Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Laboratory Analysis of WCOs
2.2. Olfactory Analysis of WCOs by e-Nose
2.3. Stochastic Modeling
2.4. Statistical Analysis
3. Results
3.1. Characteristics of WCOs as Determined by Conventional Laboratory Methods
3.2. Characteristics of WCOs as Predicted by Stochastic Modeling
3.3. Combined Olfactory/Stochastic Analysis of the WCOs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vidigal, I.G.; Siqueira, A.F.; Melo, M.P.; Giordani, D.S.; Silva, M.L.C.P.; Cavalcanti, E.H.S.; Ferreira, A.L.G. Applications of an electronic nose in the prediction of oxidative stability of stored biodiesel derived from soybean and waste cooking oil. Fuel 2021, 284, 119024. [Google Scholar] [CrossRef] [PubMed]
- Monika, S.B.; Pathak, V.V. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogeneous catalysts. Energy Nexus 2023, 10, 100209. [Google Scholar] [CrossRef]
- do Petróleo, A.N.; e Biocombustíveis, G.N. Boletim de Biocombustíveis e Qualidade de Produtos; Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Brasília, Brazil, 2022. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/boletins-anp/boletim-de-biocombustiveis-e-qualidade-de-produtos (accessed on 15 May 2024).
- Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from waste cooking oil. Renew. Sustain. Energy Rev. 2013, 18, 184–193. [Google Scholar] [CrossRef]
- César, A.S.; Werderits, D.E.; Saraiva, G.L.O.; Guabiroba, R.C.S. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renew. Sustain. Energy Rev. 2017, 72, 246–253. [Google Scholar] [CrossRef]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An outlook of recent advances in chemiresistive sensor-based electronic nose systems for food quality and environmental monitoring. Sensors 2021, 21, 2271. [Google Scholar] [CrossRef]
- Santos, J.P.; Vicente, C.S.; Sayago, I.; Lozano, J.; Arroyo, P. Versatile electronic nose for the detection of chronic disease biomarkers through the breath. In Proceedings of the 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Aveiro, Portugal, 29 May–1 June 2022. [Google Scholar] [CrossRef]
- Uemura, K.; Nobori, H.; Sato, A.; Sanaki, T.; Toba, S.; Sasaki, M.; Murai, A.; Saito-Tarashima, N.; Minakawa, N.; Orba, Y.; et al. 5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2. Iscience 2021, 24, 103120. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef]
- Manolache, F.-A.; Dută, D.-E.; Criveanu-Stamatie, G.D.; Iordache, T.-A.; Todască, M.-C. Decoding the volatile profile of white Romanian Fetească wines. Separations 2024, 11, 141. [Google Scholar] [CrossRef]
- Mesías, M.; Barea-Ramos, J.D.; Lozano, J.; Morales, F.J.; Martín-Vertedor, D. Application of an electronic nose technology for the prediction of chemical process contaminants in roasted almonds. Chemosensors 2023, 11, 287. [Google Scholar] [CrossRef]
- Gancarz, M.; Malaga-Toboła, U.; Oniszczuk, A.; Tabor, S.; Oniszczuk, T.; Gawrysiak-Witulska, M.; Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food Bioprod. Process. 2021, 127, 90–98. [Google Scholar] [CrossRef]
- Li, P.; Ren, Z.; Shao, K.; Tan, H.; Niu, Z. Research on Distinguishing Fish Meal Quality Using Different Characteristic Parameters Based on Electronic Nose Technology. Sensors 2019, 19, 2146. [Google Scholar] [CrossRef] [PubMed]
- Green, G.C.; Chan, A.D.C.; Dan, H.; Lin, M. Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension. Sens. Actuators B Chem. 2011, 152, 21–28. [Google Scholar] [CrossRef]
- Mohamed, E.I.; Turkey, M.S.; Meshref, R.A.; Ghazal, A.A.; Shawky, S.M.; Aboulela, A.G. Electronic nose versus VITEK 2 system for the rapid diagnosis of bloodstream infections. Braz. J. Microbiol. 2023, 54, 2857–2865. [Google Scholar] [CrossRef] [PubMed]
- Kuchmenko, T.; Shuba, A. Application of piezoelectric e-noses for diagnostics of animal and human health. Nanotechnol. Based E Noses 2023, 329–375. [Google Scholar] [CrossRef]
- Brattoli, M.; Gennaro, G.; Pinto, V.; Loiotile, A.D.; Lovascio, S.; Penza, M. Odour detection methods: Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322. [Google Scholar] [CrossRef]
- Giordani, D.S.; Siqueira, A.F.; Silva, M.L.C.P.; Oliveira, P.C.; Castro, H.F. Identification of the biodiesel source using an electronic nose. Energy Fuels 2008, 22, 2743–2747. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Melo, M.P.; Giordani, D.S.; Galhardi, D.R.V.; Santos, B.B.; Batista, P.S.; Ferreira, A.L.G. Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification. J. Food Eng. 2018, 221, 114–123. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Vidigal, I.G.; Melo, M.P.; Giordani, D.S.; Batista, P.S.; Ferreira, A.L.G. Assessing waste cooking oils for the production of quality biodiesel using an electronic nose and a stochastic model. Energy Fuels 2019, 33, 3221–3226. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; AOCS: Champaign, IL, USA, 1990. [Google Scholar]
- American Oil Chemists’ Society. Official Methods of Analysis of the Association of Official Analytical Chemists: Method 962.19, 16th ed.; AOCS: Champaign, IL, USA, 1995. [Google Scholar]
- ASTM D6304-16e1; Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. ASTM (American Society for Testing and Materials): West Conshohocken, PA, USA, 2016.
- Phan, A.N.; Phan, T.M. Biodiesel production from waste cooking oils. Fuel 2008, 87, 3490–3496. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilancia Santitária. Resolução RDC No. 270, de 22 de Setembro de 2005: Regulamento Técnico Para Óleos Vegetais, Gorduras Vegetais e Creme Vegetal; ANVISA: Brasília, Brazil, 2005. [Google Scholar]
- Sharma, Y.C.; Singh, B.; Upadhyay, S.N. Advancements in development and characterization of biodiesel: A review. Fuel 2008, 87, 2355–2373. [Google Scholar] [CrossRef]
- Knothe, G.; Steidley, K.R. Kinematic viscosity of biodiesel fuel components. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 2005, 84, 1059–1065. [Google Scholar] [CrossRef]
- Bieganowski, A.; Józefaciuk, G.; Bandura, L.; Guz, Ł.; Łagód, G.; Franus, W. Evaluation of hydrocarbon soil pollution using e-nose. Sensors 2018, 18, 2463. [Google Scholar] [CrossRef] [PubMed]
- Falatová, B.; Ferreiro-González, M.; Calle, J.L.P.; Álvarez, J.A.; Palma, M. Discrimination of ignitable liquid residues in burned petroleum-derived substrates by using HS-MS eNose and chemometrics. Sensors 2021, 21, 801. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, H.; Raj, V.B.; Nimal, A.T.; Gupta, V.; Singh, V.K. Trace detection of nerve agent simulant in the fuel vapour environment using metal oxide surface acoustic wave E-nose. Def. Sci. J. 2020, 70, 520–528. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Wang, X.; Zheng, H.; Chen, Z.; Meng, C. Development of electronic nose for qualitative and quantitative monitoring of volatile flammable liquids. Sensors 2020, 20, 1817. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 15 July 2024).
Variables | Mean | Standard Deviation | Median | Minimum | Maximum | Coefficient of Variation |
---|---|---|---|---|---|---|
Acid value (mg KOH/g) | 0.355 | 0.175 | 0.324 | 0.158 | 0.783 | 0.493 |
Peroxide value (mEq/kg) | 18.351 | 13.314 | 15.444 | 1.941 | 47.614 | 0.726 |
Water content (ppm) | 1378.259 | 1284.149 | 746.782 | 344.246 | 4159.639 | 0.932 |
Density (g/cm3) | 0.921 | 0.004 | 0.920 | 0.918 | 0.931 | 0.004 |
Absolute viscosity (cP) | 36.350 | 1.588 | 36.260 | 34.380 | 39.500 | 0.044 |
Kinematic viscosity (mm2/s) | 39.473 | 1.705 | 39.237 | 37.390 | 42.865 | 0.043 |
CIELAB Color axis L* | 90.534 | 8.387 | 93.913 | 71.237 | 98.220 | 0.093 |
CIELAB Color axis a* | −0.008 | 6.437 | −1.758 | −5.710 | 15.557 | −772.383 |
CIELAB Color axis b* | 39.644 | 30.255 | 25.780 | 4.763 | 87.230 | 0.763 |
Sources of Variation | Degrees of Freedom | Sum of Squares (Adjusted) | Mean Squares (Adjusted) | F Value | p Value | Regression Coefficients of the Model Parameters (Independent Variables) * | |
---|---|---|---|---|---|---|---|
Estimates | Values | ||||||
Regression | 30 | 2.91305 | 0.097102 | 56.28 | 0.000 | Constant | +0.3924 |
a(15) | 1 | 0.03573 | 0.035726 | 20.71 | 0.000 | a(15) | +0.0257 |
c(13) | 1 | 0.57792 | 0.577924 | 334.96 | 0.000 | c(13) | −0.0937 |
k(2) | 1 | 0.04312 | 0.043117 | 24.99 | 0.000 | k(2) | −0.0294 |
k(14) | 1 | 0.21635 | 0.216354 | 125.40 | 0.000 | k(14) | +0.0648 |
k(29) | 1 | 0.04727 | 0.047274 | 27.40 | 0.000 | k(29) | +0.0289 |
1/k(26)*1/k(26) | 1 | 0.02984 | 0.029842 | 17.30 | 0.000 | 1/k(26)*1/k(26) | −0.0070 |
m(1)*1/k(26) | 1 | 0.11768 | 0.117679 | 68.21 | 0.000 | m(1)*1/k(26) | −0.0826 |
m(5)*1/k(14) | 1 | 0.42206 | 0.422060 | 244.63 | 0.000 | m(5)*1/k(14) | +0.2445 |
m(6)*1/k(27) | 1 | 0.05172 | 0.051715 | 29.97 | 0.000 | m(6)*1/k(27) | −0.0488 |
m(7)*1/k(27) | 1 | 0.01877 | 0.018768 | 10.88 | 0.002 | m(7)*1/k(27) | −0.0217 |
m(8)*m(11) | 1 | 0.05762 | 0.057617 | 33.39 | 0.000 | m(8)*m(11) | +0.0243 |
m(8)*m(17) | 1 | 0.03949 | 0.039488 | 22.89 | 0.000 | m(8)*m(17) | −0.0313 |
m(8)*1/k(2) | 1 | 0.32465 | 0.324648 | 188.17 | 0.000 | m(8)*1/k(2) | +0.1654 |
m(10)*m(25) | 1 | 0.04035 | 0.040350 | 23.39 | 0.000 | m(10)*m(25) | −0.0293 |
m(11)*1/k(27) | 1 | 0.02059 | 0.020586 | 11.93 | 0.001 | m(11)*1/k(27) | +0.0255 |
m(13)*1/k(26) | 1 | 0.06200 | 0.062000 | 35.94 | 0.000 | m(13)*1/k(26) | −0.0531 |
m(14)*m(32) | 1 | 0.21971 | 0.219709 | 127.34 | 0.000 | m(14)*m(32) | +0.0735 |
m(19)*m(22) | 1 | 0.05155 | 0.051553 | 29.88 | 0.000 | m(19)*m(22) | −0.0768 |
m(19)*m(26) | 1 | 0.03354 | 0.033537 | 19.44 | 0.000 | m(19)*m(26) | −0.0397 |
m(22)*m(30) | 1 | 0.06678 | 0.066776 | 38.70 | 0.000 | m(22)*m(30) | +0.0454 |
m(23)*1/k(10) | 1 | 0.23632 | 0.236317 | 136.97 | 0.000 | m(23)*1/k(10) | +0.0699 |
m(23)*1/k(14) | 1 | 0.46235 | 0.462347 | 267.98 | 0.000 | m(23)*1/k(14) | −0.3101 |
m(30)*1/k(25) | 1 | 0.01210 | 0.012098 | 7.01 | 0.010 | m(30)*1/k(25) | −0.0200 |
1/k(1)*1/k(13) | 1 | 0.43020 | 0.430198 | 249.34 | 0.000 | 1/k(1)*1/k(13) | −0.1480 |
1/k(1)*1/k(17) | 1 | 0.09894 | 0.098936 | 57.34 | 0.000 | 1/k(1)*1/k(17) | +0.0836 |
1/k(3)*1/k(20) | 1 | 0.09576 | 0.095760 | 55.50 | 0.000 | 1/k(3)*1/k(20) | −0.0724 |
1/k(6)*1/k(27) | 1 | 0.08880 | 0.088797 | 51.47 | 0.000 | 1/k(6)*1/k(27) | −0.0371 |
1/k(18)*1/k(23) | 1 | 0.07293 | 0.072927 | 42.27 | 0.000 | 1/k(18)*1/k(23) | −0.0679 |
1/k(19)*1/k(23) | 1 | 0.05444 | 0.054444 | 31.56 | 0.000 | 1/k(19)*1/k(23) | −0.0352 |
1/k(25)*1/k(31) | 1 | 0.03191 | 0.031907 | 18.49 | 0.000 | 1/k(25)*1/k(31) | +0.0322 |
Error | 69 | 0.11905 | 0.001725 | ||||
Total | 99 | 3.03210 |
Sources of Variation | Degrees of Freedom | Sum of Squares (Adjusted) | Mean Squares (Adjusted) | F Value | p Value | Regression Coefficients of the Model Parameters (Independent Variables) * | |
---|---|---|---|---|---|---|---|
Estimates | Values | ||||||
Regression | 35 | 17,427.5 | 497.93 | 105.53 | 0.000 | Constant | +20.537 |
a(14) | 1 | 91.7 | 91.69 | 19.43 | 0.000 | a(14) | +1.307 |
c(7) | 1 | 566.8 | 566.79 | 120.12 | 0.000 | c(7) | +3.130 |
k(8) | 1 | 2572.2 | 2572.21 | 545.14 | 0.000 | k(8) | +7.473 |
k(26) | 1 | 1724.0 | 1724.02 | 365.38 | 0.000 | k(26) | +6.464 |
k(29) | 1 | 72.6 | 72.65 | 15.40 | 0.000 | k(29) | +1.096 |
m(1)*1/k(25) | 1 | 115.8 | 115.82 | 24.55 | 0.000 | m(1)*1/k(25) | +3.471 |
m(4)*1/k(28) | 1 | 107.5 | 107.51 | 22.78 | 0.000 | m(4)*1/k(28) | −2.085 |
m(5)*m(8) | 1 | 551.6 | 551.58 | 116.90 | 0.000 | m(5)*m(8) | +3.466 |
m(6)*1/k(25) | 1 | 1396.3 | 1396.28 | 295.92 | 0.000 | m(6)*1/k(25) | −8.668 |
m(8)*m(9) | 1 | 153.1 | 153.07 | 32.44 | 0.000 | m(8)*m(9) | −0.777 |
m(8)*1/k(24) | 1 | 100.9 | 100.94 | 21.39 | 0.000 | m(8)*1/k(24) | −2.488 |
m(9)*m(23) | 1 | 467.5 | 467.47 | 99.07 | 0.000 | m(9)*m(23) | −4.458 |
m(9)*1/k(6) | 1 | 84.5 | 84.54 | 17.92 | 0.000 | m(9)*1/k(6) | +2.133 |
m(9)*1/k(26) | 1 | 600.9 | 600.87 | 127.35 | 0.000 | m(9)*1/k(26) | −4.365 |
m(10)*1/k(25) | 1 | 2063.8 | 2063.84 | 437.40 | 0.000 | m(10)*1/k(25) | −8.678 |
m(11)*m(32) | 1 | 179.0 | 178.96 | 37.93 | 0.000 | m(11)*m(32) | +2.551 |
m(11)*1/k(6) | 1 | 298.7 | 298.67 | 63.30 | 0.000 | m(11)*1/k(6) | +3.929 |
m(13)*1/k(31) | 1 | 2186.1 | 2186.13 | 463.31 | 0.000 | m(13)*1/k(31) | +13.152 |
m(16)*1/k(2) | 1 | 544.7 | 544.69 | 115.44 | 0.000 | m(16)*1/k(2) | −10.259 |
m(16)*1/k(26) | 1 | 163.8 | 163.81 | 34.72 | 0.000 | m(16)*1/k(26) | −1.625 |
m(18)*1/k(24) | 1 | 553.4 | 553.41 | 117.29 | 0.000 | m(18)*1/k(24) | −4.375 |
m(19)*m(23) | 1 | 84.7 | 84.71 | 17.95 | 0.000 | m(19)*m(23) | +2.259 |
m(19)*1/k(24) | 1 | 1365.4 | 1365.40 | 289.37 | 0.000 | m(19)*1/k(24) | −7.174 |
m(19)*1/k(27) | 1 | 1382.8 | 1382.84 | 293.07 | 0.000 | m(19)*1/k(27) | −5.707 |
m(19)*1/k(31) | 1 | 1623.5 | 1623.54 | 344.08 | 0.000 | m(19)*1/k(31) | −13.035 |
m(21)*1/k(23) | 1 | 40.1 | 40.06 | 8.49 | 0.005 | m(21)*1/k(23) | −1.129 |
m(24)*m(28) | 1 | 1544.7 | 1544.66 | 327.36 | 0.000 | m(24)*m(28) | −10.258 |
m(25)*1/k(2) | 1 | 49.3 | 49.35 | 10.46 | 0.002 | m(25)*1/k(2) | +2.355 |
m(26)*1/k(27) | 1 | 55.9 | 55.89 | 11.84 | 0.001 | m(26)*1/k(27) | +1.316 |
m(28)*m(31) | 1 | 648.4 | 648.43 | 137.42 | 0.000 | m(28)*m(31) | −2.895 |
m(28)*1/k(10) | 1 | 347.5 | 347.52 | 73.65 | 0.000 | m(28)*1/k(10) | −4.528 |
m(31)*1/k(20) | 1 | 71.5 | 71.49 | 15.15 | 0.000 | m(31)*1/k(20) | +2.136 |
1/k(1)*1/k(14) | 1 | 396.8 | 396.83 | 84.10 | 0.000 | 1/k(1)*1/k(14) | −5.658 |
1/k(1)*1/k(16) | 1 | 957.1 | 957.12 | 202.85 | 0.000 | 1/k(1)*1/k(16) | −7.003 |
1/k(9)*1/k(17) | 1 | 175.3 | 175.35 | 37.16 | 0.000 | 1/k(9)*1/k(17) | −3.396 |
Error | 64 | 302.0 | 4.72 | ||||
Total | 99 | 17,729.4 |
Sources of Variation | Degrees of Freedom | Sum of Squares (Adjusted) | Mean Squares (Adjusted) | F Value | p Value | Regression Coefficients of the Model Parameters (Independent Variables) * | |
---|---|---|---|---|---|---|---|
Estimates | Values | ||||||
Regression | 41 | 164,024,020 | 4,000,586 | 264.88 | 0.000 | Constant | +1321.90 |
a(20) | 1 | 511,873 | 511,873 | 33.89 | 0.000 | a(20) | −108.30 |
c(21) | 1 | 430,418 | 430,418 | 28.50 | 0.000 | c(21) | −96.30 |
k(13) | 1 | 24,303,681 | 24,303,681 | 1609.18 | 0.000 | k(13) | +813.20 |
k(16) | 1 | 5,157,547 | 5,157,547 | 341.49 | 0.000 | k(16) | +405.80 |
m(2)*1/k(5) | 1 | 6,393,239 | 6,393,239 | 423.31 | 0.000 | m(2)*1/k(5) | −688.30 |
m(2)*1/k(27) | 1 | 6,799,692 | 6,799,692 | 450.22 | 0.000 | m(2)*1/k(27) | +634.70 |
m(2)*1/k(32) | 1 | 1,133,538 | 1,133,538 | 75.05 | 0.000 | m(2)*1/k(32) | −327.10 |
m(8)*m(24) | 1 | 558,241 | 558,241 | 36.96 | 0.000 | m(8)*m(24) | −142.70 |
m(9)*1/k(27) | 1 | 516,580 | 516,580 | 34.20 | 0.000 | m(9)*1/k(27) | +127.60 |
m(9)*a(1) | 1 | 988,101 | 988,101 | 65.42 | 0.000 | m(9)*a(1) | −186.10 |
m(10)*m(11) | 1 | 1,996,485 | 1,996,485 | 132.19 | 0.000 | m(10)*m(11) | −421.00 |
m(11)*m(19) | 1 | 228,078 | 228,078 | 15.10 | 0.000 | m(11)*m(19) | −87.60 |
m(11)*1/k(17) | 1 | 1,190,218 | 1,190,218 | 78.81 | 0.000 | m(11)*1/k(17) | +418.90 |
m(12)*1/k(28) | 1 | 238,090 | 238,090 | 15.76 | 0.000 | m(12)*1/k(28) | −125.80 |
m(14)*a(2) | 1 | 647,904 | 647,904 | 42.90 | 0.000 | m(14)*a(2) | −181.50 |
m(15)*1/k(7) | 1 | 603,615 | 603,615 | 39.97 | 0.000 | m(15)*1/k(7) | +166.40 |
m(16)*1/k(15) | 1 | 2,252,536 | 2,252,536 | 149.14 | 0.000 | m(16)*1/k(15) | −470.60 |
m(16)*1/k(17) | 1 | 3,258,639 | 3,258,639 | 215.76 | 0.000 | m(16)*1/k(17) | −482.00 |
m(16)*a(3) | 1 | 798,406 | 798,406 | 52.86 | 0.000 | m(16)*a(3) | +225.30 |
m(17)*m(19) | 1 | 330,620 | 330,620 | 21.89 | 0.000 | m(17)*m(19) | −143.40 |
m(19)*m(26) | 1 | 6,426,334 | 6,426,334 | 425.50 | 0.000 | m(19)*m(26) | +676.30 |
m(19)*m(27) | 1 | 761,778 | 761,778 | 50.44 | 0.000 | m(19)*m(27) | +98.60 |
m(19)*m(30) | 1 | 105,592 | 105,592 | 6.99 | 0.011 | m(19)*m(30) | +106.90 |
m(19)*1/k(27) | 1 | 417,016 | 417,016 | 27.61 | 0.000 | m(19)*1/k(27) | −142.30 |
m(20)*1/k(28) | 1 | 6,138,673 | 6,138,673 | 406.45 | 0.000 | m(20)*1/k(28) | +632.50 |
m(21)*1/k(24) | 1 | 606,524 | 606,524 | 40.16 | 0.000 | m(21)*1/k(24) | +145.50 |
m(22)*m(30) | 1 | 423,005 | 423,005 | 28.01 | 0.000 | m(22)*m(30) | −174.60 |
m(22)*a(2) | 1 | 455,127 | 455,127 | 30.13 | 0.000 | m(22)*a(2) | +156.30 |
m(24)*1/k(2) | 1 | 503,101 | 503,101 | 33.31 | 0.000 | m(24)*1/k(2) | +302.50 |
m(26)*1/k(28) | 1 | 3,151,708 | 3,151,708 | 208.68 | 0.000 | m(26)*1/k(28) | −437.90 |
m(26)*a(1) | 1 | 3,236,057 | 3,236,057 | 214.26 | 0.000 | m(26)*a(1) | +400.20 |
m(28)*1/k(19) | 1 | 2,448,117 | 2,448,117 | 162.09 | 0.000 | m(28)*1/k(19) | −292.10 |
m(30)*1/k(14) | 1 | 6,251,369 | 6,251,369 | 413.91 | 0.000 | m(30)*1/k(14) | −583.60 |
m(31)*1/k(15) | 1 | 99,472 | 99,472 | 6.59 | 0.013 | m(31)*1/k(15) | −42.00 |
m(32)*1/k(16) | 1 | 110,382 | 110,382 | 7.31 | 0.009 | m(32)*1/k(16) | +47.40 |
1/k(6)*1/k(24) | 1 | 3,059,652 | 3,059,652 | 202.58 | 0.000 | 1/k(6)*1/k(24) | +429.80 |
1/k(6)*1/k(31) | 1 | 1,072,883 | 1,072,883 | 71.04 | 0.000 | 1/k(6)*1/k(31) | +110.70 |
1/k(6)*a(3) | 1 | 868,785 | 868,785 | 57.52 | 0.000 | 1/k(6)*a(3) | +237.70 |
1/k(7)*1/k(12) | 1 | 4,512,601 | 4,512,601 | 298.79 | 0.000 | 1/k(7)*1/k(12) | −600.70 |
1/k(11)*1/k(26) | 1 | 131,512 | 131,512 | 8.71 | 0.005 | 1/k(11)*1/k(26) | +153.90 |
1/k(12)*a(2) | 1 | 3,671,336 | 3,671,336 | 243.08 | 0.000 | 1/k(12)*a(2) | −578.70 |
Error | 58 | 875,981 | 15,103 | ||||
Total | 99 | 164,900,001 |
Sources of Variation | Degrees of Freedom | Sum of Squares (Adjusted) | Mean Squares (Adjusted) | F Value | P Value | Regression Coefficients of the Model Parameters (Independent Variables) * | |
---|---|---|---|---|---|---|---|
Estimates | Values | ||||||
Regression | 25 | 274.657 | 10.9863 | 50.87 | 0.000 | Constant | +39.469 |
m(13) | 1 | 22.987 | 22.9871 | 106.44 | 0.000 | m(13) | +0.749 |
b(13) | 1 | 26.203 | 26.2028 | 121.33 | 0.000 | b(13) | −0.846 |
c(22) | 1 | 4.286 | 4.2856 | 19.85 | 0.000 | c(22) | −0.268 |
k(4) | 1 | 1.921 | 1.9206 | 8.89 | 0.004 | k(4) | +0.187 |
m(2)*m(11) | 1 | 3.966 | 3.9655 | 18.36 | 0.000 | m(2)*m(11) | +0.446 |
m(3)*m(16) | 1 | 10.377 | 10.3773 | 48.05 | 0.000 | m(3)*m(16) | +0.883 |
m(3)*1/k(15) | 1 | 2.658 | 2.6575 | 12.31 | 0.001 | m(3)*1/k(15) | +0.379 |
m(4)*m(20) | 1 | 13.114 | 13.1136 | 60.72 | 0.000 | m(4)*m(20) | −0.403 |
m(4)*1/k(27) | 1 | 5.614 | 5.6137 | 25.99 | 0.000 | m(4)*1/k(27) | +0.439 |
m(8)*1/k(27) | 1 | 10.589 | 10.5893 | 49.03 | 0.000 | m(8)*1/k(27) | +0.316 |
m(9)*1/k(3) | 1 | 14.640 | 14.6404 | 67.79 | 0.000 | m(9)*1/k(3) | −0.756 |
m(10)*m(19) | 1 | 30.156 | 30.1555 | 139.64 | 0.000 | m(10)*m(19) | −1.524 |
m(13)*1/k(20) | 1 | 11.072 | 11.0716 | 51.27 | 0.000 | m(13)*1/k(20) | −0.369 |
m(14)*m(32) | 1 | 2.596 | 2.5957 | 12.02 | 0.001 | m(14)*m(32) | +0.246 |
m(16)*m(25) | 1 | 2.888 | 2.8883 | 13.37 | 0.000 | m(16)*m(25) | −0.351 |
m(19)*m(26) | 1 | 10.649 | 10.6490 | 49.31 | 0.000 | m(19)*m(26) | +0.539 |
m(21)*m(23) | 1 | 5.202 | 5.2021 | 24.09 | 0.000 | m(21)*m(23) | −0.365 |
m(22)*1/k(13) | 1 | 6.779 | 6.7789 | 31.39 | 0.000 | m(22)*1/k(13) | +0.484 |
m(23)*1/k(24) | 1 | 1.496 | 1.4960 | 6.93 | 0.010 | m(23)*1/k(24) | +0.282 |
m(23)*1/k(25) | 1 | 4.836 | 4.8360 | 22.39 | 0.000 | m(23)*1/k(25) | −0.309 |
m(26)*1/k(24) | 1 | 4.392 | 4.3921 | 20.34 | 0.000 | m(26)*1/k(24) | −0.538 |
m(27)*m(31) | 1 | 3.658 | 3.6584 | 16.94 | 0.000 | m(27)*m(31) | −0.363 |
m(27)*1/k(4) | 1 | 10.763 | 10.7627 | 49.84 | 0.000 | m(27)*1/k(4) | +0.764 |
1/k(5)*1/k(25) | 1 | 2.616 | 2.6163 | 12.12 | 0.001 | 1/k(5)*1/k(25) | −0.299 |
1/k(14)*1/k(31) | 1 | 11.840 | 11.8404 | 54.83 | 0.000 | 1/k(14)*1/k(31) | +0.624 |
Error | 74 | 15.981 | 0.2160 | ||||
Total | 99 | 290.638 |
E-Nose Sensors | Model Parameters | ||||
---|---|---|---|---|---|
a | b | c | k | m | |
Sensor 01 | WC | AV, PV | AV, PV | ||
Sensor 02 | WC | AV, PV, WC | KV, WC | ||
Sensor 03 | WC | AV, KV | KV | ||
Sensor 04 | KV | KV, PV | |||
Sensor 05 | KV, WC | AV, PV | |||
Sensor 06 | AV, PV, WC | AV, PV | |||
Sensor 07 | PV | WC | AV | ||
Sensor 08 | PV | AV, KV, PV, WC | |||
Sensor 09 | PV | KV, PV, WC | |||
Sensor 10 | AV, PV | AV, KV, PV, WC | |||
Sensor 11 | WC | AV, KV, PV, WC | |||
Sensor 12 | WC | WC | |||
Sensor 13 | KV | AV | AV, KV, WC | AV, KV, PV | |
Sensor 14 | PV | AV, KV, PV, WC | AV, KV, WC | ||
Sensor 15 | AV | KV, WC | WC | ||
Sensor 16 | PV, WC | KV, PV, WC | |||
Sensor 17 | AV, PV, WC | AV, WC | |||
Sensor 18 | AV | PV | |||
Sensor 19 | AV, WC | AV, KV, PV, WC | |||
Sensor 20 | WC | AV, KV, PV | KV, WC | ||
Sensor 21 | WC | KV, PV, WC | |||
Sensor 22 | KV | AV, KV, WC | |||
Sensor 23 | AV, PV | AV, KV, PV | |||
Sensor 24 | KV, PV, WC | PV, WC | |||
Sensor 25 | AV, KV, PV | AV, KV, PV | |||
Sensor 26 | AV, PV, WC | AV, KV, PV, WC | |||
Sensor 27 | AV, KV, PV, WC | KV, WC | |||
Sensor 28 | PV, WC | PV, WC | |||
Sensor 29 | AV, PV | ||||
Sensor 30 | AV, WC | ||||
Sensor 31 | AV, KV, PV, WC | KV, PV, WC | |||
Sensor 32 | WC | AV, KV, PV, WC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, S.C.d.; Silva, M.M.C.; Siqueira, A.F.; Melo, M.P.d.; Giordani, D.S.; Senra, T.d.O.S.; Ferreira, A.L.G. Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production. Sustainability 2024, 16, 9998. https://doi.org/10.3390/su16229998
Carvalho SCd, Silva MMC, Siqueira AF, Melo MPd, Giordani DS, Senra TdOS, Ferreira ALG. Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production. Sustainability. 2024; 16(22):9998. https://doi.org/10.3390/su16229998
Chicago/Turabian StyleCarvalho, Suelen Conceição de, Maryana Mathias Costa Silva, Adriano Francisco Siqueira, Mariana Pereira de Melo, Domingos Sávio Giordani, Tatiane de Oliveira Souza Senra, and Ana Lucia Gabas Ferreira. 2024. "Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production" Sustainability 16, no. 22: 9998. https://doi.org/10.3390/su16229998
APA StyleCarvalho, S. C. d., Silva, M. M. C., Siqueira, A. F., Melo, M. P. d., Giordani, D. S., Senra, T. d. O. S., & Ferreira, A. L. G. (2024). Olfactory Profile and Stochastic Analysis: An Innovative Approach for Predicting the Physicochemical Characteristics of Recycled Waste Cooking Oils for Sustainable Biodiesel Production. Sustainability, 16(22), 9998. https://doi.org/10.3390/su16229998