Multiscale Effects of Slash-and-Burn Agriculture Across the Tropics: Implications for the Sustainability of an Ancestral Agroecosystem
Abstract
:1. Introduction
2. Literature Search
3. Overview of Reviewed Studies
4. Local-Scale Impacts of SBA
4.1. Slashing of Vegetation
4.2. Burning of Vegetation
4.3. Farming
4.4. Land Abandonment and Forest Recovery
5. Impacts of SBA at the Landscape Scale
6. Conclusions and Implications for the Sustainability of Tropical Ecosystems and SBA Itself
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, E.C.; Gauthier, N.; Klein Goldewijk, K.; Bliege Bird, R.; Boivin, N.; Díaz, S.; Fuller, D.Q.; Gill, J.L.; Kaplan, J.O.; Kingston, N.; et al. People Have Shaped Most of Terrestrial Nature for at Least 12,000 Years. Proc. Natl. Acad. Sci. USA 2021, 118, e2023483118. [Google Scholar] [CrossRef] [PubMed]
- Bisht, V.K.; Nautiyal, B.P.; Kuniyal, C.P.; Prasad, P.; Sundriyal, R.C. Litter Production, Decomposition, and Nutrient Release in Subalpine Forest Communities of the Northwest Himalaya. J. Ecosyst. 2014, 2014, 294867. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of Forest Management on Soil C and N Storage: Meta Analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Pimentel, D.; Bryant, R.B. The Ecological Sustainability of Slash-and-Burn Agriculture. Agric. Ecosyst. Environ. 1995, 52, 235–249. [Google Scholar] [CrossRef]
- Pedroso-Junior, N.N.; Adams, C.; Murrieta, R.S.S. Slash-and-Burn Agriculture: A System in Transformation. In Current Trends in Human Ecology; Cambridge Scholars Publishing: Cambridge, UK, 2009; pp. 12–34. ISBN 978-1-4438-0441-7. [Google Scholar]
- Auliz-Ortiz, D.M.; Benítez-Malvido, J.; Arroyo-Rodríguez, V.; Dirzo, R.; Pérez-Farrera, M.Á.; Luna-Reyes, R.; Mendoza, E.; Álvarez-Añorve, M.Y.; Álvarez-Sánchez, J.; Arias-Ataide, D.M.; et al. Underlying and Proximate Drivers of Biodiversity Changes in Mesoamerican Biosphere Reserves. Proc. Natl. Acad. Sci. USA 2024, 121, e2305944121. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- FAO (Ed.) Forests Pathways to Sustainable Development; State of the World’s Forests; FAO: Rome, Italy, 2018; ISBN 978-92-5-130561-4. [Google Scholar]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.S.; Arroyo-Rodríguez, V.; Tavares, J.M.; Leal, A.; Leal, I.R.; Tabarelli, M. Drastic Impoverishment of the Soil Seed Bank in a Tropical Dry Forest Exposed to Slash-and-Burn Agriculture. For. Ecol. Manag. 2022, 513, 120185. [Google Scholar] [CrossRef]
- Poorter, L.; Craven, D.; Jakovac, C.C.; Van Der Sande, M.T.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional Tropical Forest Recovery. Science 2021, 374, 1370–1376. [Google Scholar] [CrossRef]
- Hattori, D.; Kenzo, T.; Shirahama, T.; Harada, Y.; Kendawang, J.J.; Ninomiya, I.; Sakurai, K. Degradation of Soil Nutrients and Slow Recovery of Biomass Following Shifting Cultivation in the Heath Forests of Sarawak, Malaysia. For. Ecol. Manag. 2019, 432, 467–477. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Melo, F.P.L.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple Successional Pathways in Human-Modified Tropical Landscapes: New Insights from Forest Succession, Forest Fragmentation and Landscape Ecology Research: Multiple Successional Pathways. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Rodríguez, V.; Fahrig, L.; Tabarelli, M.; Watling, J.I.; Tischendorf, L.; Benchimol, M.; Cazetta, E.; Faria, D.; Leal, I.R.; Melo, F.P.L.; et al. Designing Optimal Human-modified Landscapes for Forest Biodiversity Conservation. Ecol. Lett. 2020, 23, 1404–1420. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.B.; Danielson, B.J.; Pulliam, H.R. Ecological Processes That Affect Populations in Complex Landscapes. Oikos 1992, 65, 169. [Google Scholar] [CrossRef]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J. Functional Landscape Heterogeneity and Animal Biodiversity in Agricultural Landscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Jakovac, C.C.; Peña-Claros, M.; Kuyper, T.W.; Bongers, F. Loss of Secondary-forest Resilience by Land-use Intensification in the Amazon. J. Ecol. 2015, 103, 67–77. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Fischer, J.; Felton, A.; Crane, M.; Michael, D.; Macgregor, C.; Montague-Drake, R.; Manning, A.; Hobbs, R.J. Novel Ecosystems Resulting from Landscape Transformation Create Dilemmas for Modern Conservation Practice. Conserv. Lett. 2008, 1, 129–135. [Google Scholar] [CrossRef]
- Melo, F.P.L.; Arroyo-Rodríguez, V.; Fahrig, L.; Martínez-Ramos, M.; Tabarelli, M. On the Hope for Biodiversity-Friendly Tropical Landscapes. Trends Ecol. Evol. 2013, 28, 462–468. [Google Scholar] [CrossRef]
- Ricklefs, R.E. A Comprehensive Framework for Global Patterns in Biodiversity. Ecol. Lett. 2004, 7, 1–15. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape Moderation of Biodiversity Patterns and Processes—Eight Hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Loidi, J.; Navarro-Sánchez, G.; Vynokurov, D. A Vector Map of the World’s Terrestrial Biotic Units: Subbiomes, Biomes, Ecozones and Domains. Veg. Classif. Surv. 2023, 4, 59–61. [Google Scholar] [CrossRef]
- Poorter, L.; Amissah, L.; Bongers, F.; Hordijk, I.; Kok, J.; Laurance, S.G.W.; Lohbeck, M.; Martínez-Ramos, M.; Matsuo, T.; Meave, J.A.; et al. Successional Theories. Biol. Rev. 2023, 98, 2049–2077. [Google Scholar] [CrossRef] [PubMed]
- Mather, A.S. The Forest Transition. Area 1992, 24, 367–379. [Google Scholar]
- Robin, L. Chazdon Second Growth: The Promise of Tropical Rain Forest Regeneration in the Age of Deforestation—Review; University of Chicago Press: Chicago, IL, USA, 2014; Volume 24. [Google Scholar]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass Resilience of Neotropical Secondary Forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, M.A.; Laurance, W.F. Synergisms among Fire, Land Use, and Climate Change in the Amazon. AMBIO A J. Hum. Environ. 2008, 37, 522–527. [Google Scholar] [CrossRef]
- Tuff, K.T.; Tuff, T.; Davies, K.F. A Framework for Integrating Thermal Biology into Fragmentation Research. Ecol. Lett. 2016, 19, 361–374. [Google Scholar] [CrossRef]
- Sousa, J.S.B.; Longo, M.G.; Santos, B.A. Landscape Patterns of Primary Production Reveal Agricultural Benefits from Forest Conservation. Perspect. Ecol. Conserv. 2019, 17, 136–145. [Google Scholar] [CrossRef]
- Alves, T.; Lima, M.R.; Dos Anjos, L. Forest Cover Positively Affects the Occurrence of Understory Insectivorous Passeriformes in Bird Communities of the Atlantic Forest. Community Ecol. 2023, 24, 87–98. [Google Scholar] [CrossRef]
- Dáttilo, W.; Luna, P.; Villegas-Patraca, R. Invasive Plant Species Driving the Biotic Homogenization of Plant-Frugivore Interactions in the Atlantic Forest Biodiversity Hotspot. Plants 2023, 12, 1845. [Google Scholar] [CrossRef]
- Shi, L.; Dossa, G.G.O.; Paudel, E.; Zang, H.; Xu, J.; Harrison, R.D. Changes in Fungal Communities across a Forest Disturbance Gradient. Appl. Environ. Microbiol. 2019, 85, e00080-19. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Effects of Forest Degradation on Microbial Communities and Soil Carbon Cycling: A Global Meta-analysis. Glob. Ecol. Biogeogr. 2018, 27, 110–124. [Google Scholar] [CrossRef]
- Woodcock, P.; Halme, P.; Edwards, D.P. Ecological Effects of Logging and Approaches to Mitigating Impacts. In Routledge Handbook of Forest Ecology; Routledge: New York, NY, USA, 2015; Volume 1, p. 14. ISBN 978-1-315-81829-0. [Google Scholar]
- Martínez-Penados, A.L.; Arroyo-Rodríguez, V.; Morante-Filho, J.C.; Pinel-Ramos, E.J.; Schondube, J. Old-Growth Forests Are Critical to Safeguard Tropical Birds in Complex Landscape Mosaics Exposed to Slash-and-Burn Agriculture. Landsc. Ecol. 2024, 39, 118. [Google Scholar] [CrossRef]
- Ramos-Fabiel, M.A.; Pérez-García, E.A.; González, E.J.; Yáñez-Ordoñez, O.; Meave, J.A. Successional Dynamics of the Bee Community in a Tropical Dry Forest: Insights from Taxonomy and Functional Ecology. Biotropica 2019, 51, 62–74. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Gentry, A.H. Changes in Plant Community Diversity and Floristic Composition on Environmental and Geographical Gradients. Ann. Mo. Bot. Gard. 1988, 75, 1. [Google Scholar] [CrossRef]
- Gentry, A.H. Neotropical Floristic Diversity: Phytogeographical Connections Between Central and South America, Pleistocene Climatic Fluctuations, or an Accident of the Andean Orogeny? Ann. Mo. Bot. Gard. 1982, 69, 557. [Google Scholar] [CrossRef]
- Ter Steege, H.; Pitman, N.C.A.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Salomão, R.P.; Castilho, C.V.; Amaral, I.L.; De Almeida Matos, F.D.; et al. Estimating the Global Conservation Status of More than 15,000 Amazonian Tree Species. Sci. Adv. 2015, 1, e1500936. [Google Scholar] [CrossRef] [PubMed]
- Slik, J.W.F.; Arroyo-Rodríguez, V.; Aiba, S.-I.; Alvarez-Loayza, P.; Alves, L.F.; Ashton, P.; Balvanera, P.; Bastian, M.L.; Bellingham, P.J.; Van Den Berg, E.; et al. An Estimate of the Number of Tropical Tree Species. Proc. Natl. Acad. Sci. USA 2015, 112, 7472–7477. [Google Scholar] [CrossRef]
- Scipioni, M.; Fischer, V.L.D.S.T.; Melo, E.A.; Caglioni, E.; Santos, V.D. Vascular Epiphytes on Large Old-Growth Trees: The Influence of Ecological Zones in Epiphyte Species Composition. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Gentry, A.H.; Dodson, C. Contribution of Nontrees to Species Richness of a Tropical Rain Forest. Biotropica 1987, 19, 149. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Bongers, F.; Burnham, R.J.; Putz, F.E. Ecology of Lianas; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Putz, F.E.; Mooney, H.A. (Eds.) The Biology of Vines; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1991; ISBN 978-0-521-39250-1. [Google Scholar]
- Appanah, S. Liana Diversity and Species Richness of Malasyan Rainforests. J. Trop. For. Sci. 1993, 6, 116–123. [Google Scholar]
- Zotz, G. The Systematic Distribution of Vascular Epiphytes—A Critical Update: Vascular Epiphytes. Bot. J. Linn. Soc. 2013, 171, 453–481. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Bongers, F. The Ecology of Lianas and Their Role in Forests. Trends Ecol. Evol. 2002, 17, 223–230. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Murcia, C. Edge Effects in Fragmented Forests: Implications for Conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Saldaña-Vázquez, R.A.; Fahrig, L.; Santos, B.A. Does Forest Fragmentation Cause an Increase in Forest Temperature? Ecol. Res. 2017, 32, 81–88. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J.; Chen, J.; Brosofske, K.D.; Saunders, S.C.; Euskirchen, E.S.; Roberts, D.; Jaiteh, M.S.; Esseen, P. Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Willmer, J.N.G.; Püttker, T.; Prevedello, J.A. Global Impacts of Edge Effects on Species Richness. Biol. Conserv. 2022, 272, 109654. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Conserv. Biol. 2002, 16, 605–618. [Google Scholar] [CrossRef]
- Neto, T.G.S.; Dias, F.F.; Saito, V.O.; Anselmo, E. Emission Factors for CO2, CO and Main Hydrocarbon Gases, and Biomass Consumption in an Amazonian Forest Clearing Fire. In Proceedings of the 2012 international Emission Inventory Conference Emission Inventories—Meeting the Challenges Posed by Emerging Global, National, Regional and Local Air Quality Issues by USEPA, Tampa, FL, USA, 13–16 August 2012. [Google Scholar]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.-D.V.; Jaya, A.; Limin, S. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Cochrane, M.A. Fire Science for Rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-Evaluation of Forest Biomass Carbon Stocks and Lessons from the World’s Most Carbon-Dense Forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation. Clim. Change 2000, 46, 115–158. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Sanford, R.L.; Cummings, D.L.; Salcedo, I.H.; Sampaio, E.V.S.B. Biomass and Nutrient Dynamics Associated with Slash Fires in Neotropical Dry Forests. Ecology 1993, 74, 140–151. [Google Scholar] [CrossRef]
- Prasad, V. Biomass and Combustion Characteristics of Secondary Mixed Deciduous Forests in Eastern Ghats of India. Atmos. Environ. 2001, 35, 3085–3095. [Google Scholar] [CrossRef]
- Prasad, V.K.; Gupta, P.K.; Sharma, C.; Sarkar, A.K.; Kant, Y.; Badarinath, K.V.S.; Rajagopal, T.; Mitra, A.P. NOx Emissions from Biomass Burning of Shifting Cultivation Areas from Tropical Deciduous Forests of India - Estimates from Ground-Based Measurements. Atmos. Environ. 2000, 34, 3271–3280. [Google Scholar] [CrossRef]
- Gupta, P.K.; Prasad, V.K.; Kant, Y.; Sharma, C.; Ghosh, A.B.; Sharma, M.C.; Sarkar, A.K.; Jain, S.L.; Tripathi, O.P.; Sharma, R.C.; et al. Study of Trace Gases and Aerosol Emissions Due to Biomass Burning at Shifting Cultivation Sites in East Godavari District (Andhra Pradesh) during INDOEX IFP-99. Curr. Sci. 2001, 80, 186–196. [Google Scholar]
- Gupta, P.K.; Krishna Prasad, V.; Sharma, C.; Sarkar, A.K.; Kant, Y.; Badarinath, K.V.S.; Mitra, A.P. CH4 Emissions from Biomass Burning of Shifting Cultivation Areas of Tropical Deciduous Forests—Experimental Results from Ground-Based Measurements. Chemosphere—Glob. Change Sci. 2001, 3, 133–143. [Google Scholar] [CrossRef]
- Fearnside, P.M.; De Alencastro Graça, P.M.L.; Leal Filho, N.; Rodrigues, F.J.A.; Robinson, J.M. Tropical Forest Burning in Brazilian Amazonia: Measurement of Biomass Loading, Burning Efficiency and Charcoal Formation at Altamira, Pará. For. Ecol. Manag. 1999, 123, 65–79. [Google Scholar] [CrossRef]
- Giardina, C.P.; Jr, R.L.S.; Døckersmith, I.C.; Jaramillo, V.J. The Effects of Slash Burning on Ecosystem Nutrients during the Land Preparation Phase of Shifting Cultivation. Plant Soil 2000, 220, 247–260. [Google Scholar] [CrossRef]
- Kyuma, K.; Tulaphitak, T.; Pairintra, C. Changes in Soil Fertility and Tilth under Shifting Cultivation: I. General Description of Soil and Effect of Burning on the Soil Characteristics. Soil Sci. Plant Nutr. 1985, 31, 227–238. [Google Scholar] [CrossRef]
- Yadava, P.S.; Devi, S. Effect of Slash and Burning on N-Mineralisation in the Dipterocarpus Forest of Manipur, NE India. Int. J. Ecol. Environ. Sci. 2005, 31, 53–60. [Google Scholar]
- Thomaz, E.L.; Antoneli, V.; Doerr, S.H. Effects of Fire on the Physicochemical Properties of Soil in a Slash-and-Burn Agriculture. Catena 2014, 122, 209–215. [Google Scholar] [CrossRef]
- Uhl, C.; Jordan, C.F. Succession and Nutrient Dynamics Following Forest Cutting and Burning in Amazonia. Ecology 1984, 65, 1476–1490. [Google Scholar] [CrossRef]
- Arunachalam, A. Dynamics of Soil Nutrients and Microbial Biomass during First Year Cropping in an 8-Year Jhum Cycle. Nutr. Cycl. Agroecosystems 2002, 64, 283–291. [Google Scholar] [CrossRef]
- Bhadauria, T.; Ramakrishnan, P.S. Role of Earthworms in Nitrogen Cycling during the Cropping Phase of Shifting Agriculture (Jhum) in North-East India. Biol. Fertil. Soils 1996, 22, 350–354. [Google Scholar] [CrossRef]
- Adeyolanu, O.D.; Are, K.S.; Oluwatosin, G.A.; Ayoola, O.T.; Adelana, A.O. Evaluation of Two Methods of Soil Quality Assessment as Influenced by Slash and Burn in Tropical Rainforest Ecology of Nigeria. Arch. Agron. Soil Sci. 2013, 59, 1725–1742. [Google Scholar] [CrossRef]
- Béliveau, A.; Lucotte, M.; Davidson, R.; Do Canto Lopes, L.O.; Paquet, S. Early Hg Mobility in Cultivated Tropical Soils One Year after Slash-and-Burn of the Primary Forest, in the Brazilian Amazon. Sci. Total Environ. 2009, 407, 4480–4489. [Google Scholar] [CrossRef]
- Mackensen, J.; Hölscher, D.; Klinge, R.; Fölster, H. Nutrient Transfer to the Atmosphere by Burning of Debris in Eastern Amazonia. For. Ecol. Manag. 1996, 86, 121–128. [Google Scholar] [CrossRef]
- Adeniyi, A.S. Effects of Slash and Burning on Soil Microbial Diversity and Abundance in the Tropical Rainforest Ecosystem, Ondo State, Nigeria. Afr. J. Plant Sci. 2010, 4, 322–329. [Google Scholar]
- Cao, M.; Tang, Y.; Sheng, C.; Zhang, J. Viable Seeds Buried in the Tropical Forest Soils of Xishuangbanna, SW China. Seed Sci. Res. 2000, 10, 255–264. [Google Scholar] [CrossRef]
- Mamede, M.D.A.; Araújo, F.S. Effects of Slash and Burn Practices on a Soil Seed Bank of Caatinga Vegetation in Northeastern Brazil. J. Arid. Environ. 2008, 72, 458–470. [Google Scholar] [CrossRef]
- Miller, P.M. Effects of Deforestation on Seed Banks in a Tropical Deciduous Forest of Western Mexico. J. Trop. Ecol. 1999, 15, 179–188. [Google Scholar] [CrossRef]
- Hauser, S.; Norgrove, L. Slash-and-Burn Agriculture, Effects Of. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; pp. 551–562. ISBN 978-0-12-384720-1. [Google Scholar]
- Silva, J.M.N.; Carreiras, J.M.B.; Rosa, I.; Pereira, J.M.C. Greenhouse Gas Emissions from Shifting Cultivation in the Tropics, Including Uncertainty and Sensitivity Analysis. J. Geophys. Res. 2011, 116, D20304. [Google Scholar] [CrossRef]
- Ribeiro Filho, A.A.; Adams, C.; Manfredini, S.; Aguilar, R.; Neves, W.A. Dynamics of Soil Chemical Properties in Shifting Cultivation Systems in the Tropics: A Meta-analysis. Soil Use Manag. 2015, 31, 474–482. [Google Scholar] [CrossRef]
- Alegre, J.C.; Cassel, D.K.; Bandy, D.E. Effects of Land-Clearing Method and Soil Management on Crop Production in the Amazon. Field Crops Res. 1990, 24, 131–141. [Google Scholar] [CrossRef]
- Alegre, J.C.; Cassel, D.K.; Bandy, D.E. Effects of Land Clearing and Subsequent Management on Soil Physical Properties. Soil Sci. Soc. Amer J. 1986, 50, 1379–1384. [Google Scholar] [CrossRef]
- Alegre, J.C.; Cassel, D.K. Dynamics of Soil Physical Properties under Alternative Systems to Slash-and-Burn. Agric. Ecosyst. Environ. 1996, 58, 39–48. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef]
- Aweto, A.O. Turrialba; IICA: San José, CA, USA, 1988; pp. 19–22. [Google Scholar]
- Sampaio, F.A.R.; Fontes, L.E.F.; Costa, L.M.; Jucksch, I. Balanço de nutrientes e da fitomassa em um Argissolo Amarelo sob floresta tropical amazônica após a queima e cultivo com arroz. Rev. Bras. Ciênc. Solo 2003, 27, 1161–1170. [Google Scholar] [CrossRef]
- Tinker, P.B.; Ingram, J.S.I.; Struwe, S. Effects of Slash-and-Burn Agriculture and Deforestation on Climate Change. Agriculture, Ecosyst. Environ. 1996, 58, 13–22. [Google Scholar] [CrossRef]
- Kukla, J.; Whitfeld, T.; Cajthaml, T.; Baldrian, P.; Veselá-Šimáčková, H.; Novotný, V.; Frouz, J. The Effect of Traditional Slash-and-burn Agriculture on Soil Organic Matter, Nutrient Content, and Microbiota in Tropical Ecosystems of Papua New Guinea. Land. Degrad. Dev. 2019, 30, 166–177. [Google Scholar] [CrossRef]
- Dufumier, M. Agriculture comparée et développement agricole. Rev. Tiers Monde 2007, 191, 611. [Google Scholar] [CrossRef]
- Hordijk, I.; Poorter, L.; Martínez-Ramos, M.; Bongers, F.; Mendoza, R.D.L.; Romero, P.J.; Van Der Sande, M.; Muñoz, R.; Jansma, R.; Fujisawa, N.; et al. Land Use Legacies Affect Early Tropical Forest Succession in Mexico. Appl. Veg. Sci. 2024, 27, e12784. [Google Scholar] [CrossRef]
- Sanchez, P.A. Soil Fertility and Hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef]
- SAGARPA. Programas de Apoio Para o Setor Agrícola. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Available online: https://www.gob.mx/agricultura/acciones-y-programas/fertilizantes-para-el-bienestar-2023-de-yucatan (accessed on 20 May 2024).
- Ponce-Caballero, C.; Cardeña-Echalaz, F.; Giácoman-Vallejos, G.; Vega de Lille, M.; Góngora-Echeverría, V.R. Pesticide management and farmers perception of environmental and health issues due to pesticide use in the state of yucatán, mexico: A study case. Rev. Int. Contam. Ambie. 2022, 38, 289–300. [Google Scholar] [CrossRef]
- Sánchez-Domene, D.; Da Silva, F.R.; Provete, D.B.; Navarro-Lozano, A.; Acayaba, R.D.; Montagner, C.C.; Rossa-Feres, D.D.C.; López-Iborra, G.M.; Almeida, E.A. Combined Effects of Landscape Composition and Agrochemicals on Frog Communities amid Sugarcane-dominated Agroecosystems. Ecol. Appl. 2023, 33, e2781. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Peña-Claros, M.; Mesquita, R.C.G.; Bongers, F.; Kuyper, T.W. Swiddens under Transition: Consequences of Agricultural Intensification in the Amazon. Agric. Ecosyst. Environ. 2016, 218, 116–125. [Google Scholar] [CrossRef]
- Philpott, S.M.; Perfecto, I.; Vandermeer, J. Effects of Management Intensity and Season on Arboreal Ant Diversity and Abundance in Coffee Agroecosystems. Biodivers. Conserv. 2006, 15, 139–155. [Google Scholar] [CrossRef]
- Naz, M.; Dai, Z.; Hussain, S.; Tariq, M.; Danish, S.; Khan, I.U.; Qi, S.; Du, D. The Soil pH and Heavy Metals Revealed Their Impact on Soil Microbial Community. J. Environ. Manag. 2022, 321, 115770. [Google Scholar] [CrossRef]
- Jones, S.K.; Sánchez, A.C.; Juventia, S.D.; Estrada-Carmona, N. A Global Database of Diversified Farming Effects on Biodiversity and Yield. Sci. Data 2021, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A. Shifting Cultivation to Sustainability—Seeing beyond the Smoke. Curr. Sci. 2022, 122, 1129. [Google Scholar] [CrossRef]
- Perfecto, I.; Rice, R.A.; Greenberg, R.; Van Der Voort, M.E. Shade Coffee: A Disappearing Refuge for Biodiversity. BioScience 1996, 46, 598–608. [Google Scholar] [CrossRef]
- Barlow, J.; Gardner, T.A.; Araujo, I.S.; Ávila-Pires, T.C.; Bonaldo, A.B.; Costa, J.E.; Esposito, M.C.; Ferreira, L.V.; Hawes, J.; Hernandez, M.I.M.; et al. Quantifying the Biodiversity Value of Tropical Primary, Secondary, and Plantation Forests. Proc. Natl. Acad. Sci. USA 2007, 104, 18555–18560. [Google Scholar] [CrossRef] [PubMed]
- Linnell, J.D.C.; Cretois, B.; Nilsen, E.B.; Rolandsen, C.M.; Solberg, E.J.; Veiberg, V.; Kaczensky, P.; Van Moorter, B.; Panzacchi, M.; Rauset, G.R.; et al. The Challenges and Opportunities of Coexisting with Wild Ungulates in the Human-Dominated Landscapes of Europe’s Anthropocene. Biol. Conserv. 2020, 244, 108500. [Google Scholar] [CrossRef]
- Chazdon, R.L. Tropical Forest Recovery: Legacies of Human Impact and Natural Disturbances. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 51–71. [Google Scholar] [CrossRef]
- Van Breugel, M.; Bongers, F.; Norden, N.; Meave, J.A.; Amissah, L.; Chanthorn, W.; Chazdon, R.; Craven, D.; Farrior, C.; Hall, J.S.; et al. Feedback Loops Drive Ecological Succession: Towards a Unified Conceptual Framework. Biol. Rev. 2024, 99, 928–949. [Google Scholar] [CrossRef]
- Howe, H.F.; Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 1982, 13, 201–228. [Google Scholar] [CrossRef]
- Bezerra, J.S.; Arroyo-Rodríguez, V.; Dupuy-Rada, J.M.; Leal, I.R.; Tabarelli, M. Negative Impact of Slash-and-Burn Agriculture on the Seed Rain in a Tropical Dry Forest. For. Ecol. Manag. 2023, 531, 120821. [Google Scholar] [CrossRef]
- Bezerra, J.S.; Arroyo-Rodríguez, V.; Tavares, J.M.; Santos, M.G.; Meave, J.A.; Leal, I.R.; Tabarelli, M. Habemus Seeds but They Are Non-Viable: The Importance of Assessing Seed Viability in Seed Rain. J. Arid. Environ. 2023, 219, 105092. [Google Scholar] [CrossRef]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.B.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Galetti, M.; Dirzo, R. Ecological and Evolutionary Consequences of Living in a Defaunated World. Biol. Conserv. 2013, 163, 1–6. [Google Scholar] [CrossRef]
- Jordano, P.; Forget, P.-M.; Lambert, J.E.; Böhning-Gaese, K.; Traveset, A.; Wright, S.J. Frugivores and Seed Dispersal: Mechanisms and Consequences for Biodiversity of a Key Ecological Interaction. Biol. Lett. 2011, 7, 321–323. [Google Scholar] [CrossRef] [PubMed]
- de Paula, A.S.; Sfair, J.C.; Trindade, D.P.F.; Rito, K.F.; Tabarelli, M.; Barros, M.F. The Role of Seed Rain and Soil Seed Bank in the Regeneration of a Caatinga Dry Forest Following Slash-and-Burn Agriculture. J. Arid. Environ. 2023, 211, 104948. [Google Scholar] [CrossRef]
- Barros, M.F.; Ribeiro, E.M.S.; Vanderlei, R.S.; De Paula, A.S.; Silva, A.B.; Wirth, R.; Cianciaruso, M.V.; Tabarelli, M. Resprouting Drives Successional Pathways and the Resilience of Caatinga Dry Forest in Human-Modified Landscapes. For. Ecol. Manag. 2021, 482, 118881. [Google Scholar] [CrossRef]
- Carrière, S.M.; Letourmy, P.; McKey, D.B. Effects of Remnant Trees in Fallows on Diversity and Structure of Forest Regrowth in a Slash-and-Burn Agricultural System in Southern Cameroon. J. Trop. Ecol. 2002, 18, 375–396. [Google Scholar] [CrossRef]
- Carrière, S.M.; André, M.; Letourmy, P.; Olivier, I.; McKey, D.B. Seed Rain beneath Remnant Trees in a Slash-and-Burn Agricultural System in Southern Cameroon. J. Trop. Ecol. 2002, 18, 353–374. [Google Scholar] [CrossRef]
- Meave, J.A.; Flores-Rodríguez, C.; Pérez-García, E.A.; Romero-Romero, M.A. Edaphic and Seasonal Heterogeneity of Seed Banks in Agricultural Fields of a Tropical Dry Forest Region in Southern Mexico. Bot. Sci. 2012, 90, 313–329. [Google Scholar] [CrossRef]
- Eckert, C.G. Contributions of Autogamy and Geitonogamy to Self-Fertilization in a Mass-Flowering, Clonal Plant. Ecology 2000, 81, 532–542. [Google Scholar] [CrossRef]
- Vanderlei, R.S.; Barros, M.F.; Domingos-Melo, A.; Alves, G.D.; Silva, A.B.; Tabarelli, M. Extensive Clonal Propagation and Resprouting Drive the Regeneration of a Brazilian Dry Forest. J. Trop. Ecol. 2021, 37, 35–42. [Google Scholar] [CrossRef]
- Martínez-Ramos, M.; Barragán, F.; Mora, F.; Maza-Villalobos, S.; Arreola-Villa, L.F.; Bhaskar, R.; Bongers, F.; Lemus-Herrera, C.; Paz, H.; Martínez-Yrizar, A.; et al. Differential Ecological Filtering across Life Cycle Stages Drive Old-Field Succession in a Neotropical Dry Forest. For. Ecol. Manag. 2021, 482, 118810. [Google Scholar] [CrossRef]
- Kupfer, J.A.; Webbeking, A.L.; Franklin, S.B. Forest Fragmentation Affects Early Successional Patterns on Shifting Cultivation Fields near Indian Church, Belize. Agric. Ecosyst. Environ. 2004, 103, 509–518. [Google Scholar] [CrossRef]
- Brearley, F.Q.; Prajadinata, S.; Kidd, P.S.; Proctor, J. Suriantata Structure and Floristics of an Old Secondary Rain Forest in Central Kalimantan, Indonesia, and a Comparison with Adjacent Primary Forest. For. Ecol. Manag. 2004, 195, 385–397. [Google Scholar] [CrossRef]
- Deng, F.; He, Y.; Zang, R. Recovery of Functional Diversity Following Shifting Cultivation in Tropical Monsoon Forests. Forests 2018, 9, 506. [Google Scholar] [CrossRef]
- Falkowski, T.B.; Chankin, A.; Diemont, S.A.W. Successional Changes in Vegetation and Litter Structure in Traditional Lacandon Maya Agroforests. Agroecol. Sustain. Food Syst. 2019, 44, 747–767. [Google Scholar] [CrossRef]
- Gogoi, A.; Sahoo, U.K.; Saikia, H. Vegetation and Ecosystem Carbon Recovery Following Shifting Cultivation in Mizoram-Manipur-Kachin Rainforest Eco-Region, Southern Asia. Ecol. Process 2020, 9, 21. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Bongers, F.; Pérez-García, E.A.; Meave, J.A. Successional Change and Resilience of a Very Dry Tropical Deciduous Forest Following Shifting Agriculture. Biotropica 2008, 40, 422–431. [Google Scholar] [CrossRef]
- Piotto, D.; Montagnini, F.; Thomas, W.; Ashton, M.; Oliver, C. Forest Recovery after Swidden Cultivation across a 40-Year Chronosequence in the Atlantic Forest of Southern Bahia, Brazil. Plant Ecol. 2009, 205, 261–272. [Google Scholar] [CrossRef]
- Sanchez, A.C.; Lindsell, J.A. The Role of Remnant Trees in Carbon Sequestration, Vegetation Structure and Tree Diversity of Early Succession Regrowing Fallows in Eastern Sierra Leone. Afr. J. Ecol. 2017, 55, 188–197. [Google Scholar] [CrossRef]
- Toledo, M.; Salick, J. Secondary Succession and Indigenous Management in Semideciduous Forest Fallows of the Amazon Basin. Biotropica 2006, 38, 161–170. [Google Scholar] [CrossRef]
- Urquiza-Haas, T.; Dolman, P.M.; Peres, C.A. Regional Scale Variation in Forest Structure and Biomass in the Yucatan Peninsula, Mexico: Effects of Forest Disturbance. For. Ecol. Manag. 2007, 247, 80–90. [Google Scholar] [CrossRef]
- Villa, P.M.; Martins, S.V.; Oliveira Neto, S.N.D.; Rodrigues, A.C.; Safar, N.V.H.; Monsanto, L.D.; Cancio, N.M.; Ali, A. Woody Species Diversity as an Indicator of the Forest Recovery after Shifting Cultivation Disturbance in the Northern Amazon. Ecol. Indic. 2018, 95, 687–694. [Google Scholar] [CrossRef]
- Williams, M.; Ryan, C.M.; Rees, R.M.; Sambane, E.; Fernando, J.; Grace, J. Carbon Sequestration and Biodiversity of Re-Growing Miombo Woodlands in Mozambique. For. Ecol. Manag. 2008, 254, 145–155. [Google Scholar] [CrossRef]
- De Wilde, M.; Buisson, E.; Ratovoson, F.; Randrianaivo, R.; Carrière, S.M.; Ii, P.P.L. Vegetation Dynamics in a Corridor between Protected Areas after Slash-and-Burn Cultivation in South-Eastern Madagascar. Agric. Ecosyst. Environ. 2012, 159, 1–8. [Google Scholar] [CrossRef]
- Montfort, F.; Nourtier, M.; Grinand, C.; Maneau, S.; Mercier, C.; Roelens, J.-B.; Blanc, L. Regeneration Capacities of Woody Species Biodiversity and Soil Properties in Miombo Woodland after Slash-and-Burn Agriculture in Mozambique. For. Ecol. Manag. 2021, 488, 119039. [Google Scholar] [CrossRef]
- Gomes, E.P.C.; Sugiyama, M.; Fernandes De Oliveira Junior, C.J.; Medeiros Prado, H.; Antunes Ribeiro Filho, A.; Adams, C. Post-Agricultural Succession in the Fallow Swiddens of Southeastern Brazil. For. Ecol. Manag. 2020, 475, 118398. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Pérez-García, E.A.; Meave, J.A.; Poorter, L.; Bongers, F. Environmental Changes during Secondary Succession in a Tropical Dry Forest in Mexico. J. Trop. Ecol. 2011, 27, 477–489. [Google Scholar] [CrossRef]
- Williams-Linera, G. Vegetation Structure and Environmental Conditions of Forest Edges in Panama. J. Ecol. 1990, 78, 356. [Google Scholar] [CrossRef]
- Didham, R.K.; Lawton, J.H. Edge Structure Determines the Magnitude of Changes in Microclimate and Vegetation Structure in Tropical Forest Fragments. Biotropica 1999, 31, 17–30. [Google Scholar] [CrossRef]
- Williams-Linera, G.; Domínguez-Gastelú, V.; García-Zurita, M.E. Microenvironment and Floristics of Different Edges in a Fragmented Tropical Rainforest. Conserv. Biol. 1998, 12, 1091–1102. [Google Scholar] [CrossRef]
- Broadbent, E.N.; Almeyda Zambrano, A.M.; Asner, G.P.; Soriano, M.; Field, C.B.; De Souza, H.R.; Peña-Claros, M.; Adams, R.I.; Dirzo, R.; Giles, L. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon. PLoS ONE 2014, 9, e86042. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon Sequestration Potential of Second-Growth Forest Regeneration in the Latin American Tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Vieira, I.C.G.; Zarin, D.J.; Frizano, J.; Johnson, A.H. Carbon and Nutrient Storage in Primary and Secondary Forests in Eastern Amazonia. For. Ecol. Manag. 2001, 147, 245–252. [Google Scholar] [CrossRef]
- Requena Suarez, D.; Rozendaal, D.M.A.; De Sy, V.; Phillips, O.L.; Alvarez-Dávila, E.; Anderson-Teixeira, K.; Araujo-Murakami, A.; Arroyo, L.; Baker, T.R.; Bongers, F.; et al. Estimating Aboveground Net Biomass Change for Tropical and Subtropical Forests: Refinement of IPCC Default Rates Using Forest Plot Data. Glob. Change Biol. 2019, 25, 3609–3624. [Google Scholar] [CrossRef]
- Aryal, D.R.; De Jong, B.H.J.; Ochoa-Gaona, S.; Esparza-Olguin, L.; Mendoza-Vega, J. Carbon Stocks and Changes in Tropical Secondary Forests of Southern Mexico. Agric. Ecosyst. Environ. 2014, 195, 220–230. [Google Scholar] [CrossRef]
- Read, L.; Lawrence, D. Litter Nutrient Dynamics During Succession in Dry Tropical Forests of the Yucatan: Regional and Seasonal Effects. Ecosystems 2003, 6, 747–761. [Google Scholar] [CrossRef]
- Hashimotio, T.; Kojima, K.; Tange, T.; Sasaki, S. Changes in Carbon Storage in Fallow Forests in the Tropical Lowlands of Borneo. For. Ecol. Manag. 2000, 126, 331–337. [Google Scholar] [CrossRef]
- Dalle, S.P.; De Blois, S. Shorter Fallow Cycles Affect the Availability of Noncrop Plant Resources in a Shifting Cultivation System. E&S 2006, 11, art2. [Google Scholar] [CrossRef]
- Bruun, T.B.; De Neergaard, A.; Lawrence, D.; Ziegler, A.D. Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality. Hum. Ecol. 2009, 37, 375–388. [Google Scholar] [CrossRef]
- Heinrich, V.H.A.; Vancutsem, C.; Dalagnol, R.; Rosan, T.M.; Fawcett, D.; Silva-Junior, C.H.L.; Cassol, H.L.G.; Achard, F.; Jucker, T.; Silva, C.A.; et al. The Carbon Sink of Secondary and Degraded Humid Tropical Forests. Nature 2023, 615, 436–442. [Google Scholar] [CrossRef]
- Van Meerveld, H.J.; Jones, J.P.G.; Ghimire, C.P.; Zwartendijk, B.W.; Lahitiana, J.; Ravelona, M.; Mulligan, M. Forest Regeneration Can Positively Contribute to Local Hydrological Ecosystem Services: Implications for Forest Landscape Restoration. J. Appl. Ecol. 2021, 58, 755–765. [Google Scholar] [CrossRef]
- Van Der Sande, M.T.; Powers, J.S.; Kuyper, T.W.; Norden, N.; Salgado-Negret, B.; Silva De Almeida, J.; Bongers, F.; Delgado, D.; Dent, D.H.; Derroire, G.; et al. Soil Resistance and Recovery during Neotropical Forest Succession. Phil. Trans. R. Soc. B 2023, 378, 20210074. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Alencar Mendes, B.T.; Pinheiro, M.R.; Barretto, E.H.P.; Barreiros, A.M.; Correia Furquim, S.A.; Junqueira Villela, F.N. Impacts of Slash-and-Burn Cultivation on the Soil and Vegetation of the Atlantic Forest in Southeastern Brazil. Hum. Ecol. 2023, 51, 655–669. [Google Scholar] [CrossRef]
- Lawrence, D. Regional-Scale Variation in Litter Production and Seasonality in Tropical Dry Forests of Southern Mexico. Biotropica 2005, 37, 561–570. [Google Scholar] [CrossRef]
- Laskar, S.Y.; Sileshi, G.W.; Pathak, K.; Debnath, N.; Nath, A.J.; Laskar, K.Y.; Singnar, P.; Das, A.K. Variations in Soil Organic Carbon Content with Chronosequence, Soil Depth and Aggregate Size under Shifting Cultivation. Sci. Total Environ. 2021, 762, 143114. [Google Scholar] [CrossRef]
- Baul, T.K.; Chowdhury, A.I.; Uddin, M.J.; Hasan, M.K.; Kilpeläinen, A.; Nandi, R.; Karmakar, S.; Akhter, J. Effects of Fragmentation and Shifting Cultivation on Soil Carbon and Nutrients: A Case Study in Sitapahar Forest, Bangladesh. Rhizosphere 2023, 27, 100756. [Google Scholar] [CrossRef]
- Das, R.; Lawrence, D.; D’Odorico, P.; DeLonge, M. Impact of Land Use Change on Atmospheric P Inputs in a Tropical Dry Forest. J. Geophys. Res. 2011, 116, G01027. [Google Scholar] [CrossRef]
- Hughes, R.F.; Kauffman, J.B.; Cummings, D.L. Dynamics of Aboveground and Soil Carbon and Nitrogen Stocks and Cycling of Available Nitrogen along a Land-Use Gradient in Rondônia, Brazil. Ecosystems 2002, 5, 244–259. [Google Scholar] [CrossRef]
- Kulka, D.D.; Lins, S.R.M.; Tabarelli, M.; Filgueiras, B.K.C. Chronic Anthropogenic Disturbance Alters Litter Decomposition and Nutrient Concentrations and Stocks across a Caatinga Dry Forest Chronosequence. For. Ecol. Manag. 2024, 552, 121563. [Google Scholar] [CrossRef]
- Lawrence, D.; D’Odorico, P.; Diekmann, L.; DeLonge, M.; Das, R.; Eaton, J. Ecological Feedbacks Following Deforestation Create the Potential for a Catastrophic Ecosystem Shift in Tropical Dry Forest. Proc. Natl. Acad. Sci. USA 2007, 104, 20696–20701. [Google Scholar] [CrossRef]
- Lawrence, D. Nitrogen and Phosphorus Enhance Growth and Luxury Consumption of Four Secondary Forest Tree Species in Borneo. J. Trop. Ecol. 2001, 17, 859–869. [Google Scholar] [CrossRef]
- Zhou, C.; Ding, Y.; Zang, R. Assessing the Recovery in Species, Size and Location Diversities of a Lowland Tropical Rainforest after Shifting Cultivation by Multiple Indices at Stand and Neighborhood Scales. J. Environ. Manag. 2023, 341, 118089. [Google Scholar] [CrossRef] [PubMed]
- Widiyatno; Budiadi; Suryanto, P.; Rinarno, Y.; Priant, S.; Hendr, Y.; Hosaka, T.; Numata, S. Recovery of Vegetation Structure, Soil Nutrients and Late-Succession Species after Shifting Cultivation in Central Kalimantan, Indonesia. J. Trop. For. Sci. 2017, 29, 151–162. [Google Scholar]
- De Neergaard, A.; Magid, J.; Mertz, O. Soil Erosion from Shifting Cultivation and Other Smallholder Land Use in Sarawak, Malaysia. Agric. Ecosyst. Environ. 2008, 125, 182–190. [Google Scholar] [CrossRef]
- Lawrence, D.; Schlesinger, W.H. Changes in Soil Phosphorus during 200 Years of Shifting Cultivation in Indonesia. Ecology 2001, 82, 2769–2780. [Google Scholar] [CrossRef]
- Mukul, S.A.; Herbohn, J.; Firn, J. Tropical Secondary Forests Regenerating after Shifting Cultivation in the Philippines Uplands Are Important Carbon Sinks. Sci. Rep. 2016, 6, 22483. [Google Scholar] [CrossRef]
- Døckersmith, I.C.; Giardina, C.P.; Sanford, R.L. Persistence of Tree Related Patterns in Soil Nutrients Following Slash-and-Burn Disturbance in the Tropics. Plant Soil 1999, 209, 137–156. [Google Scholar] [CrossRef]
- Gehring, C.; Vlek, P.L.G.; De Souza, L.A.G.; Denich, M. Biological Nitrogen Fixation in Secondary Regrowth and Mature Rainforest of Central Amazonia. Agric. Ecosyst. Environ. 2005, 111, 237–252. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Uhl, C. Leaf Carbon and Nutrient Assimilation and Conservation in Species of Differing Successional Status in an Oligotrophic Amazonian Forest. Funct. Ecol. 1995, 9, 65. [Google Scholar] [CrossRef]
- Szefer, P.; Carmona, C.P.; Chmel, K.; Konečná, M.; Libra, M.; Molem, K.; Novotný, V.; Segar, S.T.; Švamberková, E.; Topliceanu, T.; et al. Determinants of Litter Decomposition Rates in a Tropical Forest: Functional Traits, Phylogeny and Ecological Succession. Oikos 2017, 126, 1101–1111. [Google Scholar] [CrossRef]
- Aragón, R.; Montti, L.; Ayup, M.M.; Fernández, R. Exotic Species as Modifiers of Ecosystem Processes: Litter Decomposition in Native and Invaded Secondary Forests of NW Argentina. Acta Oecologica 2014, 54, 21–28. [Google Scholar] [CrossRef]
- Berg, B.; Meentemeyer, V. Litter Quality in a North European Transect versus Carbon Storage Potential. Plant Soil 2002, 242, 83–92. [Google Scholar] [CrossRef]
- Dale, V.H.; Lannom, K.O.; Tharp, M.L.; Hodges, D.G.; Fogel, J. Effects of Climate Change, Land-Use Change, and Invasive Species on the Ecology of the Cumberland Forests. Can. J. For. Res. 2009, 39, 467–480. [Google Scholar] [CrossRef]
- Diemont, S.A.W.; Martin, J.F. Management Impacts on the Trophic Diversity of Nematode Communities in an Indigenous Agroforestry System of Chiapas, Mexico. Pedobiologia 2005, 49, 325–334. [Google Scholar] [CrossRef]
- Fragoso, C.; Leyequién, E.; García-Robles, M.; Montero-Muñoz, J.; Rojas, P. Dominance of Native Earthworms in Secondary Tropical Forests Derived from Slash-and-Burn Mayan Agricultural Practices (Yucatán, Mexico). Appl. Soil Ecol. 2016, 104, 116–124. [Google Scholar] [CrossRef]
- Frouz, J.; Kukla, J.; Umari, R.; Whitfeld, T.J.S.; Novotny, V. Soil Fauna Bioturbation along a Successional Gradient Following Swidden Agriculture in the Lowland Tropical Rainforests of New Guinea. Catena 2023, 229, 107203. [Google Scholar] [CrossRef]
- Teutscherová, N.; Maňourová, A.; Lojka, B.; Tejnecký, V.; Drábek, O.; Křížová, P.; Penížek, V.; Akama, P.D.; Šobotník, J.; Sillam-Dussès, D. Effect of Farming on the Vegetation Structure, Soil Properties and Termite Assemblages in the Northern Congo Basin. Land. Degrad. Dev. 2022, 33, 2050–2061. [Google Scholar] [CrossRef]
- Powers, J.S.; Montgomery, R.A.; Adair, E.C.; Brearley, F.Q.; DeWalt, S.J.; Castanho, C.T.; Chave, J.; Deinert, E.; Ganzhorn, J.U.; Gilbert, M.E.; et al. Decomposition in Tropical Forests: A Pan-tropical Study of the Effects of Litter Type, Litter Placement and Mesofaunal Exclusion across a Precipitation Gradient. J. Ecol. 2009, 97, 801–811. [Google Scholar] [CrossRef]
- Wardle, D.A. The Influence of Biotic Interactions on Soil Biodiversity. Ecol. Lett. 2006, 9, 870–886. [Google Scholar] [CrossRef]
- Lohbeck, M.; Poorter, L.; Martínez-Ramos, M.; Bongers, F. Biomass Is the Main Driver of Changes in Ecosystem Process Rates during Tropical Forest Succession. Ecology 2015, 96, 1242–1252. [Google Scholar] [CrossRef]
- Bradford, M.A.; Tordoff, G.M.; Eggers, T.; Jones, T.H.; Newington, J.E. Microbiota, Fauna, and Mesh Size Interactions in Litter Decomposition. Oikos 2002, 99, 317–323. [Google Scholar] [CrossRef]
- Bloemers, G.F.; Hodda, M.; Lambshead, P.J.D.; Lawton, J.H.; Wanless, F.R. The Effects of Forest Disturbance on Diversity of Tropical Soil Nematodes. Oecologia 1997, 111, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wang, S.; Zhang, Z.; Chen, M.; Li, S.; Cao, R.; Cao, Q.; Zuo, Q.; Wang, P. Modifying Effect of Ant Colonization on Soil Heterogeneity along a Chronosequence of Tropical Forest Restoration on Slash-Burn Lands. Soil Tillage Res. 2019, 194, 104329. [Google Scholar] [CrossRef]
- Filgueiras, B.K.C.; Peres, C.A.; Iannuzzi, L.; Tabarelli, M.; Leal, I.R. Recovery of Dung Beetle Assemblages in Regenerating Caatinga Dry Forests Following Slash-and-Burn Agriculture. For. Ecol. Manag. 2021, 496, 119423. [Google Scholar] [CrossRef]
- A Birang, M.; Hauser, S.; Brussaard, L.; Norgrove, L. Earthworm Surface Casting Activity on Slash-and-Burn Cropped Land and in Undisturbed Chromolaena Odorata and Young Forest Fallow in Southern Cameroon. Pedobiologia 2003, 47, 811–818. [Google Scholar] [CrossRef]
- Rossi, J.P.; Celini, L.; Mora, P.; Mathieu, J.; Lapied, E.; Nahmani, J.; Ponge, J.-F.; Lavelle, P. Decreasing Fallow Duration in Tropical Slash-and-Burn Agriculture Alters Soil Macroinvertebrate Diversity: A Case Study in Southern French Guiana. Agric. Ecosyst. Environ. 2010, 135, 148–154. [Google Scholar] [CrossRef]
- Meyer, K.M.; Petersen, I.A.B.; Tobi, E.; Korte, L.; Bohannan, B.J.M. Use of RNA and DNA to Identify Mechanisms of Bacterial Community Homogenization. Front. Microbiol. 2019, 10, 2066. [Google Scholar] [CrossRef]
- Yoshima, M.; Takematsu, Y.; Yoneyama, A.; Nakagawa, M. Recovery of Litter and Soil Invertebrate Communities Following Swidden Cultivation in Sarawak, Malaysia. Raffles Bull. 2013, 61, 767–777. [Google Scholar]
- Ramos-Zapata, J.A.; Orellana, R.; Allen, E.B. Mycorrhizal Dynamics and Dependence of Desmoncus Orthacanthos Martius (Arecaceae), a Native Palm of the Yucatan Peninsula, Mexico. Interciencia 2006, 31, 364–370. [Google Scholar]
- Guadarrama, P.; Castillo-Argüero, S.; Ramos-Zapata, J.A.; Camargo-Ricalde, S.L.; Álvarez-Sánchez, J. Propagules of Arbuscular Mycorrhizal Fungi in a Secondary Dry Forest of Oaxaca, Mexico. RBT 2006, 56, 269–277. [Google Scholar] [CrossRef]
- Kalinhoff, C. Cambios en la biomasa de raíces y micorrizas arbusculares en cultivos itinerantes del amazonas venezolano. Interciencia 2009, 34, 571–576. [Google Scholar]
- García De León, D.; Neuenkamp, L.; Moora, M.; Öpik, M.; Davison, J.; Peña-Venegas, C.P.; Vasar, M.; Jairus, T.; Zobel, M. Arbuscular Mycorrhizal Fungal Communities in Tropical Rain Forest Are Resilient to Slash-and-Burn Agriculture. J. Trop. Ecol. 2018, 34, 186–199. [Google Scholar] [CrossRef]
- Ramos-Zapata, J.A.; Guadarrama, P.; Navarro-Alberto, J.; Orellana, R. Arbuscular Mycorrhizal Propagules in Soils from a Tropical Forest and an Abandoned Cornfield in Quintana Roo, Mexico: Visual Comparison of Most-Probable-Number Estimates. Mycorrhiza 2011, 21, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Sharmah, D.; Jha, D.K. Diversity of Arbuscular Mycorrhizal Fungi in Disturbed and Undisturbed Forests of Karbi Anglong Hills of Assam, India. Agric. Res. 2014, 3, 229–238. [Google Scholar] [CrossRef]
- Singh, S.S.; Tiwari, S.C.; Dkhar, M.S. Species Diversity of Vesicular-Arbuscular Mycorrhizal (VAM) Fungi in Jhum Fallow and Natural Forest Soils of Arunachal Pradesh, North Eastern India. Trop. Ecol. 2003, 44, 207–215. [Google Scholar]
- Gavito, M.E.; Paz, H.; Barragán, F.; Siddique, I.; Arreola-Villa, F.; Pineda-García, F.; Balvanera, P. Indicators of Integrative Recovery of Vegetation, Soil and Microclimate in Successional Fields of a Tropical Dry Forest. For. Ecol. Manag. 2021, 479, 118526. [Google Scholar] [CrossRef]
- Eaton, J.M.; Lawrence, D. Loss of Carbon Sequestration Potential after Several Decades of Shifting Cultivation in the Southern Yucatán. For. Ecol. Manag. 2009, 258, 949–958. [Google Scholar] [CrossRef]
- Makelele, I.A.; Verheyen, K.; Boeckx, P.; Cizungu Ntaboba, L.; Mujinya Bazirake, B.; Ewango, C.; Bauters, M. Afrotropical Secondary Forests Exhibit Fast Diversity and Functional Recovery, but Slow Compositional and Carbon Recovery after Shifting Cultivation. J. Veg. Sci. 2021, 32, e13071. [Google Scholar] [CrossRef]
- Murdjoko, A.; Brearley, F.Q.; Ungirwalu, A.; Djitmau, D.A.; Benu, N.M.H. Secondary Succession after Slash-and-Burn Cultivation in Papuan Lowland Forest, Indonesia. Forests 2022, 13, 434. [Google Scholar] [CrossRef]
- Lu, X.; Zang, R.; Ding, Y.; Huang, J. Changes in Biotic and Abiotic Drivers of Seedling Species Composition during Forest Recovery Following Shifting Cultivation on Hainan Island, China. Biotropica 2016, 48, 758–769. [Google Scholar] [CrossRef]
- McNicol, I.M.; Ryan, C.M.; Williams, M. How Resilient Are African Woodlands to Disturbance from Shifting Cultivation? Ecol. Appl. 2015, 25, 2320–2336. [Google Scholar] [CrossRef] [PubMed]
- Mukul, S.A.; Herbohn, J.; Ferraren, A.; Congdon, R. Limited Role of Shifting Cultivation in Soil Carbon and Nutrients Recovery in Regenerating Tropical Secondary Forests. Front. Environ. Sci. 2022, 10, 1076506. [Google Scholar] [CrossRef]
- Runyan, C.W.; D’Odorico, P.; Lawrence, D. Effect of Repeated Deforestation on Vegetation Dynamics for Phosphorus-limited Tropical Forests. J. Geophys. Res. 2012, 117, 2011JG001841. [Google Scholar] [CrossRef]
- Brearley, F.Q. Below-Ground Secondary Succession in Tropical Forests of Borneo. J. Trop. Ecol. 2011, 27, 413–420. [Google Scholar] [CrossRef]
- Mandal, U.K.; Sharma, K.L.; Venkanna, K.; Pushpanjali; Adake, R.V.; Masane, R.N.; Prasad, J.V.N.S.; Venkatesh, G.; Rao, S. Sustaining Soil Quality, Resilience and Critical Carbon Level under Different Cropping Systems in Semi-Arid Tropical Alfisol Soils. Curr. Sci. 2017, 112, 1882. [Google Scholar] [CrossRef]
- Serrani, D.; Ferrocino, I.; Garofalo, C.; Osimani, A.; Corvaglia, M.R.; Milanović, V.; Aquilanti, L.; Cocco, S.; Cardelli, V.; Rafael, R.B.A.; et al. Soil Bacterial Communities under Slash and Burn in Mozambique as Revealed by a Metataxonomic Approach. Pedosphere 2023, 33, 508–520. [Google Scholar] [CrossRef]
- Dunn, R.R. Recovery of Faunal Communities During Tropical Forest Regeneration. Conserv. Biol. 2004, 18, 302–309. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.S.; Cabral, G.A.L.; et al. Biodiversity Recovery of Neotropical Secondary Forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef]
- Casas, G.; Darski, B.; Ferreira, P.M.A.; Kindel, A.; Müller, S.C. Habitat Structure Influences the Diversity, Richness and Composition of Bird Assemblages in Successional Atlantic Rain Forests. Trop. Conserv. Sci. 2016, 9, 503–524. [Google Scholar] [CrossRef]
- Castro-Luna, A.A.; Sosa, V.J.; Castillo-Campos, G. Bat Diversity and Abundance Associated with the Degree of Secondary Succession in a Tropical Forest Mosaic in South-eastern Mexico. Anim. Conserv. 2007, 10, 219–228. [Google Scholar] [CrossRef]
- Smith, A.L.; Salgado, J.; Robertson, R.J. Distribution Patterns of Migrant and Resident Birds in Successional Forests of the Yucatan Peninsula, Mexico’. Biotropica 2001, 33, 153–170. [Google Scholar] [CrossRef]
- Tvardíková, K. Bird Abundances in Primary and Secondary Growths in Papua New Guinea: A Preliminary Assessment. Trop. Conserv. Sci. 2010, 3, 373–388. [Google Scholar] [CrossRef]
- Galán-Acedo, C.; Arroyo-Rodríguez, V.; Cudney-Valenzuela, S.J.; Fahrig, L. A Global Assessment of Primate Responses to Landscape Structure. Biol. Rev. 2019, 94, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.H. Bird Assemblages in Secondary Forests Developing after Slash-and-Burn Agriculture in the Brazilian Amazon. J. Trop. Ecol. 2007, 23, 469–477. [Google Scholar] [CrossRef]
- Marsden, S.J.; Symes, C.T. Bird Richness and Composition along an Agricultural Gradient in New Guinea: The Influence of Land Use, Habitat Heterogeneity and Proximity to Intact Forest. Austral Ecol. 2008, 33, 784–793. [Google Scholar] [CrossRef]
- Ellis, E.A.; Romero Montero, J.A.; Hernández Gómez, I.U. Deforestation Processes in the State of Quintana Roo, Mexico: The Role of Land Use and Community Forestry. Trop. Conserv. Sci. 2017, 10, 194008291769725. [Google Scholar] [CrossRef]
- Metzger, J.P. Landscape Dynamics and Equilibrium in Areas of Slash-and-Burn Agriculture with Short and Long Fallow Period (Bragantina Region, NE Brazilian Amazon). Landsc. Ecol. 2002, 17, 419–431. [Google Scholar] [CrossRef]
- Metzger, J.P. Effects of Slash-and-Burn Fallow Periods on Landscape Structure. Environ. Conserv. 2003, 30, 325–333. [Google Scholar] [CrossRef]
- Terán, S.; Rasmussen, C. La Milpa de los Mayas: La Agricultura de los Mayas Prehispánicos y Actuales en el Noreste de Yucatán; Universidad Nacional Autónoma de México. Centro Peninsular en Humanidades y Ciencias Sociales, 2009. [Google Scholar]
- Landaverde-González, P.; Quezada-Euán, J.J.G.; Theodorou, P.; Murray, T.E.; Husemann, M.; Ayala, R.; Moo-Valle, H.; Vandame, R.; Paxton, R.J. Sweat Bees on Hot Chillies: Provision of Pollination Services by Native Bees in Traditional Slash-and-burn Agriculture in the Yucatán Peninsula of Tropical Mexico. J. Appl. Ecol. 2017, 54, 1814–1824. [Google Scholar] [CrossRef]
- Sánchez-de-Jesús, H.A.; Arroyo-Rodríguez, V.; Andresen, E.; Escobar, F. Forest Loss and Matrix Composition Are the Major Drivers Shaping Dung Beetle Assemblages in a Fragmented Rainforest. Landsc. Ecol. 2016, 31, 843–854. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Rojas, C.; Saldaña-Vázquez, R.A.; Stoner, K.E. Landscape Composition Is More Important than Landscape Configuration for Phyllostomid Bat Assemblages in a Fragmented Biodiversity Hotspot. Biol. Conserv. 2016, 198, 84–92. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Li, P.; Sheng, M.; Yang, D.; Tang, L. Evaluating Flood Regulation Ecosystem Services under Climate, Vegetation and Reservoir Influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Li, J.; He, C.; Huang, Q.; Li, L. Spatiotemporal Dynamics of Flood Regulation Service under the Joint Impacts of Climate Change and Urbanization: A Case Study in Baiyangdian Lake Basin, China. Ecol. Indic. 2024, 158, 111318. [Google Scholar] [CrossRef]
- Nanko, K.; Hotta, N.; Suzuki, M. Evaluating the Influence of Canopy Species and Meteorological Factors on Throughfall Drop Size Distribution. J. Hydrol. 2006, 329, 422–431. [Google Scholar] [CrossRef]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef]
- Sheil, D.; Murdiyarso, D. How Forests Attract Rain: An Examination of a New Hypothesis. BioScience 2009, 59, 341–347. [Google Scholar] [CrossRef]
- Laurance, W.F. Forest-Climate Interactions in Fragmented Tropical Landscapes. Phil. Trans. R. Soc. Lond. B 2004, 359, 345–352. [Google Scholar] [CrossRef]
- Garmendia, A.; Arroyo-Rodríguez, V.; Estrada, A.; Naranjo, E.J.; Stoner, K.E. Landscape and Patch Attributes Impacting Medium- and Large-Sized Terrestrial Mammals in a Fragmented Rain Forest. J. Trop. Ecol. 2013, 29, 331–344. [Google Scholar] [CrossRef]
- Carrara, E.; Arroyo-Rodríguez, V.; Vega-Rivera, J.H.; Schondube, J.E.; De Freitas, S.M.; Fahrig, L. Impact of Landscape Composition and Configuration on Forest Specialist and Generalist Bird Species in the Fragmented Lacandona Rainforest, Mexico. Biol. Conserv. 2015, 184, 117–126. [Google Scholar] [CrossRef]
- Brindis-Badillo, D.A.; Arroyo-Rodríguez, V.; Mendoza, E.; Wies, G.; Martínez-Ramos, M. Conserving Dominant Trees in Human-Modified Landscapes at the Lacandon Tropical Rainforest. Biol. Conserv. 2022, 270, 109548. [Google Scholar] [CrossRef]
- Fahrig, L. Rethinking Patch Size and Isolation Effects: The Habitat Amount Hypothesis. J. Biogeogr. 2013, 40, 1649–1663. [Google Scholar] [CrossRef]
- Watling, J.I.; Arroyo-Rodríguez, V.; Pfeifer, M.; Baeten, L.; Banks-Leite, C.; Cisneros, L.M.; Fang, R.; Hamel-Leigue, A.C.; Lachat, T.; Leal, I.R.; et al. Support for the Habitat Amount Hypothesis from a Global Synthesis of Species Density Studies. Ecol. Lett. 2020, 23, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary Forests Are Irreplaceable for Sustaining Tropical Biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Lande, R. Extinction Thresholds in Demographic Models of Territorial Populations. Am. Nat. 1987, 130, 624–635. [Google Scholar] [CrossRef]
- Swift, T.L.; Hannon, S.J. Critical Thresholds Associated with Habitat Loss: A Review of the Concepts, Evidence, and Applications. Biol. Rev. 2010, 85, 35–53. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Fahrig, L.; Watling, J.; Nowakowski, J.; Tabarelli, M.; Tischendorf, L.; Melo, F.; Santos, B.; Benchimol, M.; Morante-Filho, J.C.; et al. Preserving 40% Forest Cover Is a Valuable and Well-Supported Conservation Guideline: Reply to Banks-Leite et Al. Ecol. Lett. 2021, 24, 1114–1116. [Google Scholar] [CrossRef]
- Morante-Filho, J.C.; Faria, D.; Mariano-Neto, E.; Rhodes, J. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest. PLoS ONE 2015, 10, e0128923. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Oddi, F.J.; Miguez, F.E.; Bartomeus, I.; Orr, M.C.; Jobbágy, E.G.; Kremen, C.; Schulte, L.A.; Hughes, A.C.; Bagnato, C.; et al. Working Landscapes Need at Least 20% Native Habitat. Conserv. Lett. 2021, 14, e12773. [Google Scholar] [CrossRef]
- Mesquita, R.C.G.; Delamo, P.; Laurance, W.F. Efect of Surrounding Vegetation on Edge-Related Tree Mortality in Amazonian Forest Fragments. Biol. Conserv. 1999, 91, 129–134. [Google Scholar] [CrossRef]
- Santos-Filho, M.; Peres, C.A.; Da Silva, D.J.; Sanaiotti, T.M. Habitat Patch and Matrix Effects on Small-Mammal Persistence in Amazonian Forest Fragments. Biodivers. Conserv. 2012, 21, 1127–1147. [Google Scholar] [CrossRef]
- Franklin, J.F.; Lindenmayer, D.B. Importance of Matrix Habitats in Maintaining Biological Diversity. Proc. Natl. Acad. Sci. USA 2009, 106, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Ewers, R.M.; Didham, R.K. Confounding Factors in the Detection of Species Responses to Habitat Fragmentation. Biol. Rev. 2005, 81, 117. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Peres, C.A.; Bogoni, J.A.; Cassano, C.R. Use of Agroecosystem Matrix Habitats by Mammalian Carnivores (Carnivora): A Global-scale Analysis. Mammal Rev. 2018, 48, 312–327. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is Habitat Fragmentation Bad for Biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Fahrig, L. Why Do Several Small Patches Hold More Species than Few Large Patches? Glob. Ecol. Biogeogr. 2020, 29, 615–628. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Fahrig, L.; Watling, J.I.; Arnillas, C.A.; Arroyo-Rodríguez, V.; Jörger-Hickfang, T.; Müller, J.; Pereira, H.M.; Riva, F.; Rösch, V.; Seibold, S.; et al. Resolving the SLOSS Dilemma for Biodiversity Conservation: A Research Agenda. Biol. Rev. 2022, 97, 99–114. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: The Scientific Basis of Alternative Agriculture; Westview Special Studies in Agriculture Science and Policy; Westview Press: Boulder, CO, USA, 1987; ISBN 978-0-8133-7284-6. [Google Scholar]
- Altieri, M.A.; Letourneau, D.K.; Davis, J.R. Developing Sustainable Agroecosystems. BioScience 1983, 33, 45–49. [Google Scholar] [CrossRef]
- Silva-Galicia, A.; Valencia, V.; Arroyo-Rodríguez, V.; Ceccon, E. Weight-of-Evidence Approach for Assessing Agroforestry Contributions to Restore Key Ecosystem Services in Tropical Dry Forests. Agroforest Syst. 2023, 97, 151–161. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J. Ecosyst. Ecogr. 2016, S5, 010. [Google Scholar] [CrossRef]
- Schimel, D.; Schneider, F.D. ; JPL Carbon and Ecosystem Participants Flux Towers in the Sky: Global Ecology from Space. New Phytol. 2019, 224, 570–584. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, J.S.; Arroyo-Rodríguez, V.; Arasa-Gisbert, R.; Meave, J.A. Multiscale Effects of Slash-and-Burn Agriculture Across the Tropics: Implications for the Sustainability of an Ancestral Agroecosystem. Sustainability 2024, 16, 9994. https://doi.org/10.3390/su16229994
Bezerra JS, Arroyo-Rodríguez V, Arasa-Gisbert R, Meave JA. Multiscale Effects of Slash-and-Burn Agriculture Across the Tropics: Implications for the Sustainability of an Ancestral Agroecosystem. Sustainability. 2024; 16(22):9994. https://doi.org/10.3390/su16229994
Chicago/Turabian StyleBezerra, Jakelyne S., Víctor Arroyo-Rodríguez, Ricard Arasa-Gisbert, and Jorge A. Meave. 2024. "Multiscale Effects of Slash-and-Burn Agriculture Across the Tropics: Implications for the Sustainability of an Ancestral Agroecosystem" Sustainability 16, no. 22: 9994. https://doi.org/10.3390/su16229994
APA StyleBezerra, J. S., Arroyo-Rodríguez, V., Arasa-Gisbert, R., & Meave, J. A. (2024). Multiscale Effects of Slash-and-Burn Agriculture Across the Tropics: Implications for the Sustainability of an Ancestral Agroecosystem. Sustainability, 16(22), 9994. https://doi.org/10.3390/su16229994