrossRef]
- Zheng, T.; Zhang, J.; Tang, C.; Liao, K.; Guo, L. Positive and negative priming effects in an Ultisol in relation to aggregate size class and biochar level. Soil Tillage Res. 2021, 208, 104874. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, Y.; Lu, H.; He, L.; Yang, S. Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degrad. Dev. 2018, 29, 3985–3994. [Google Scholar] [CrossRef]
- Li, Y.A.; Hu, H.Y.; Zhou, C.F. Analysis of the effect of biochar on soil carbon cycle. Inn. Mong. For. Surv. Des. 2019, 42, 102–104. [Google Scholar] [CrossRef]
- Hu, L.N.; Huang, R.; Zhou, L.M.; Qin, R.; He, X.Y.; Deng, H.; Li, K. Effects of magnesium-modified biochar on soil organic carbon mineralization in citrus orchard. Front. Microbiol. 2023, 14, 1109272. [Google Scholar] [CrossRef]
- Zhang, X.; Teng, Z.; Zhang, H.; Cai, D.; Zhang, J.; Meng, F.; Sun, G. Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil. J. For. Res. 2021, 32, 2121–2133. [Google Scholar] [CrossRef]
- Wang, H.; Ren, T.; Mueller, K.; Van Zwieten, L.; Wang, H.; Feng, H.; Xu, C.; Yun, F.; Ji, X.; Yin, Q.; et al. Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. Sci. Total Environ. 2021, 753, 141645. [Google Scholar] [CrossRef]
- Rong, G.; Zhang, X.; Wu, H.; Ge, N.; Yao, Y.; Wei, X. Changes in soil organic carbon and nitrogen mineralization and their temperature sensitivity in response to afforestation across China’s Loess Plateau. Catena 2021, 202, 105226. [Google Scholar] [CrossRef]
- Hu, L.; Li, S.; Li, K.; Huang, H.; Wan, W.; Huang, Q.; Li, Q.; Li, Y.; Deng, H.; He, T. Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland. Sustainability 2020, 12, 10586. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Jien, S.-H.; Chen, W.-C.; Ok, Y.S.; Awad, Y.M.; Liao, C.-S. Short-term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environ. Sci. Pollut. Res. 2018, 25, 25715–25725. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.J.; Kang, D.; Wu, J.P.; Zhao, F.Z.; Yang, G.H.; Han, X.H.; Feng, Y.Z.; Ren, G.X. Temporal variation in soil enzyme activities after afforestation in the Loess Plateau, China. Geoderma 2016, 282, 103–111. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, E.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
- Pei, L.; Yang, F.; Xu, X.; Nan, H.; Gui, X.; Zhao, L.; Cao, X. Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: Isotherm, kinetics, and mechanism. Sci. Total Environ. 2021, 792, 148550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef]
- Mingliang, Z.; Jie, Y.; Haixia, W.; Qi, L.; Junbing, X. Enhanced removal of phosphate from aqueous solution using Mg/Fe modified biochar derived from excess activated sludge: Removal mechanism and environmental risk. Environ. Sci. Pollut. Res. 2021, 28, 16282–16297. [Google Scholar]
- Li, C.; Wang, Z.; Xu, Y.; Sun, J.; Ruan, X.; Mao, X.; Hu, X.; Liu, P. Analysis of the Effect of Modified Biochar on Saline–Alkali Soil Remediation and Crop Growth. Sustainability 2023, 15, 5593. [Google Scholar] [CrossRef]
- Berek, A.K.; Hue, N.V. Characterization of Biochars and Their Use as an Amendment to Acid Soils. Soil Sci. 2016, 181, 412–426. [Google Scholar] [CrossRef]
- Alena, Z.; Harald, C.; John, S. Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides. Water Air Soil Pollut. 2017, 228, 216. [Google Scholar]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef]
- Hannet, G.; Singh, K.; Fidelis, C.; Farrar, M.B.; Muqaddas, B.; Bai, S.H. Effects of biochar, compost, and biochar-compost on soil total nitrogen and available phosphorus concentrations in a corn field in Papua New Guinea. Environ. Sci. Pollut. Res. Int. 2021, 28, 27411–27419. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Quan, W.; Chen, Q.; Gong, W.; Wang, A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024, 29, 1005. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Kuang, X.; Tang, M.; Chen, X.; Huang, F.; Cai, Y.; Cai, K. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, S.; Chen, M.; Fei, C.; Zhang, W.; Li, Y.; Ding, X. Fe-modified biochar combined with mineral fertilization promotes soil organic phosphorus mineralization by shifting the diversity of phoD-harboring bacteria within soil aggregates in saline-alkaline paddy soil. J. Soils Sediments 2022, 23, 619–633. [Google Scholar] [CrossRef]
- Xiu, L.; Gu, W.; Sun, Y.; Wu, D.; Wang, Y.; Zhang, H.; Zhang, W.; Chen, W. The fate and supply capacity of potassium in biochar used in agriculture. Sci. Total Environ. 2023, 902, 165969. [Google Scholar] [CrossRef]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 2018, 312, 139–150. [Google Scholar] [CrossRef]
- Buss, W.; Assavavittayanon, K.; Shepherd, J.G.; Heal, K.V.; Sohi, S. Biochar Phosphorus Release Is Limited by High pH and Excess Calcium. J. Environ. Qual. 2018, 47, 1298–1303. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Cai, Y.; Fu, S.; Luo, Y.; Wang, H.; Liang, C.; Lin, Z.; Hu, S.; Li, Y.; et al. Biochar decreases soil N 2 O emissions in Moso bamboo plantations through decreasing labile N concentrations, N-cycling enzyme activities and nitrification/denitrification rates. Geoderma 2019, 348, 135–145. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Garcia, M.; Förster, B.; Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiol.—Int. J. Soil Biol. 2007, 51, 359–366. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 2000, 31, 711–725. [Google Scholar] [CrossRef]
- Zheng, X.D.; Li, X.; Singh, B.P.; Wei, L.; Huang, L.X.; Huang, Y.F.; Huang, Q.; Chen, X.B.; Su, Y.R.; Liu, Z.Z.; et al. Biochar protects hydrophilic dissolved organic matter against mineralization and enhances its microbial carbon use efficiency. Sci. Total Environ. 2021, 795, 148793. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.L. Study on Two-Step Hydrothermal Autocatalysis and Enhanced Pretreatment Process of Cassava Straw. Master’s Thesis, Tianjin University, Tianjin, China, 2018. [Google Scholar]
- Guo, Y.; Cui, D.; Wang, Z. Rapid extraction of volatile oil components from fresh orange peel by solid microwave medium heating. Anal. Chem. 2009, 37, 407–411. [Google Scholar]
- Kim, H.-B.; Kim, J.G.; Alessi, D.S.; Baek, K. Temporal changes in the mobility of As, Pb, Zn, and Cu due to differences in biochar stability caused by lignin content. Chem. Eng. J. 2024, 493, 152567. [Google Scholar] [CrossRef]
- Novak, J.; Busscher, W.; Watts, D.; Laird, D.; Ahmedna, M. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma Int. J. Soil Sci. 2010, 154, 281–288. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Y.F.; Chang, S.X.; Yang, Y.F.; Fu, S.L.; Jiang, P.K.; Luo, Y.; Yang, M.; Chen, Z.H.; Hu, S.D.; et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, Z.; Liu, J.; Zhang, H.; Shen, W. Effect of Biochar on Labile Organic Carbon Fractions and Soil Carbon Pool Management Index. Agronomy 2023, 13, 1385. [Google Scholar] [CrossRef]
- Zhang, R.X.; Qu, Z.Y.; Liu, L.; Yang, W.; Wang, L.P.; Li, J.J.; Zhang, D.L. Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere 2022, 13, 2038. [Google Scholar] [CrossRef]
- Kalu, S.; Seppänen, A.; Mganga, K.Z.; Sietiö, O.M.; Glaser, B.; Karhu, K. Biochar reduced the mineralization of native and added soil organic carbon: Evidence of negative priming and enhanced microbial carbon use efficiency. Biochar 2024, 6, 7. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. Glob. Chang. Biol. Bioenergy 2016, 8, 392–406. [Google Scholar] [CrossRef]
- Dong, X.L.; Singh, B.P.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition. Soil Use Manag. 2019, 35, 466–477. [Google Scholar] [CrossRef]
- Huang, R.; Lan, T.; Song, X.; Li, J.; Ling, J.; Deng, O.; Wang, C.; Gao, X.; Li, Q.; Tang, X.; et al. Soil labile organic carbon impacts C:N:P stoichiometry in urban park green spaces depending on vegetation types and time after planting. Appl. Soil Ecol. 2021, 163, 103926. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Xiao, Y.; Cheng, A.; Shen, T.; Zhu, M.; Yu, L. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena 2021, 204, 105418. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, W.; Gulaqa, A.; Cui, Y.; Zhou, Y.; Weng, W.; Wang, X.; Liu, Q.; Jin, F. Effects of Peanut Shell Biochar on Soil Nutrients, Soil Enzyme Activity, and Rice Yield in Heavily Saline-Sodic Paddy Field. J. Soil Sci. Plant Nutr. 2021, 21, 655–664. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, J.; Xu, N.; He, T.; Meng, J.; Liu, Z. Urea hydrolysis in different farmland soils as affected by long-term biochar application. Front. Environ. Sci. 2022, 10, 950482. [Google Scholar] [CrossRef]
- Xu, Y.X.; He, L.L.; Liu, Y.X.; Lv, H.H.; Wang, Y.Y.; Chen, J.Y.; Yang, S.M. Effects of biochar on soil enzyme activity and fertility in paddy field after 6 years of application. J. Appl. Ecol. 2019, 30, 1110–1118. [Google Scholar] [CrossRef]
pH | Electrical Conductivity (EC) (S·m−1) | Available Phosphorous (AP) (mg·kg−1) | Available Potassium (AK) (mg·kg−1) | Soil Organic Carbon (SOC) (g·kg−1) |
---|---|---|---|---|
4.36 | 53.8 | 27.125 | 38.235 | 6.78 |
Treatment | Imposer | Apply Proportion (%) |
---|---|---|
CK | unadded | 0 |
G1% | Citrus peel biochar | 1 |
G2% | 2 | |
G4% | 4 | |
C1% | Cassava straw biochar | 1 |
C2% | 2 | |
C4% | 4 |
Treatment | Fitting Parameters | |||
---|---|---|---|---|
C0/mg·kg−1 | k/d−1 | R2 | C0/SOC | |
CK | 2190.6 ± 263.76 | 0.056 ± 0.013 | 0.958 | 0.302 |
G1% | 2730.7 ± 317.37 | 0.048 ± 0.010 | 0.974 | 0.252 |
G2% | 2966.7 ± 405.28 | 0.038 ± 0.008 | 0.981 | 0.242 |
G4% | 2971.8 ± 332.12 | 0.043 ± 0.008 | 0.982 | 0.229 |
C1% | 2557.4 ± 247.61 | 0.053 ± 0.010 | 0.977 | 0.189 |
C2% | 2667.6 ± 347.35 | 0.044 ± 0.010 | 0.974 | 0.175 |
C4% | 2816.9 ± 362.01 | 0.043 ± 0.009 | 0.977 | 0.169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Huang, R.; Li, X.; Fan, Q.; Hu, L.; Liu, S. Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards. Sustainability 2024, 16, 9967. https://doi.org/10.3390/su16229967
Ding Z, Huang R, Li X, Fan Q, Hu L, Liu S. Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards. Sustainability. 2024; 16(22):9967. https://doi.org/10.3390/su16229967
Chicago/Turabian StyleDing, Zerui, Rui Huang, Xianliang Li, Qijun Fan, Lening Hu, and Shengqiu Liu. 2024. "Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards" Sustainability 16, no. 22: 9967. https://doi.org/10.3390/su16229967
APA StyleDing, Z., Huang, R., Li, X., Fan, Q., Hu, L., & Liu, S. (2024). Effects of Biochar on Soil Organic Carbon Mineralization in Citrus Orchards. Sustainability, 16(22), 9967. https://doi.org/10.3390/su16229967