A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy
Abstract
:1. Introduction
2. Biomass Residue Management
3. Principal Elements of Sustainability Science
3.1. Human–Environment Interactions
3.2. United Nations Sustainable Development Goals for Waste Management
3.3. Circular Economy
4. Interdisciplinary Approaches in Sustainability Science
4.1. Systems Thinking and Analysis
4.2. Adaptability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amarasinghe, G.K.; Aréchiga Ceballos, N.G.; Banyard, A.C.; Basler, C.F.; Bavari, S.; Bennett, A.J.; Blasdell, K.R.; Briese, T.; Bukreyev, A.; Caì, Y. Taxonomy of the order Mononegavirales: Update 2018. Arch. Virol. 2018, 163, 2283–2294. [Google Scholar] [CrossRef]
- Kates, R.W. What kind of a science is sustainability science? Proc. Natl. Acad. Sci. USA 2011, 108, 19449–19450. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.M.; Kaur, J. Evolution and structure of sustainability science. Proc. Natl. Acad. Sci. USA 2011, 108, 19540–19545. [Google Scholar] [CrossRef] [PubMed]
- Kenter, J.O.; Raymond, C.M.; Van Riper, C.J.; Azzopardi, E.; Brear, M.R.; Calcagni, F.; Christie, I.; Christie, M.; Fordham, A.; Gould, R.K. Loving the mess: Navigating diversity and conflict in social values for sustainability. Sustain. Sci. 2019, 14, 1439–1461. [Google Scholar] [CrossRef]
- Diwekar, U.; Amekudzi-Kennedy, A.; Bakshi, B.; Baumgartner, R.; Boumans, R.; Burger, P.; Cabezas, H.; Egler, M.; Farley, J.; Fath, B. A perspective on the role of uncertainty in sustainability science and engineering. Resour. Conserv. Recycl. 2021, 164, 105140. [Google Scholar] [CrossRef] [PubMed]
- Joaquin, J.J.B.; Biana, H.T. Sustainability science is ethics: Bridging the philosophical gap between science and policy. Resourc. Conserv. Recycl. 2020, 160, 104929. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Thermochemical conversion of plastic waste to fuels: A review. Environ. Chem. Lett. 2021, 19, 123–148. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A review of thermochemical conversion of waste biomass to biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Jha, S.; Okolie, J.A.; Nanda, S.; Dalai, A.K. A review of biomass resources and thermochemical conversion technologies. Chem. Eng. Technol. 2022, 45, 791–799. [Google Scholar] [CrossRef]
- Jha, S.; Pattnaik, F.; Nanda, S.; Zapata, O.; Acharya, B.; Dalai, A.K. Investigations of thermal effects during pyrolysis of agro-forestry biomass and physicochemical characterizations of biofuel products. Biocatal. Agric. Biotechnol. 2024, 61, 103379. [Google Scholar] [CrossRef]
- Pattnaik, F.; Patra, B.R.; Okolie, J.A.; Nanda, S.; Dalai, A.K.; Naik, S. A review of thermocatalytic conversion of biogenic wastes into crude biofuels and biochemical precursors. Fuel 2022, 320, 123857. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Knicker, H.; González-Vila, F.J.; González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 2013, 56, 31–39. [Google Scholar] [CrossRef]
- Podder, J.; Patra, B.R.; Pattnaik, F.; Nanda, S.; Dalai, A.K. A review of carbon capture and valorization technologies. Energies 2023, 16, 2589. [Google Scholar] [CrossRef]
- Shinde, R.; Shahi, D.K.; Mahapatra, P.; Singh, C.S.; Naik, S.K.; Thombare, N.; Singh, A.K. Management of crop residues with special reference to the on-farm utilization methods: A review. Ind. Crops Prod. 2022, 181, 114772. [Google Scholar] [CrossRef]
- Khandelwal, K.; Nanda, S.; Dalai, A.K. Machine learning to predict the production of bio-oil, biogas and biochar by pyrolysis of biomass: A review. Environ. Chem. Lett. 2024, 22, 2669–2698. [Google Scholar] [CrossRef]
- Vieira, R.A.L.; Pickler, T.B.; Segato, T.C.M.; Jozala, A.F.; Grotto, D. Biochar from fungiculture waste for adsorption of endocrine disruptors in water. Sci. Rep. 2022, 12, 6507. [Google Scholar] [CrossRef]
- Menk, L.; Terzi, S.; Zebisch, M.; Rome, E.; Lückerath, D.; Milde, K.; Kienberger, S. Climate change impact chains: A review of applications, challenges, and opportunities for climate risk and vulnerability assessments. Weather. Clim. Soc. 2022, 14, 619–636. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on environmental sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Shrivastava, P.; Smith, M.S.; O’Brien, K.; Zsolnai, L. Transforming sustainability science to generate positive social and environmental change globally. One Earth 2020, 2, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Di Baldassarre, G.; Sivapalan, M.; Rusca, M.; Cudennec, C.; Garcia, M.; Kreibich, H.; Konar, M.; Mondino, E.; Mård, J.; Pande, S. Sociohydrology: Scientific challenges in addressing the sustainable development goals. Water Resour. Res. 2019, 55, 6327–6355. [Google Scholar] [CrossRef]
- Jagaba, A.; Kutty, S.; Hayder, G.; Latiff, A.; Aziz, N.; Umaru, I.; Ghaleb, A.; Abubakar, S.; Lawal, I.; Nasara, M. Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Eng. J. 2020, 11, 951–960. [Google Scholar] [CrossRef]
- Arora, M.; Giuliani, A.; Curtin, P. Biodynamic interfaces are essential for human–environment interactions. BioEssays 2020, 42, 2000017. [Google Scholar] [CrossRef]
- Song, X.P.; Richards, D.R.; Tan, P.Y. Using social media user attributes to understand human-environment interactions at urban parks. Sci. Rep. 2020, 10, 8411. [Google Scholar] [CrossRef]
- Lade, S.J.; Steffen, W.; De Vries, W.; Carpenter, S.R.; Donges, J.F.; Gerten, D.; Hoff, H.; Newbold, T.; Richardson, K.; Rockström, J. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 2020, 3, 119–128. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 9, 1697–1706. [Google Scholar] [CrossRef]
- Kharola, S.; Ram, M.; Mangla, S.K.; Goyal, N.; Nautiyal, O.; Pant, D.; Kazancoglu, Y. Exploring the green waste management problem in food supply chains: A circular economy context. J. Clean. Prod. 2022, 351, 131355. [Google Scholar] [CrossRef]
- Nerini, F.; Sovacool, B.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Tavoni, M.; Tomei, J.; Zerriffi, H.; Milligan, B. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2019, 2, 674–680. [Google Scholar] [CrossRef]
- Zulkifli, M.F.H.; Hawari, N.S.S.L.; Latif, M.T.; Abd Hamid, H.H.; Mohtar, A.A.A.; Idris, W.M.R.W.; Mustaffa, N.I.H.; Juneng, L. Volatile organic compounds and their contribution to ground-level ozone formation in a tropical urban environment. Chemosphere 2022, 302, 134852. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Chen, W.; Lu, B.; Wang, S.; Xiao, L.; Liu, B.; Yang, H.; Huang, C.-L.; Wang, H.; Yang, Y. Climate mitigation potential of sustainable biochar production in China. Renew. Sustain. Energy Rev. 2023, 175, 113145. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, B.; Zhang, S.; Zeng, H.; Li, K.; Wang, B.; Dong, Z.; Zhou, C. New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978–2018. Sci. Total Environ. 2022, 804, 150180. [Google Scholar] [CrossRef] [PubMed]
- Soergel, B.; Kriegler, E.; Weindl, I.; Rauner, S.; Dirnaichner, A.; Ruhe, C.; Hofmann, M.; Bauer, N.; Bertram, C.; Bodirsky, B.L. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 2021, 11, 656–664. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Reyers, B.; Selig, E.R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 2020, 4, 1011–1019. [Google Scholar] [CrossRef]
- Dziegielowski, J.; Metcalfe, B.; Villegas-Guzman, P.; Martínez-Huitle, C.A.; Gorayeb, A.; Wenk, J.; Di Lorenzo, M. Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil. Appl. Energy 2020, 278, 115680. [Google Scholar] [CrossRef]
- Carley, S.; Konisky, D.M. The justice and equity implications of the clean energy transition. Nat. Energy 2020, 5, 569–577. [Google Scholar] [CrossRef]
- Solaymani, S. A review on energy and renewable energy policies in Iran. Sustainability 2021, 13, 7328. [Google Scholar] [CrossRef]
- Fernando, Y.; Shaharudin, M.S.; Abideen, A.Z. Circular economy-based reverse logistics: Dynamic interplay between sustainable resource commitment and financial performance. Eur. J. Manag. Bus. Econ. 2023, 32, 91–112. [Google Scholar] [CrossRef]
- Walia, S.S.; Babu, S.; Gill, R.S.; Kaur, T.; Kohima, N.; Panwar, A.S.; Yadav, D.K.; Ansari, M.A.; Ravishankar, N.; Kumar, S. Designing resource-efficient and environmentally safe cropping systems for sustainable energy use and economic returns in Indo-Gangetic Plains, India. Sustainability 2022, 14, 14636. [Google Scholar] [CrossRef]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Galappaththi, E.K.; Ford, J.D.; Bennett, E.M. Climate change and adaptation to social-ecological change: The case of indigenous people and culture-based fisheries in Sri Lanka. Clim. Chang. 2020, 162, 279–300. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. Forest. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Schwerz, F.; Neto, D.D.; Caron, B.O.; Nardini, C.; Sgarbossa, J.; Eloy, E.; Behling, A.; Elli, E.F.; Reichardt, K. Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing. Renew. Energy 2020, 153, 1238–1250. [Google Scholar] [CrossRef]
- Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts. Biomass Bioenergy 2016, 95, 378–387. [Google Scholar] [CrossRef]
- Singh, A.; Nanda, S.; Guayaquil-Sosa, J.F.; Berruti, F. Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. Can. J. Chem. Eng. 2021, 99, S55–S68. [Google Scholar] [CrossRef]
- Suchek, N.; Fernandes, C.I.; Kraus, S.; Filser, M.; Sjögrén, H. Innovation and the circular economy: A systematic literature review. Bus. Strat. Environ. 2021, 30, 3686–3702. [Google Scholar] [CrossRef]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consump. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Corvellec, H.; Stowell, A.F.; Johansson, N. Critiques of the circular economy. J. Ind. Ecol. 2022, 26, 421–432. [Google Scholar] [CrossRef]
- Campos, N.; Karanasos, M.; Koutroumpis, P.; Zhang, Z. Political instability, institutional change and economic growth in Brazil since 1870. J. Inst. Econ. 2020, 16, 883–910. [Google Scholar] [CrossRef]
- Grafström, J.; Aasma, S. Breaking circular economy barriers. J. Clean. Prod. 2021, 292, 126002. [Google Scholar] [CrossRef]
- Bruel, A.; Kronenberg, J.; Troussier, N.; Guillaume, B. Linking industrial ecology and ecological economics: A theoretical and empirical foundation for the circular economy. J. Ind. Ecol. 2019, 23, 12–21. [Google Scholar] [CrossRef]
- Cheng, H.; Dong, S.; Li, F.; Yang, Y.; Li, Y.; Li, Z. A circular economy system for breaking the development dilemma of ‘ecological Fragility–Economic poverty’vicious circle: A CEEPS-SD analysis. J. Clean. Prod. 2019, 212, 381–392. [Google Scholar] [CrossRef]
- D’amato, D.; Korhonen, J. Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecol. Econ. 2021, 188, 107143. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Zin, R.M.; Štreimikienė, D.; Yousefpour, A.; Strielkowski, W.; Mardani, A. Aligning the criteria of green economy (GE) and sustainable development goals (SDGs) to implement sustainable development. Sustainability 2019, 11, 4615. [Google Scholar] [CrossRef]
- Cuong, D.V.; Matsagar, B.M.; Lee, M.; Hossain, M.S.A.; Yamauchi, Y.; Vithanage, M.; Sarkar, B.; Ok, Y.S.; Wu, K.C.-W.; Hou, C.-H. A critical review on biochar-based engineered hierarchical porous carbon for capacitive charge storage. Renew. Sustain. Energy Rev. 2021, 145, 111029. [Google Scholar] [CrossRef]
- Prichard, S.J.; Hessburg, P.F.; Hagmann, R.K.; Povak, N.A.; Dobrowski, S.Z.; Hurteau, M.D.; Kane, V.R.; Keane, R.E.; Kobziar, L.N.; Kolden, C.A. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 2021, 31, e02433. [Google Scholar] [CrossRef] [PubMed]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Seppälä, J.; Heinonen, T.; Pukkala, T.; Kilpeläinen, A.; Mattila, T.; Myllyviita, T.; Asikainen, A.; Peltola, H. Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels. J. Environ. Manag. 2019, 247, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Zhichkin, K.A.; Nosov, V.V.; Zhichkina, L.N.; Krasil’nikova, E.A.; Kotar, O.K.; Shlenov, Y.D.; Korneva, G.V.; Terekhova, A.A.; Plyushchikov, V.G.; Avdotin, V.P. Agronomic and economic aspects of biodiesel production from oilseeds: A case study in Russia, Middle Volga region. Agriculture 2022, 12, 1734. [Google Scholar] [CrossRef]
- Amiandamhen, S.O.; Kumar, A.; Adamopoulos, S.; Jones, D.; Nilsson, B. Bioenergy production and utilization in different sectors in Sweden: A state of the art review. BioResources 2020, 15, 9834. [Google Scholar] [CrossRef]
- International Energy Agency. Transport Biofuels. Available online: https://www.iea.org/reports/renewables-2023/transport-biofuels (accessed on 10 November 2024).
- Voulvoulis, N.; Giakoumis, T.; Hunt, C.; Kioupi, V.; Petrou, N.; Souliotis, I.; Vaghela, C. Systems thinking as a paradigm shift for sustainability transformation. Glob. Environ. Chang. 2022, 75, 102544. [Google Scholar] [CrossRef]
- MacBrayne, C.E.; Williams, M.C.; Levek, C.; Child, J.; Pearce, K.; Birkholz, M.; Todd, J.K.; Hurst, A.L.; Parker, S.K. Sustainability of handshake stewardship: Extending a hand is effective years later. Clinic. Infect. Dis. 2020, 70, 2325–2332. [Google Scholar] [CrossRef]
- York, S.; Lavi, R.; Dori, Y.J.; Orgill, M. Applications of systems thinking in STEM education. J. Chem. Edu. 2019, 96, 2742–2751. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H.; Sanders, D. Plant blindness and sustainability. Int. J. Sustain. High. Edu. 2022, 23, 41–57. [Google Scholar] [CrossRef]
- Viaggi, D. Agricultural waste management and valorisation in the context of the circular Bioeconomy: Exploring the potential of biomass value webs. Curr. Opin. Environ. Sci. Health 2022, 27, 100356. [Google Scholar] [CrossRef]
- Zwingelstein, M.; Draye, M.; Besombes, J.-L.; Piot, C.; Chatel, G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Summerton, L.; Clark, J.H.; Hurst, G.A.; Ball, P.D.; Rylott, E.L.; Carslaw, N.; Creasey, J.; Murray, J.; Whitford, J.; Dobson, B. Industry-informed workshops to develop graduate skill sets in the circular economy using systems thinking. J. Chem. Edu. 2019, 96, 2959–2967. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 4. [Google Scholar] [CrossRef]
- Zemunik, G.; Turner, B.L.; Lambers, H.; Laliberté, E. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat. Plants 2015, 1, 3928. [Google Scholar] [CrossRef]
- Armitage, D.R.; Plummer, R.; Berkes, F.; Arthur, R.I.; Charles, A.T.; Davidson-Hunt, I.J.; Diduck, A.P.; Doubleday, N.C.; Johnson, D.S.; Marschke, M. Adaptive co-management for social–ecological complexity. Front. Ecol. Environ. 2009, 7, 95–102. [Google Scholar] [CrossRef]
- Rodenburg, J.; Büchi, L.; Haggar, J. Adoption by adaptation: Moving from conservation agriculture to conservation practices. Int. J. Agric. Sustain. 2021, 19, 437–455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, S.; Nanda, S.; Zapata, O.; Acharya, B.; Dalai, A.K. A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy. Sustainability 2024, 16, 10157. https://doi.org/10.3390/su162310157
Jha S, Nanda S, Zapata O, Acharya B, Dalai AK. A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy. Sustainability. 2024; 16(23):10157. https://doi.org/10.3390/su162310157
Chicago/Turabian StyleJha, Shivangi, Sonil Nanda, Oscar Zapata, Bishnu Acharya, and Ajay K. Dalai. 2024. "A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy" Sustainability 16, no. 23: 10157. https://doi.org/10.3390/su162310157
APA StyleJha, S., Nanda, S., Zapata, O., Acharya, B., & Dalai, A. K. (2024). A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy. Sustainability, 16(23), 10157. https://doi.org/10.3390/su162310157