The Suppression of Nitrite-Oxidizing Bacteria Using Free Nitrous Acid and Limited Available Dissolved Oxygen to Maintain the Stability of Toilet Wastewater Biofilm Nitritation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Scenarios and System Design
2.2. Experimental Design
2.3. Analytical Methods
2.4. Data Analysis and Mechanism Elaboration
3. Results and Discussion
3.1. Toilet Wastewater Nitritation Under Varying DO Concentrations
3.2. High FNA–Low Available DO Dual-Factor Suppression to Maintain the Stability of Toilet Wastewater Biofilm Nitritation
3.3. Comprehensive Analysis of Toilet Wastewater Nitritation Using the Dual-Factor Suppression Mechanism
3.4. Validation of the Dual-Factor Suppression Mechanism with High FNA–Low Available DO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.; Peng, Y.; Li, J.; Gao, R.; Jia, T.; Deng, L.; Du, R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. Sci. Total Environ. 2022, 813, 152468. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Hu, Z.; Wang, Z.; Hu, S.; Liu, Y.; Guo, H.; Li, J.; Yuan, Z.; Zheng, M. Determining Factors for Nitrite Accumulation in an Acidic Nitrifying System: Influent Ammonium Concentration, Operational pH, and Ammonia-Oxidizing Community. Environ. Sci. Technol. 2022, 56, 11578–11588. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Ye, L.; Lu, X.; Yuan, Z. Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia. Environ. Sci. Technol. 2019, 53, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yuan, Y.; Huang, Y.; Bi, Z.; Lin, X. Inhibition of nitrite oxidizing bacterial activity based on low nitrite concentration exposure in an auto-recycling PN-Anammox process under mainstream conditions. Bioresour. Technol. 2019, 281, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, M.; Hu, Z.; Duan, H.; De Clippeleir, H.; Al-Omari, A.; Hu, S.; Yuan, Z. Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Res. 2021, 200, 117239. [Google Scholar] [CrossRef]
- Duan, H.; Watts, S.; Zheng, M.; Wang, Z.; Zhao, J.; Li, H.; Liu, P.; Dwyer, J.; McPhee, P.; Rattier, M.; et al. Achieving robust mainstream nitrite shunt at pilot-scale with integrated sidestream sludge treatment and step-feed. Water Res. 2022, 223, 119034. [Google Scholar] [CrossRef]
- Borowska, W.; Zubrowska-Sudol, M.; Doskocz, N. Decrease in Oxygen Concentration for the Fast Start-Up of Partial Nitritation/Anammox without Inoculum Addition. Sustainability 2024, 16, 622. [Google Scholar] [CrossRef]
- Zheng, M.; Li, S.; Ni, G.; Xia, J.; Hu, S.; Yuan, Z.; Liu, Y.; Huang, X. Critical Factors Facilitating Candidatus Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. Environ. Sci. Technol. 2020, 54, 15414–15423. [Google Scholar] [CrossRef]
- Kowal, P.; Mehrani, M.-J.; Sobotka, D.; Ciesielski, S.; Mąkinia, J. Rearrangements of the nitrifiers population in an activated sludge system under decreasing solids retention times. Environ. Res. 2022, 214, 113753. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.; Gu, X.; Wang, H.; Li, X.; Peng, Y.; Wang, Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. Environ. Sci. Technol. 2023, 57, 21503–21526. [Google Scholar] [CrossRef]
- Yan, Z.; Pei, Z. Light Enables Partial Nitrification and Algal-Bacterial Consortium in Rotating Biological Contactors: Performance and Microbial Community. Sustainability 2024, 16, 5538. [Google Scholar] [CrossRef]
- Liu, W.; Song, J.; Wang, J.; Ji, X.; Shen, Y.; Yang, D. Achieving robust nitritation in a modified continuous-flow reactor: From micro-granule cultivation to nitrite-oxidizing bacteria elimination. J. Environ. Sci. 2023, 124, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Lin, L.; Huang, X.; Li, X.-Y. Partial nitritation-anammox for treatment of saline wastewater: Hydrazine-assisted salinity adaptation and nitrate control. Chem. Eng. J. 2023, 470, 144268. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wei, Y.; Chen, M. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up. Biochem. Eng. J. 2015, 98, 127–136. [Google Scholar] [CrossRef]
- Yan, Z.; Li, A.; Shim, H.; Wang, D.; Cheng, S.; Wang, Y.; Li, M. Effect of ozone pretreatment on biogranulation with partial nitritation—Anammox two stages for nitrogen removal from mature landfill leachate. J. Environ. Manag. 2022, 317, 115470. [Google Scholar] [CrossRef]
- Picioreanu, C.; Pérez, J.; van Loosdrecht, M.C.M. Impact of cell cluster size on apparent half-saturation coefficients for oxygen in nitrifying sludge and biofilms. Water Res. 2016, 106, 371–382. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Yin, F.; Shen, Y.; Yang, D.; Liu, W. Insight into how high dissolved oxygen favors the startup of nitritation with aerobic granules. Chemosphere 2021, 270, 128643. [Google Scholar] [CrossRef]
- Duan, H.; Zheng, M.; Li, J.; Liu, T.; Wang, Z.; Shrestha, S.; Wang, B.; Ye, L.; Hu, S.; Yuan, Z. High Hydraulic Loading Rates Favored Mainstream Partial Nitritation: Experimental Demonstration and Model-Based Analysis. ACS EST Water 2023, 3, 556–564. [Google Scholar] [CrossRef]
- Qian, Y.; Shen, J.; Chen, F.; Guo, Y.; Qin, Y.; Li, Y.-Y. Increasing nitrogen and organic matter removal from swine manure digestate by including pre-denitrification and recirculation in single-stage partial nitritation/anammox. Bioresour. Technol. 2023, 367, 128229. [Google Scholar] [CrossRef]
- Li, A.; Qian, T.; Zhu, S.; Lv, M.; Fan, B. Spontaneous initiation and maintenance of partial nitritation for household toilet wastewater treatment. Desalination Water Treat. 2021, 217, 127–136. [Google Scholar] [CrossRef]
- Li, A.; Shu, S.; Wang, Z.; Kinhoun, J.J.R.; Qian, T. Onsite Source-Separation and Synergistic Treatment of Household Wastewater: Mechanism Elaboration, Technology Optimization, and Advantage Analysis. ACS EST Water 2022, 2, 1332–1343. [Google Scholar] [CrossRef]
- Chand, N.; Kumar, K.; Suthar, S. “Cattle dung biochar-packed vertical flow constructed wetland for nutrient removal”: Effect of intermittent aeration and wastewater COD/N loads on the removal process. J. Water Process Eng. 2021, 43, 102215. [Google Scholar] [CrossRef]
- Cui, X.; Wu, B.; Liu, Y.; Ren, Q.; Ren, T.; Zhou, Y. Simultaneous and Efficient Removal of Linear Alkylbenzenesulfonate and Nitrogen in a Membrane Biofilm Reactor under Low Dissolved Oxygen Conditions. ACS ES&T Eng. 2022, 2, 2234–2244. [Google Scholar]
- Wang, R.; Wang, X.; Deng, C.; Chen, Z.; Chen, Y.; Feng, X.; Zhong, Z. Partial nitritation performance and microbial community in sequencing batch biofilm reactor filled with zeolite under organics oppression and its recovery strategy. Bioresour. Technol. 2020, 305, 123031. [Google Scholar] [CrossRef]
- Ren, J.; Yang, X.; Xi, J.; Cheng, W. Effects of carbon to nitrogen ratio on oxygen mass transfer characteristics in wastewater and biofilms. J. Environ. Chem. Eng. 2023, 11, 110719. [Google Scholar] [CrossRef]
- Boog, J.; Nivala, J.; Kalbacher, T.; van Afferden, M.; Müller, R.A. Do wastewater pollutants impact oxygen transfer in aerated horizontal flow wetlands? Chem. Eng. J. 2020, 383, 123173. [Google Scholar]
Item | S1 | S2 | S3 | S4 | V1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | Inf | Eff | |
pH | 9.06 | 7.17 (0.30) | 8.58 (0.10) | 6.90 (0.32) | 8.60 (0.08) | 7.03 (0.54) | 8.30 (0.35) | 7.05 (0.80) | - | 7.21 (0.67) |
COD * | 682 | 119 (43) | 471 (167) | 114 (50) | 439 (174) | 108 (45) | 430 (228) | 152 (61) | 401 (111) | 133 (49) |
TAN * | 356 | 53 (20) | 290 (49) | 118 (24) | 294 (65) | 87 (40) | 228 (61) | 117 (61) | 243 (55) | 118 (50) |
TN * | 385 | 121 (37) | 314 (59) | 252 (48) | 313 (67) | 251 (47) | 258 (51) | 216 (47) | 255 (56) | 215 (56) |
NO2−-N * | - | 65 (21) | - | 126 (31) | - | 153 (31) | - | 76 (30) | - | 80 (41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Lv, M.; Jing, X.; Wang, H.; Feng, H. The Suppression of Nitrite-Oxidizing Bacteria Using Free Nitrous Acid and Limited Available Dissolved Oxygen to Maintain the Stability of Toilet Wastewater Biofilm Nitritation. Sustainability 2024, 16, 10165. https://doi.org/10.3390/su162310165
Li A, Lv M, Jing X, Wang H, Feng H. The Suppression of Nitrite-Oxidizing Bacteria Using Free Nitrous Acid and Limited Available Dissolved Oxygen to Maintain the Stability of Toilet Wastewater Biofilm Nitritation. Sustainability. 2024; 16(23):10165. https://doi.org/10.3390/su162310165
Chicago/Turabian StyleLi, Ao, Minghuan Lv, Xue Jing, Hongliang Wang, and Huijuan Feng. 2024. "The Suppression of Nitrite-Oxidizing Bacteria Using Free Nitrous Acid and Limited Available Dissolved Oxygen to Maintain the Stability of Toilet Wastewater Biofilm Nitritation" Sustainability 16, no. 23: 10165. https://doi.org/10.3390/su162310165
APA StyleLi, A., Lv, M., Jing, X., Wang, H., & Feng, H. (2024). The Suppression of Nitrite-Oxidizing Bacteria Using Free Nitrous Acid and Limited Available Dissolved Oxygen to Maintain the Stability of Toilet Wastewater Biofilm Nitritation. Sustainability, 16(23), 10165. https://doi.org/10.3390/su162310165