Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Resource Exergy Footprint Indicator
2.3. Total Annual Produced Biomass (A)
2.4. Natural Potential of Biomass (B)
2.5. Exergy Embodied in Non-Local Resources (C)
3. Results and Discussion
3.1. Resource Balance Analysis
3.2. Final Remarks
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Alvarenga, R.A.F.; Dewulf, J.; Van Langenhove, H. A new natural resource balance indicator for terrestrial biomass production systems. Ecol. Indic. 2013, 32, 140–146. [Google Scholar] [CrossRef]
- Ke, X.; Chen, J.; Zuo, C.; Wang, X. The cropland intensive utilisation transition in China: An induced factor substitution perspective. Land Use Policy 2024, 141, 107128. [Google Scholar] [CrossRef]
- Wirsenius, S.; Azar, C.; Berndes, G. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric. Syst. 2010, 103, 621–638. [Google Scholar] [CrossRef]
- Zhang, Y.; Baral, A.; Bakshi, B.R. Accounting for Ecosystem Services in Life Cycle Assessment part II: Toward an Ecologically Based LCA. Environ. Sci. Technol. 2010, 44, 2624–2631. [Google Scholar] [CrossRef]
- Romero, J.C.; Linares, P. Exergy as a global energy sustainability indicator. A review of the state of the art. Renew. Sustain. Energy Rev. 2014, 33, 427–442. [Google Scholar] [CrossRef]
- Bösch, M.E.; Hellweg, S.; Huijbregts, M.A.; Frischknecht, R. Applying Cumulative Exergy Demand (CExD) Indicators to the ecoinvent Database. Int. J. LCA 2007, 12, 181–190. [Google Scholar] [CrossRef]
- Alvarenga, R.A.F.; Dewulf, J.; Van Langenhove, H.; Huijbregts, M.A.J. Exergy-based accounting for land as a natural resource in life cycle assessment. Int. J. Life Cycle Assess. 2013, 18, 939–947. [Google Scholar] [CrossRef]
- Taelman, S.E.; Schaubroeck, T.; De Meester, S.; Boone, L.; Dewulf, J. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci. Total Environ. 2016, 550, 143–156. [Google Scholar] [CrossRef]
- Martínez Martínez, Y.; Goecke Coll, D.; Aguayo, M.; Casas-Ledón, Y. Effects of landcover changes on net primary production (NPP)-based exergy in south-central of Chile. Appl. Geogr. 2019, 113, 102101. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Andrade, C.; Salazar, C.; Martínez-Martínez, Y.; Aguayo, M. Understanding the dynamics of human appropriation on ecosystems via an exergy-based net primary productivity indicator: A case study in south-central Chile. Ecol. Econ. 2023, 210, 107862. [Google Scholar] [CrossRef]
- ODEPA. Información Regional de Superficie Sembrada, Producción y Rendimientos Anuales; ODEPA: Santiago, Chile, 2023. [Google Scholar]
- Poblete Hernández, P.; Gysling Caselli, J.; Alvarez González, V.; Bañados Munita, J.C.; Kahler González, C.; Pardo Velásquez, E.; Aguirre, D.S.; Rocha, D.B. Anuario Forestal 2023; Instituto Forestal: Santiago, Chile, 2023. [Google Scholar] [CrossRef]
- Haberl, H.; Schulz, N.B.; Plutzar, C.; Erb, K.H.; Krausmann, F.; Loibl, W.; Moser, D.; Sauberer, N.; Weisz, H.; Zechmeister, H.G.; et al. Human appropriation of net primary production and species diversity in agricultural landscapes. Agric. Ecosyst. Environ. 2004, 102, 213–218. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- INFOR. Los Recursos Forestales en Chile. Inventario Continuo de Bosques Nativos y Actualizacion de Plantaciones Forestales. 2016. Available online: https://bibliotecadigital.infor.cl/bitstream/handle/20.500.12220/21002/31535.pdf?sequence=1&isAllowed=y (accessed on 24 September 2023).
- Cabrera Perramón, J.; Avila Campos, A.; Bahamóndez, V.C.; Martin Stuven, M.; Muñoz Baeza, J.C.; Peña Ibarra, O.; Rojas Ponce, C.; Rojas Ponce, Y.; Uribe, A. Informe Técnico 194. Disponibilidad de Madera de Plantaciones de Pino Radiata y Eucalipto 2010–2040; INFOR: Santiago, Chile, 2013; Available online: https://bibliotecadigital.infor.cl/bitstream/handle/20.500.12220/20477/31010.pdf?sequence=1&isAllowed=y (accessed on 20 September 2023).
- MMA. Segundo Informe del Inventario Nacional de Gases de Efecto Invernadero de Chile Serie 1990–2013; MMA: Santiago, Chile, 2017. [Google Scholar]
- Szargut, J.T.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; U.S. Department of Energy: New York, NY, USA, 1988.
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP using three models compared with MODIS-NPP data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Zaks, D.P.M.; Ramankutty, N.; Barford, C.C.; Foley, J.A. From Miami to Madison: Investigating the relationship between climate and terrestrial net primary production. Glob. Biogeochem. Cycles 2007, 21, 1–13. [Google Scholar] [CrossRef]
- Adams, B.; White, A.; Lenton, T.M. An analysis of some diverse approaches to modelling terrestrial net primary productivity. Ecol. Model. 2004, 177, 353–391. [Google Scholar] [CrossRef]
- González, U.J. (Ed.) Comportamiento Económico de Cultivos Anuales en el Centro sur de Chile; Boletín INIA No 358; Instituto de Investigaciones Agropecuarias (INIA): Chillán, Chile, 2018. [Google Scholar]
- Ecoinvent Database, Developed by Swiss Research Institutions ETH. Available online: https://ecoinvent.org/database/ (accessed on 14 October 2024).
- Dewulf, J.; Bösch, M.E.; De Meester, B.; Van der Vorst, G.; Van Langenhove, H.; Hellweg, S.; Huijbregts, M.A.J. Cumulative Exergy Extraction from the Natural Environment (CEENE): A comprehensive Life Cycle Impact Assessment method for resource accounting. Environ. Sci. Technol. 2007, 41, 8477–8483. [Google Scholar] [CrossRef]
- Papageorgiou, S.; Massai, C. Chile’s Forests: A Pillar for Inclusive and Sustainable Development (English); World Bank Group: Washington, DC, USA, 2020; Available online: http://documents.worldbank.org/curated/en/694451591267989652/Chile-s-Forests-A-Pillar-for-Inclusive-and-Sustainable-Development (accessed on 14 October 2024).
- Rolando, C.A.; Watt, M.S.; Todoroki, C.; Henley, D.; Leckie, A. Herbicide options for managing competitive vegetation during the establishment of Pinus radiata and Pseudotsuga menziesii var. menziesii in Southland, New Zealand. N. Z. J. For. Sci. 2017, 47, 716. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.C.; Luo, Z.H.; Yu, X.J. Nonlinear variations of net primary productivity and its relationship with climate and vegetation phenology, China. Forests 2017, 8, 361. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Sepúlveda, S.F.; Corradini, S.F. Programa CONAF FAO INIA. La Situación Geográfica de las Quemas Agrícolas en Chile; Instituto de Investigaciones Agropecuarias (INIA): Santiago, Chile, 2024. [Google Scholar]
- Shilev, S.; Naydenov, M.; Vancheva, V.; Aladjadjiyan, A. Composting of Food and Agricultural Wastes. Utilization of By-Products and Treatment of Waste in the Food Industry; Springer: Boston, MA, USA, 2007; pp. 283–301. [Google Scholar]
- Ferrari, V.; Torres Nazari, M.; Favarin da Silva, N.; Crestani, L.; Manique Raymundo, L.; Luiz Dotto, G.; Piccin, J.S.; Oliveira, L.F.S.; Bernardes, A.M. Pyrolysis: A promising technology for agricultural waste conversion into value-added products. Environ. Dev. Sustain. 2024, in press. [CrossRef]
- Kung, C.-C.; Kong, F.; Choi, Y. Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecol. Indic. 2015, 51, 139–145. [Google Scholar] [CrossRef]
- Parra, O.; Figueroa, R.; Valdovinos, C.; Habit, E. Programa de Monitoreo de la Calidad del Agua del Sistema río Biobío 1994–2012: Aplicación del Anteproyecto de Norma de la Calidad del Agua del río Biobío; Editorial Universidad de Concepción, Centro de Ciencias Ambientales EULA: Concepción, Chile, 2013; Available online: https://www.bcn.cl/catalogo/client/es_CL/publico/search/detailnonmodal/ent:$002f$002fSD_ILS$002f0$002fSD_ILS:252249/ada?qu=&nov=1 (accessed on 14 October 2024).
- Montory, M.; Ferrer, J.; Rivera, D.; Villouta, M.V.; Grimalt, J.O. First report on organochlorine pesticides in water in a highly productive agro-industrial basin of the Central Valley, Chile. Chemosphere 2017, 174, 148–156. [Google Scholar] [CrossRef] [PubMed]
- INE. Chile Population 2002–2035, Urban and Rural Population. Summary of Results 2019, Volume 13. Available online: https://www.ine.cl/docs/default-source/proyecciones-de-poblacion/publicaciones-y-anuarios/base-2017/ine_estimaciones-y-proyecciones-2002-2035_base-2017_reg_área_síntesis.pdf?sfvrsn=aaeb88e7_5 (accessed on 2 June 2021).
- Azarbad, H. Conventional vs. Organic Agriculture–Which One Promotes Better Yields and Microbial Resilience in Rapidly Changing Climates? Front. Microbiol. 2022, 13, 903500. [Google Scholar] [CrossRef] [PubMed]
- Melo, O.; Quiñones, N.B.; Acuña, D. Towards Sustainable Agriculture in Chile, Reflections on the Role of Public Policy. Int. J. Agric. Nat. Resour. 2021, 48, 186–209. [Google Scholar] [CrossRef]
- Braun, A.C.; Troeger, D.; Garcia, R.; Aguayo, M.; Barra, R.; Vogt, J. Assessing the impact of plantation forestry on plant biodiversity: A comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 2017, 10, 159–172. [Google Scholar] [CrossRef]
- Echeverría, C.; Coomes, D.; Salas, J.; Rey-Benayas, J.M.; Lara, A.; Newton, A. Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol. Conserv. 2006, 130, 481–494. [Google Scholar] [CrossRef]
- Banfield, C.C.; Braun, A.C.; Barra, R.; Castillo, A.; Vogt, J. Erosion proxies in an exotic tree plantation question the appropriate land use in Central Chile. Catena 2018, 161, 77–84. [Google Scholar] [CrossRef]
- Díaz, M.E.; Figueroa, R.; Alonso, M.L.S.; Vidal-Abarca, M.R. Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile). Ecosyst. Serv. 2018, 31, 84–92. [Google Scholar] [CrossRef]
- Soto, L.; Galleguillos, M.; Seguel, O.; Sotomayor, B.; Lara, A. Assessment of soil physical properties’ statuses under different land covers within a landscape dominated by exotic industrial tree plantations in south-central Chile. J. Soil Water Conserv. 2019, 74, 12–23. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Flores, M.; Jiménez, R.; Ronsse, F.; Dewulf, J.; Arteaga-Pérez, L.E. On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study. Energy 2019, 170, 763–776. [Google Scholar] [CrossRef]
- Armenteras, D.; de la Barrera, F. Landscape management is urgently needed to address the rise of megafires in South America. Commun. Earth Environ. 2023, 4, 305. [Google Scholar] [CrossRef]
- de la Barrera, F.; Barraza, F.; Favier, P.; Ruiz, V.; Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 2018, 637–638, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Pliscoff, P.; Folchi, M.; Aliste, E.; Cea, D.; Simonetti, J.A. Chile mega-fire 2017: An analysis of social representation of forest plantation territory. Appl. Geogr. 2020, 119, 102226. [Google Scholar] [CrossRef]
- Ruiz, S. Rastrojo de cultivos y residuos forestales. Programa de transferencia de prácticas alternativas al uso del fuego en la región del Bio-Bio. Boletín INIA-Inst. Investig. Agropecu. Chill 2015, 308, 196. Available online: https://biblioteca.inia.cl/server/api/core/bitstreams/e16fd5bc-6086-4fe5-80af-f6390157dc05/content (accessed on 15 July 2023).
- Baeza, S.; Paruelo, J.M. Spatial and temporal variation of human appropriation of net primary production in the Rio de la Plata grasslands. ISPRS J. Photogramm. Remote Sens. 2018, 145, 238–249. [Google Scholar] [CrossRef]
- Gingrich, S.; Niedertscheider, M.; Kastner, T.; Haberl, H.; Cosor, G.; Krausmann, F.; Kuemmerle, T.; Müller, D.; Reith-Musel, A.; Jepsen, M.R.; et al. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries. Land Use Policy 2015, 47, 426–438. [Google Scholar] [CrossRef]
- Casas-Ledón, Y.; Daza Salgado, K.; Cea, J.; Arteaga-Pérez, L.E.; Fuentealba, C. Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers. J. Clean Prod. 2020, 249, 119356. [Google Scholar] [CrossRef]
- Aramrueang, N.; Zicari, S.M.; Zhang, R. Response Surface Optimization of Enzymatic Hydrolysis of Sugar Beet Leaves into Fermentable Sugars for Bioethanol Production. Adv. Biosci. Biotechnol. 2017, 8, 51–67. [Google Scholar] [CrossRef]
Crops/Forest | Potential Primary Productivity (B) (MJex/m2.yr) | Potential Primary Productivity (B) (MJex/m2.yr) |
---|---|---|
Biobío Region | Ñuble Region | |
Maize | 34.84 | 33.51 |
Wheat | 34.40 | 33.54 |
Oat | 34.39 | 33.74 |
Rapeseed | 35.45 | 33.87 |
Sugar beet | 35.04 | 34.25 |
Potatoes | 34.42 | 33.30 |
Eucalyptus globulus | 34.27 | 32.89 |
Pinus radiada | 34.33 | 33.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Ledón, Y.; Silva, J.; Larrere, S.; Martínez-Martínez, Y. Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach. Sustainability 2024, 16, 10173. https://doi.org/10.3390/su162310173
Casas-Ledón Y, Silva J, Larrere S, Martínez-Martínez Y. Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach. Sustainability. 2024; 16(23):10173. https://doi.org/10.3390/su162310173
Chicago/Turabian StyleCasas-Ledón, Yannay, Javiera Silva, Sebastián Larrere, and Yenisleidy Martínez-Martínez. 2024. "Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach" Sustainability 16, no. 23: 10173. https://doi.org/10.3390/su162310173
APA StyleCasas-Ledón, Y., Silva, J., Larrere, S., & Martínez-Martínez, Y. (2024). Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach. Sustainability, 16(23), 10173. https://doi.org/10.3390/su162310173